Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses

Liu S, Punthambaker S, Iyer EPR, Ferrante T, Goodwin D, Fürth D, Pawlowski AC, Jindal K, Tam JM, Mifflin L, Alon S, Sinha A, Wassie AT, Chen F, Cheng A, Willocq V, Meyer K, Ling KH, Camplisson CK, Kohman RE, Aach J, Lee JH, Yankner BA, Boyden ES, Church GM (2021) Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses, Nucleic Acids Research 49(10):e58.

See PDF Publisher Link

We present barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel insitu analyses (BOLORAMIS), a reverse transcription-free method for spatially-resolved, targeted, in situ RNA identification of single or multiple targets. BOLORAMIS was demonstrated on a range of cell types and human cerebral organoids. Singleplex experiments to detect coding and non-coding RNAs in human iPSCs showed a stem-cell signature pattern. Specificity of BOLORAMIS was found to be 92% as illustrated by a clear distinction between human and mouse housekeeping genes in a co-culture system, as well as by recapitulation of subcellular localization of lncRNA MALAT1. Sensitivity of BOLORAMIS was quantified by comparing with single molecule FISH experiments and found to be 11%, 12% and 35% for GAPDH, TFRC and POLR2A, respectively. To demonstrate BOLORAMIS for multiplexed gene analysis, we targeted 96 mRNAs within a co-culture of iNGN neurons and HMC3 human microglial cells. We used fluorescence in situ sequencing to detect error-robust 8-base barcodes associated with each of these genes. We then used this data to uncover the spatial relationship among cells and transcripts by performing single-cell clustering and gene–gene proximity analyses. We anticipate the BOLORAMIS technology for in situ RNA detection to find applications in basic and translational research.

Project

Tools for mapping the molecules and structure of the brain

View Project