Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis

Joo, J., Chow, B. Y., Prakash, M., Boyden, E. S., Jacobson, J. M. (2011) Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis, Nature Materials 10(8):596-601.

See PDF Publisher Link

Rational control over the morphology and the functional properties of inorganic nanostructures has been a long-standing goal in the development of bottom-up device fabrication processes. We report that the geometry of hydrothermally grown zinc oxide nanowires can be tuned from platelets to needles, covering more than three orders of magnitude in aspect ratio (~0.1–100). We introduce a classical thermodynamics-based model to explain the underlying growth inhibition mechanism by means of the competitive and face-selective electrostatic adsorption of non-zinc complex ions at alkaline conditions. The performance of these nanowires rivals that of vapour-phase-grown nanostructures, and their low-temperature synthesis (<60 °C) is favourable to the integration and in situ fabrication of complex and polymer-supported devices. We illustrate this capability by fabricating an all-inorganic light-emitting diode in a polymeric microfluidic manifold. Our findings indicate that electrostatic interactions in aqueous crystal growth may be systematically manipulated to synthesize nanostructures and devices with enhanced structural control.


Tools for recording brain signaling dynamics

View Project