In Vivo Optical Clearing of Mammalian Brain

Giovanni Talei Franzesi*, Ishan Gupta*, Ming Hu, Kiryl Piatkveich, Murat Yildirim, Jian-Ping Zhao, Minho Eom, Seungjae Han, Demian Park, Himashi Andaraarachchi, Zhaohan Li, Jesse Greenhagen, Amirul Muhammad Islam, Parth Vashishtha, Zahid Yaqoob, Nikita Pak, Alexander D. Wissner-Gross, Daniel Martin-Alarcon, Jonathan Veinot, Peter T. So, Uwe Kortshagen, Young-Gyu Yoon, Mriganka Sur**, Edward S. Boyden** (2024) In Vivo Optical Clearing of Mammalian Brain, bioRxiv 2024.09.05.611421; doi: https://doi.org/10.1101/2024.09.05.611421 (*, equal contribution; ** co-senior authors)

See PDF Publisher Link

Established methods for imaging the living mammalian brain have, to date, taken the brain’s optical properties as fixed; we here demonstrate that it is possible to modify the optical properties of the brain itself to significantly enhance at-depth imaging while preserving native physiology. Using a small amount of any of several biocompatible materials to raise the refractive index of solutions superfusing the brain prior to imaging, we could increase severalfold the signals from the deepest cells normally visible and, under both one-photon and twophoton imaging, visualize cells previously too dim to see. The enhancement was observed for both anatomical and functional fluorescent reporters across a broad range of emission wavelengths. Importantly, visual tuning properties of cortical neurons in awake mice, and electrophysiological properties of neurons assessed ex vivo, were not altered by this procedure.

Project

Tools for recording brain signaling dynamics

View Project