In order to understand how the brain generates behaviors, it is important to be able to determine how neural circuits work together to perform computations. Because neural circuits are made of a great diversity of cell types, it is critical to be able to analyze how these different kinds of cell work together. In recent years, a toolbox of fully genetically encoded molecules has emerged that, when expressed in specific neurons, enables the electrical activity of the targeted neurons to be controlled in a temporally precise fashion by pulses of light. We describe this optogenetic toolbox, how it can be used to analyze neural circuits in the brain and how optogenetics is impacting the study of cognition.