In vivo robotics: the automation of neuroscience and other intact-system biological fields

Kodandaramaiah, S. B., Boyden, E. S.*, Forest, C. F.* (2013) In vivo robotics: the automation of neuroscience and other intact-system biological fields, Annals of the New York Academy of Sciences, 1305(1):63-71. (* co-corresponding authors)

See PDF Publisher Link

Robotic and automation technologies have played a huge role inin vitrobiological science, having proved critical for scientific endeavors such as genome sequencing and high-throughput screening. Robotic and automation strategies are beginning to play a greater role in in vivo and in situ sciences, especially when it comes to the difficult in vivo experiments required for understanding the neural mechanisms of behavior and disease. In this perspective, we discuss the prospects for robotics and automation to influence neuroscientific and intact-system biology fields. We discuss how robotic innovations might be created to open up new frontiers in basic and applied neuroscience and present a concrete example with our recent automation ofin vivowhole-cell patch clamp electrophysiology of neurons in the living mouse brain.

Project

Tools for recording brain signaling dynamics

View Project