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Abstract—Mapping nanoscale neuronal morphology with molecular
annotations is critical for understanding healthy and dysfunctional brain
circuits. Current methods are constrained by image segmentation er-
rors and by sample defects (e.g., signal gaps, section loss). Genetic
strategies promise to overcome these challenges by using easily distin-
guishable cell identity labels. However, multicolor approaches are spec-
trally limited in diversity, whereas nucleic acid barcoding lacks a cell-
filling morphology signal for segmentation. Here, we introduce PRISM
(Protein-barcode Reconstruction via lterative Staining with Molecular
annotations), a platform that integrates combinatorial delivery of anti-
genically distinct, cell-filling proteins with tissue expansion, multi-cycle
imaging, barcode-augmented reconstruction, and molecular annotation.
Protein barcodes increase label diversity by >750-fold over multicolor
labeling and enable morphology reconstruction with intrinsic error cor-
rection. We acquired a ~10 million pm? volume of mouse hippocam-
pal area CA2/3, multiplexed across 23 barcode antigen and synaptic
marker channels. By combining barcodes with shape information, we
achieve an 8x increase in automatic tracing accuracy of genetically la-
belled neurons. We demonstrate PRISM supports automatic proofread-
ing across micron-scale spatial gaps and reconnects neurites across
discontinuities spanning hundreds of microns. Using PRISM’s molecular
annotation capability, we map the distribution of synapses onto traced
neural morphology, characterizing challenging synaptic structures such
as thorny excrescences (TEs), and discovering a size correlation among

spatially proximal TEs on the same dendrite. PRISM thus supports self-
correcting neuron reconstruction with molecular context.

1 INTRODUCTION

Information flow in the mammalian brain is governed by
neuronal morphology, with function shaped both by where
synapses are distributed on the cell and by the molecular
composition of synapses. Disruptions in circuit organization
and synaptic machinery have been implicated in diverse
disorders such as autism, Parkinson’s disease, and epilepsy
(Lepeta et al.,, 2016). A robust, self-correcting method for
neural tracing with molecular annotation would therefore
benefit diverse areas of neuroscience.

Electron microscopy (EM) has long been the primary
method for mapping neuron morphology, supplying dense
ultrastructural detail for tracing. Despite its power for
mapping morphology at scale in mammals (Bae et al.,
2025; Schneider-Mizell et al., 2025; Shapson-Coe et al., 2024)
and other organisms, scalable EM reconstruction faces two
central limitations. First, it is sensitive to both within-
slice signal discontinuities and between-slice serial section
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loss, where even small gaps can fragment a dataset into
disjointed subvolumes (“Scaling up connectomics — Re-
ports,” 2023). Second, scaling EM reconstruction remains
prohibitively expensive because it requires extensive human
proofreading of automatic segmentation outputs (Dorken-
wald et al., 2024). For example, section loss in a recent cubic-
millimeter EM dataset forced subdivisions of the volume to
be reconstructed separately. Within the largest subvolume, a
data release of approximately 1,500 proofread cells required
more than one million human proofreading edits (Bae et al.,
2025). Furthermore, EM cannot intrinsically visualize spe-
cific molecules, requiring correlative methods to capture this
information (Begemann & Galic, 2016; Lam et al., 2015).

Light microscopy provides a complementary path to
morphology reconstruction. Recent advances demonstrate
how genetic (Gao et al., 2019) or protein density labeling
(Damstra et al., 2023; M’Saad et al., 2022; Tavakoli et al.,
2025), combined with tissue clearing and expansion mi-
croscopy (F. Chen et al., 2015), can provide neuronal recon-
structions from light microscopy data with nanoscale detail.
Importantly, combining these methods with the labeling of
endogenous markers and proteins allows for the addition
of key biological information to the reconstructed circuits
(Shen et al., 2020). However, like EM, these approaches
fundamentally rely on tracing the continuity of neurons
through sections, making them sensitive to section loss.
Tissue clearing approaches help address this by allowing for
thicker sectioning (Winnubst et al., 2019) and even whole-
brain imaging (Glaser et al., 2025). Still, serial sectioning
and extensive proofreading are key bottlenecks to scaling up
these approaches when high resolution is required (e.g. for
synaptic analysis), or when applying such techniques to the
diverse questions of everyday neuroscience. For example,
imaging an entire mouse brain for light microscopy con-
nectomics would involve tomography of thousands of sec-
tions, and proofreading the resulting volume would be cost-
prohibitive (Kornfeld, 2025). Despite several connectomic
triumphs (Bae et al., 2025; Dorkenwald et al., 2024; Shapson-
Coe et al., 2024), that have mapped neural circuits with
unprecedented detail, comprehensive studies of neuronal
morphology - essential for linking structure to function
within specific cellular and circuit contexts (Hardingham &
Bading, 2010) - remain challenging and are still uncommon
in routine neuroscience research.

Cellular barcoding approaches have the potential to
overcome these scaling bottlenecks by providing each neu-
ron with a molecular signature (i.e., a barcode) that can
be used to correct tracing errors and bridge spatial gaps,
thereby mitigating issues of serial loss and proofreading
cost. Combinatorial labeling with spectrally-distinct fluores-
cent proteins simplifies tracing by increasing the number of
distinguishable neurons (Cai et al., 2013; Livet et al., 2007;
Sakaguchi et al., 2018), and can even reconnect neurons
across discontinuities (Leiwe et al., 2024). However, this
approach is constrained by a limited spectral budget of
fluorophores and laser lines. RNA barcodes can distinguish
many more neurons but, because they do not fill the cell,
cannot be used for morphological reconstruction (X. Chen
et al., 2019; Goodwin et al., 2022; Kebschull et al., 2016; Yuan
et al., 2024).

We present PRISM, a technology platform enabling scal-
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able, self-correcting morphology reconstruction with molec-
ular annotation, designed to address key challenges of ac-
curate neuron tracing and sample fragility. We developed a
toolbox of highly diverse cell-filling protein labels with cog-
nate antibodies, achieving barcode diversity 750-fold greater
than conventional multicolor labeling. We co-optimized this
barcoding system with expansion microscopy and rounds of
sequential staining for nanoscale and multiplexed detection.
We then built machine learning (ML) pipelines that incor-
porate barcode information into automatic image segmen-
tation and automatic proofreading (Figure 1.C). We show
the expected error-free tracing distance is 8x longer with
PRISM than with conventional tracing based on a single-
channel fluorescent protein (eGFP). We demonstrate that, by
using protein barcodes, we can error-correct micron-scale
discontinuities and cross spatial gaps of up to hundreds
of microns. We used PRISM to map thousands of synaptic
contacts across reconstructed neurons. Using the enhanced
resolution of expansion microscopy, we resolve nanoscale
features such as thorny excrescences (TEs) and identify a
size correlation between spatially proximal TEs on the same
dendrite.

2 RESULTS

2.1 Protein barcode design and delivery

We set out to design an ideal protein barcoding system,
which should have high diversity approaching that of RNA
barcodes (Kebschull et al., 2016) while labeling morphology
such that it can be traced in 3D image volumes and co-
registered with synaptic labeling. Informed by work lever-
aging combinatorial adeno-associated virus (AAV) infection
for protein diversity (Cai et al., 2013; Sakaguchi et al., 2018),
we chose to use an AAV delivery system, which offered
both the high multiplicity of infection required for protein
bit diversity and the delivery of cell-filling protein payloads.
Drawing from work on multiplex imaging of epitope tags
(Kudo et al., 2022; Rovira-Clavé et al., 2021; Wroblewska
et al.,, 2018), we chose to focus on antigenic diversity over
spectral diversity, reasoning that expanding the palette of
peptide tags and corresponding antibodies would provide a
far larger and more flexible design space than conventional
fluorescent approaches.

To build this system, we chose enhanced green fluores-
cent protein (eGFP) as a scaffold protein well-characterized
for safety and trafficking in neuronal tracing (Viswanathan
et al., 2015). Based on the simple structure used in epitope
tagging of native proteins, we fused tags to the C-terminal
with a flexible GGSGGS linker to minimally disrupt the na-
tive folding and trafficking properties of eGFP. We expressed
these protein bits in vivo using AAV and screened libraries
of candidate epitope fusions and antibodies in expanded
tissue. We worked with a MAGNIFY gel chemistry (Klimas
et al., 2023) because of its robust gel chemistry and gen-
eralized protein retention, likely to be compatible with a
wide range of protein bits. Epitope-binder pairs were qual-
itatively assessed for signal specificity and cross reactivity,
compatibility with expansion chemistry, and expression in
cell bodies and neurites. From this, we developed a set of
top-performing antibodies for these protein bits, spanning
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Figure 1: PRISM enables multiplexing and reconstruction of sparsely labeled mouse hippocampal CA3 neurons. A. 3D
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Figure 1: (continued) rendering of a ~10 million pm?® volume of mouse hippocampal CA3 with 18 protein bits, 5 synaptic
markers, and a 35 x 35 x 80 nm voxel size. Panel highlights are four different views of the dataset (left to right): single-
plane images containing single bit (eGFP) in grayscale, single-plane multi-colored images containing 18 protein bits, 3D
segmentations using 18-bit protein barcodes, and synapse reconstructions of presynaptic active zone marker Bassoon
and postsynaptic excitatory scaffold protein PSD95. Insets are demonstrative images for each of the four views and do
not correspond to the circled region of interest (ROI). The full volume for morphology and synapses can be further
explored in Movie S1. Scalebar: 10 pm. B. Subway map analogy of leveraging protein barcodes for automated segmentation.
Top, view of the London Underground map showing multiple different tube lines and bottom, single-plane images of a
neurite ROI in the hippocampal CA3 dataset. The left panels are both presented in single color while the right panels
are presented with multiple channels or barcodes. Color enables distinguishing of overlapping objects. The single-color
grayscale image of neurites is an anti-GFP stain. Scalebar: 20 ym. C. Overview of PRISM. (Top) Combinatorial protein
barcoding via stochastic AAV infection. Stochastic infection leads to random expression of protein bits; representative
structure shown on right. (Bottom left) Multiplexed antibody staining in 5X expanded barcoded brain slices. (Bottom
right) ML-based reconstruction of neurons utilizing barcodes for automated proofreading and segmentation and molecular
annotations for synapse reconstruction. Assortment of high-resolution 3D images of axons and dendrites as well as two
human-proofread cells with ID #s 1492 and 1380. Boxes on cell 1492 and 1380 correspond to the approximate ROI for
neuronal structures shown in the breakout panels in E, F, and G. PRISM data can be used to reconstruct dendrites and
axons in the same volume, distinguishable by morphology. E. Example of barcode multiplexing in a soma and dendrite
of the same cell, and axon contact from an adjacent cell. Multiplexing data shown for the soma and dendrite of cell ID
1492 (top panel) and a crossing barcoded axon (bottom panel). Single-plane raw images for each ROI are displayed for
each protein bit channel, with binary protein bit assignments shown at the bottom of the corresponding panels. Insets
of a dendritic spine (arrowhead) are displayed. Scale bars: 2um. F. Identification of an excitatory synapse between two
barcoded neurites via synapse multiplexing. Left: Overview image of dendrite of cell 1492 contacting the axon shown in E,
III (bottom row). Arrowhead marks the putative synapse. All images are single-plane. Scale bar: 5 um. Right, top row, left
to right: presynaptic neuron in ALFA; overlaid with Synapsin I/1I; overlaid with Bassoon. Right, bottom row: postsynaptic
neuron in PRTC channel; overlaid with PSD95; merged view showing both barcodes with Bassoon and PSD95. Scale bar:
2um. G. Identification of an inhibitory synapse on cell 1380. Left: Zoom out of the dendritic shaft receiving inhibitory input
with GABRA, Bassoon, and MOON overlay. Scale bar: 5 um. Right, 1.2 pm thick maximum intensity projection (MaxIP)
images of synapse channels overlaid on the MOON protein bit channel. Arrow indicates putative inhibitory synapses. Top
row, left to right: 1380 dendrite in the MOON channel, Synapsin 1/1II overlay, Bassoon overlay; GABRA overlay. Bottom
row, left to right: VGAT overlay; PSD95 overlay; VGAT and GABRA overlay; Bassoon and GABRA overlay. Scale bar: 2 pum.
All figure scale bars represent pre-expansion biological distances.

multiple species with a set of 18 validated pairs (Sup-
plementary Table 1), providing a foundation for a robust
epitope palette for barcode generation.

Finally, to make the approach economically feasible, we
produced AAV barcoding constructs as pooled libraries of
plasmids rather than generating each virus individually.
However, as with our initial antibody screens, evaluating
how these pooled libraries functioned as complete bar-
codes required extensive multiplexed analyses. Having es-
tablished a library of discrete protein bits and a delivery
mechanism, we carried out a pilot study to examine their
performance in vivo. This provided an opportunity to assess
barcode diversity and representation across cells, and test
the utility of protein barcodes for reconstruction.

2.2 Detection of virally-expressed protein barcodes
and synaptic markers

We injected a PHP.eB-pseudotyped viral pool of 18 protein
bits into the mouse hippocampal CA3 region, whose well-
defined circuitry (Cherubini & Miles, 2015; Rebola et al.,
2017; Sammons et al., 2024) makes it particularly suitable
for circuit tracing (Figure 1.C). To achieve high-resolution
morphology and identify putative connections, we used a
modified MAGNIFY protocol with robust gel chemistry and
protein retention to expand brain slices 5-fold, yielding a

biological voxel size of ~35 x 35 x 80 nm (x, y, z) (Klimas
et al., 2023) (Figure 1.C; Supplementary Section 6.1).

To simultaneously detect protein barcode-labelled mor-
phology and molecular annotations, we developed an itera-
tive immunostaining protocol to overcome the limited spec-
tral diversity of conventional fluorescence microscopy (Fig-
ure 1.C). This protocol incorporated two key elements: (1)
preservation of antigenicity across multiple staining rounds
using heated homogenization buffer for antibody stripping,
and (2) improved imaging performance via a photoprotec-
tive glucose oxidase—catalase buffer under anoxic condi-
tions, which maintained pH stability and minimized photo-
induced crosslinking and epitope damage (Aitken et al.,
2008; Cordes et al., 2009; Gut et al., 2018; Herdly et al., 2023;
Kingsley et al., 2001). With this strategy, we achieved highly
efficient signal extinction across protein bit channels, with
median stripping efficiencies consistently above 93% (Sup-
plementary Figure 2.A,B, Supplementary Section 6.1.3). Re-
staining stripped samples with secondary antibodies from
the previous round showed minimal antibody crosstalk,
with median change in signal-to-background ratio ranging
from -0.97% to 8.06% across channels (Supplementary Fig-
ure 2.D, Supplementary Section 6.1.4), demonstrating the
method supports extensive round by round multiplexing.

With this multiplexing strategy, we acquired a pre-
expansion volume of ~10 million pm? of mouse hippocam-
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pal CA3, detecting 18 protein barcodes and 5 synaptic
markers across 8 stripping cycles and 12 rounds of imaging
(Figure 1.AE EG; Supplementary Figure 1; Supplementary
Table 2; Movie S1; Movie S2). Despite repeated heat denatu-
ration and exposure to high-powered lasers during imaging,
all 18 protein bits were detectable in somas, dendrites,
axons, and dendritic spines alongside 5 other synaptic mark-
ers (Figure 1.E EG, Supplementary Figure 1) demonstrating
PRISM preserves sample integrity throughout multiplex-
ing. Antigenicity was further supported by registering 11
imaging rounds using the ALFA protein bit, stripped and
re-stained over seven consecutive cycles (Supplementary
Table 2), with visual matching confirming consistent sig-
nal (Supplementary Figure 2.E). Regions where protein bit
channels were stained with same-species primary and sec-
ondary antibodies across different rounds showed minimal
signal overlap, suggesting low crosstalk optimal for reliable
barcode assignment (Supplementary Figure 2.C).

Our strategy also supported multiplexed detection of
synaptic markers. Due to fine spatial localizations and dif-
fering marker-specific needs for optimal immunodetection,
detecting a range of endogenous pre-, post-, excitatory, and
inhibitory synaptic markers has proven difficult to achieve
within the same sample (Konno & Watanabe, 2021; Konno
et al.,, 2023; Lorincz & Nusser, 2008; Melone et al., 2005;
Schneider Gasser et al., 2006). Using our workflow, we
detected the expected spatial correlations among the active
zone protein Bassoon, pre-synaptic vesicle marker Synapsin
I/11, inhibitory vesicular protein VGAT, and postsynaptic
excitatory and inhibitory proteins PSD95 and GABRAI,
even after 4-6 rounds of heat-stripping and imaging (Fig-
ure 1.EG). This performance was likely aided by strong
protein retention in the MAGNIFY gel, epitope decrowd-
ing from expansion, and antigen retrieval during homoge-
nization and stripping before sample degradation became
limiting (Klimas et al., 2023).

Together, these results establish a robust workflow for
multiplexed detection of 23 protein targets (18 protein bits
and 5 synaptic markers) across repeated stripping and
imaging cycles in expanded tissue. This approach expands
the scale and molecular detail achievable in a single brain
volume at nanoscale resolution, as illustrated by our ~10
million pm?® hippocampal dataset, providing a foundation
for barcode analysis, morphological reconstruction, and
synaptic profiling.

AAV-delivered protein barcodes.

With a fully multiplexed dataset in hand, we next eval-
uated the efficiency and diversity of our barcoding system.
We annotated the presence or absence of each protein bit
in the somas of this dataset (Figure 2.A,B), focusing on so-
mas to avoid potential confounds from branching neurites.
Within the volume, we identified a total of 298 somas with
146 containing at least one protein bit (49%). Across these
146 labeled somas, each protein bit was present on average
in 22% = 5% of cells (range: 15%-36%; Figure 2.C) with a
mean barcode length of 4 + 2.5 bits per soma (Figure 2.D).
Within this set, 80% of somas had a unique barcode, defined
as a Hamming distance of > 1 from their nearest neighbor
(Figure 2.E). Somas averaged a Hamming distance of 6 + 2.5
from other somas in the volume (Supplementary Figure 3.B).
Barcode collisions were primarily associated with single-
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bit barcodes (70% of collisions; Supplementary Figure 3.A),
and repeated barcodes were observed in fewer than four
somas per repeat (Figure 2.E). These results suggest that in
a modestly-sized barcoding dataset, the scheme produces a
diverse set of barcodes with limited collisions, motivating
further analysis of scalability through simulation of the
barcodes.

To estimate how this diversity would scale across larger
populations, we performed Monte Carlo simulations based
on the observed barcode distributions (Supplementary Fig-
ure 3.D). All simulations were conducted under a strict
binary model, considering only the presence or absence of
each unique protein bit. For a typical stereotaxic injection
labeling ~108 cells, the simulations predict ~100,000 +
200 unique binary barcodes (Supplementary Figure 3.D,F).
To characterize the labeling efficacy of these barcodes, we
defined a singlet rate (SR) metric, representing the estimated
fraction of cells with unique labels. Applying this metric
to both our observed distribution and several Poisson-ideal
models, we found that our data provides a 64-fold improve-
ment over current methods (SR of 50%: ~80 cells 7 bits vs.
~5,000, 18 bits) (Supplementary Figure 3.E,G), and up to
a 2,000-fold improvement under ideal conditions of AAV
infection and protein bit balance.

Barcode trafficking into neurites and fine structures

To establish the extent to which barcodes traffic into
fine structures and down neurites, we performed expert
semantic segmentation on a test crop to assess labeling of
dendrites, axons, and spines. In this training crop, 26.81% of
pixels were classified as dendrites and 4.96% as axons, con-
firming barcodes fill neurites and can be used to reconstruct
fine structures.

We then evaluated barcode trafficking across neurites.
We mapped signal intensity along the longest path of each
neuron to qualitatively assess trafficking and signal stability
along the neurite (Figure 2.F). Comparing signal intensity
at the soma with the farthest point along each neuron,
we observed a strong correlation across channels and cells
(R? = 0.82; n = 76; Figure 2.G), indicating that barcodes
can support tracing neurites over long distances, including
across gaps.

Together, these data demonstrate that AAV-delivered
protein barcodes provide a scalable and high-diversity sys-
tem with reliable, morphologically-filling neurite labeling
and trafficking, achieving levels of practical uniqueness
comparable to RNA- or DNA-based methods. The con-
sistent labeling across neurites and diversity make these
barcodes well-suited for computational morphological re-
construction.

2.3 Incorporating barcode information for automated

neuronal segmentation

To automatically reconstruct neuronal morphologies in our
dataset we employed an affinity graph partitioning ap-
proach, an established solution for efficient segmentation
of large volumes. In an affinity graph, edges between pairs
of pixels are assigned a weight (which can be learned by
a network), denoting whether those pixels are connected
or not (Turaga et al., 2010). The affinities can be subse-
quently agglomerated into unique segments using graph
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Figure 2: Combinatorial protein barcode expression. A. Barcode bit assignment. Example of workflow for protein bit
barcode assignment in a given FOV. i) Cell body selection ii) Channel breakout per soma with selected barcode assignments
and iii) binarized soma calls after assignments. B. Binarized barcode calls for all 146 somas, clustered using Ward’s method.
The largest silhouette score (Hamming) across k=2-10 was 5=0.19 at k=2, consistent with the diversity and overlap expected
from combinatorial label generation. Cells are used in C, D, E. C. Fraction of somas expressing each epitope. Fraction of
each protein bit detected across 146 somas (mean = 0.22+0.05). D. Distribution of protein bit counts per soma. 85% of somas
contain >1 protein bits (mean 4.2+2.4). E. Per barcode collision rate. For each barcode observed in the dataset, we
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Figure 2: (continued) calculated the number of cells containing that barcode. 120 barcodes appear only once in the dataset,
with a total of 131 codes observed. F. Barcodes can be detected down the longest path of neurites. (i) Representative longest
path intensities of example cells 1219 and 1488. (ii) Signal intensity from the soma down the longest path of cells 1219
and 1488. Distance is pre-expansion biological distance. Minimum and maximum values were set per channel for low
background and high signal and correspond to the inset of somas shown on heatmap left. Average intensity was computed
per skeleton node, and plotted as a fraction of the maximum value for that channel. G. Intensity correlation between cell
body and end point of skeletonized somas (n= 74). Each point represents the values for a single channel measured at the
start and end of a single cell. Across cells and channels, intensities are correlated with an R? of 0.82.

partitioning algorithms (Beier et al., 2017; Funke et al., 2019;
Wolf et al., 2018). However, these methods have so far been
designed only for grayscale images (as in EM). Due to the
favorable properties of affinity graphs for large scale neuron
segmentation, we extended these approaches to incorporate
color information.

To investigate whether protein bit color information
could be used to improve segmentation accuracy, we ex-
tended a previous multitask network that learns an affin-
ity graph together with local shape descriptors (Sheridan
et al.,, 2022). To evaluate each model we used a block-
wise mutex watershed (Wolf et al., 2018) post-processing
pipeline to generate segmentations masked to barcoded
regions (Figure 3, Supplementary Figure 7, Supplementary
Section 6.2.4). As a baseline, we used a model with a single
channel input, specifically the GFP-scaffold channel that is
common across all protein bits.

Here each “method” refers to the respective image input
to the affinities network. For each method, we evaluated
standard neuron segmentation metrics against manually
annotated skeletons. These metrics included Variation of
Information (Vol and normalized Vol, NVol; (Meild, 2007);
lower scores are better), Expected Run Length (ERL and
normalized ERL, NERL; (Januszewski et al., 2018); higher
scores are better), and the Min-Cut Metric (MCM; (Sheridan
et al., 2022); lower scores are better). Here we focus on N'Vol
results. For detailed metric evaluations, see Supplementary
Section 6.2.6.2, Supplementary Figure 9, Supplementary Fig-
ure 10, and Supplementary Table 18.

We found providing all raw barcode color channels as
inputs to this network significantly improved segmentation
quality compared to providing only the GFP channel (R-S
vs R-GFP; NVol Sum 0.251 vs 0.336, Supplementary Fig-
ure 9, Supplementary Figure 10, Supplementary Table 18).
We tested this with two approaches. The first approach
simply averaged the barcode intensities across the channel
dimension such that the affinities network took a single
averaged channel as input. In the second approach we
gave the affinities network access to all barcode channels
(Supplementary Figure 9.A). Surprisingly, we found that
simply averaging the intensities across the channels showed
similar performance (R-M vs R-S; NVol Sum 0.246 vs 0.251,
Supplementary Figure 9, Supplementary Figure 10, Supple-
mentary Table 18).

We hypothesized this was due to discontinuities and
noise in the barcode signals. Therefore, in order to maximize
the usability of the barcode information, we performed a
supervised signal enhancement step with the aim of pre-
serving the barcode intensity within the neurons. Using
sparsely annotated neurons as ground-truth, we taught a

UNet to predict the average protein bit intensities within a
neuron using the raw data as input to create an enhanced
signal for all protein bit channels (Figure 3.A, network
1, Supplementary Figure 5, Supplementary Section 6.2.2).
Providing these enhanced color channels as input to the
network significantly improved performance compared to
both the previous multi-color (E-S vs R-S; NVol Sum 0.176 vs
0.251) and averaged channel networks (E-M vs R-M; NVol
Sum 0.192 vs 0.246) (Supplementary Figure 9, Supplemen-
tary Figure 10, Supplementary Table 18).

To further extend the diversity of the barcode space, we
set out to leverage information from the variability in rela-
tive protein bit intensities between cells. We used a simple
multi-layer perceptron (MLP) (Figure 3.A, network 3) to
project the enhanced barcodes onto a higher dimensional
unit sphere to learn a uniform embedding space (Wang &
Isola, 2020). The aim of this approach is to preserve barcode
uniformity within neurons, and increase separability across
different neurons. Specifically, we minimized a contrastive
loss with two terms, one to pull embeddings within an
object towards that object’s mean, and the other to push
the mean embedding of different objects apart.

With this learned embedding, nearest cosine distances
between the intensities of distinct neurites were more
widely distributed (spanning [0,2]) than in the raw data,
demonstrating increased separability (Figure 3.B, Supple-
mentary Figure 6). However, the embedding did not pre-
serve uniformity within neurites, preventing direct cluster-
ing into unique segments. Since the uniform embedding
enforces strong boundaries between cells, we were able
to efficiently generate “barcode” affinities by simply com-
puting affinity weights via cosine similarity (Figure 3.A,
barcode affinities). We combined these barcode affinities
with the predicted affinities from the Local Shape Descriptor
(LSD) network (“shape” affinities; Figure 3.A, combined
affinities) thereby making effective use of both barcode and
morphological information.

By combining these affinities, we observed a further
increase in accuracy and specifically were able to decrease
the false merge rates in the segmentation. Compared to the
GFP baseline model, we observed a fourfold increase in
NERL (E-5+U vs R-GFP; 0.18 vs 0.046, Figure 3.D, Supple-
mentary Figure 9, Supplementary Figure 10, Supplementary
Table 18), and a twofold decrease in the NVol Sum (E-
S+U vs R-GFP; 0.163 vs 0.336, Figure 3.D, Supplementary
Figure 9, Supplementary Figure 10, Supplementary Table 18)
and edits needed (E-S+U vs R-GFP; 690 vs 1466, Figure 3.D).
Taken together, we show that combining shape and barcode
information into an affinity graph partitioning approach
increases segmentation accuracy of neuronal morphologies
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at minor computational costs (Supplementary Figure 11).

2.4 Barcode information can be used for automated
proofreading

We next asked whether, in addition to directly assisting the
segmentation, the barcodes could be used for automated
proofreading i.e., using the unique barcode identities to
automatically correct errors that remain after segmentation.
Proofreading errors can be separated into two types: merge
and split errors. We reasoned that split errors would be
easier to correct with the barcodes than merge errors, as
merge errors directly affect the barcode readout of the result-
ing segments (Supplementary Section 6.2.5). We therefore
aimed to limit the number of false merges in the initial
segmentation, via the combination (product) of the shape
and barcodes affinities (Supplementary Section 6.2.5). With
fewer merges we were able to then re-merge these discon-
nected segments using the barcodes.

To efficiently re-merge false splits in the segmenta-
tion, we first skeletonized (Sato et al., 2000; Silversmith
et al., 2021) all segments, and created a spatial-partitioning
KDTree on end node positions of the skeletons. We then
created an “average barcode” for each segment by com-
bining the underlying raw barcode intensities masked to
the supervoxels. Finally, we defined edges between pairs of
nodes with weights equal to the cosine distance between
their respective “average barcode”.

Considering each pairwise edge would be too expensive,
so for each candidate node we instead considered all pairs
of skeletons within a certain distance threshold for merging
and splitting and added a splitting signal for skeletons
above that threshold. For practical reasons we also have a
separate distance threshold for the splitting signal to limit
the number of pairwise candidates but this, in theory, could
be pushed infinitely (Supplementary Section 6.2.5). Similar
to regular affinity processing, including long range split
biasing edges here helps mitigate the cascading effects of
small merge errors.

By formulating the task as such, we were able to cluster
the edges with mutex watershed (Wolf et al., 2018), similar
to the initial affinity segmentation. The resulting lookup
table was then used to relabel the original segments (Fig-
ure 4.A). While sensitive to local barcode collisions, this
optimization limits the occurrence of spurious merges based
on similarities in barcode space and allows for easy tuning
of the merge rate.

We found that by relabeling segments using barcodes,
we were able to bridge small gaps in the tissue due to signal
loss and masking (Figure 4.B,C). This is possible since the
barcode expression level across channels is relatively consis-
tent across neurons but differs between neurons (Figure 2.F).
This approach is still sensitive to collisions in barcode space
(Supplementary Figure 14), but these collisions are mostly
absent inside small local windows. Increasing the spatial
context for matching will lead to more merges (Supplemen-
tary Section 6.2.5), but opens the door for integration with
globally aware approaches (Januszewski et al., 2025; Troidl
et al., 2025).

Nevertheless, on an evaluated sub-ROI, we found bar-
code matching significantly improved segmentation accu-
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racy (NVol Sum 0.154 vs 0.086, NERL 0.446 vs 0.610) specif-
ically by accurately re-merging previously split segments
(NVol Split 0.144 vs 0.057), while limiting the amount of
increased false merges (NVol Merge 0.010 vs 0.029), (Fig-
ure 4.E, Supplementary Section 6.2.5, Supplementary Sec-
tion 6.2.6.3,). Importantly, by sub-selecting the number of
considered channels, we found that the accuracy of auto-
mated proofreading increased with the number of barcodes
(Figure 4.E). Since this automated proofreading approach
is computed locally on skeletons it could be extended to
run block-wise on larger volumes. Finally, by simulating
larger spatial gaps we found that barcode information could
potentially be used to merge segments across larger dis-
tances (Figure 4.F, Supplementary Section 6.2.6.4, Supple-
mentary Figure 15, Supplementary Table 20, Supplemen-
tary Table 21), a promising direction for future research to
reinforce the strength of barcodes in overcoming sample
fragility.

2.5 PRISM enables synaptic analysis with molecular
annotations

Previous studies have shown that resolving synapses and
assigning them to neurons is possible using expansion mi-
croscopy (Gao et al.,, 2019; Shen et al., 2020). We therefore
hypothesized that the unique capabilities of PRISM would
allow us to not only reconstruct neuronal morphology
but also map synaptic connections by characterizing their
molecular machinery. Specifically, we observed that with
5x expansion, the excitatory postsynaptic marker PSD95
and the presynaptic protein Bassoon formed spatially well
defined and partially overlapping pairs (centroid distance:
99453 nm; n: 6784 pairs), indicating the location of puta-
tive synapses (Figure 1.EF, Figure 5.A). This allowed us
to combine a ML segmentation pipeline with an overlap-
based heuristic algorithm to reliably segment each marker
in the volume (F1 scores Bassoon: 0.97, PSD95: 0.95) and
group them into individual synapses (F1=0.95; Figure 5.B).
In this way we identified a total of ~9 million synapses in
the imaged volume with an average density of 1.02 + 0.62
excitatory synapses per pm®, which aligns with previous
estimates from EM (Santuy et al., 2020). These detected
synapses could then be assigned to segmented neurites with
high accuracy based on their spatial overlap (F1=0.85; com-
pared to human annotators; Section 4.5). To evaluate this
approach, we examined the well-studied synaptic connec-
tions on the dendrites of CA2/3 pyramidal neurons using a
set of proofread neurons that could be traced back to their
somas (n = 6; Figure 5.C-E) and identified a total of 12,168
synapses (average: 2,028 + 1,092 synapses per cell). Looking
at the distribution of excitatory synapses on both apical and
basal dendrites, we observed the number of synapses on the
dendritic tree increased with distance from the soma (fold
change at 85 pnm, apical = 2.54, basal = 2.04, Figure 5.D,E).
This reflects the well known layered organization of the
hippocampus, where apical and basal dendrites originating
in the pyramidal layer extend into the stratum radiatum
and oriens respectively, and form connections with layer-
segregated excitatory afferents (Megias et al., 2001). These
findings show that PRISM can be used to investigate circuit
level synaptic innervation patterns.
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Figure 3: Incorporating barcodes for automated neuron segmentation. A. Barcode assisted segmentation pipeline. Raw
multi-channel barcode data (RGB-color encoded for visualization) is first enhanced by network 1. The resulting enhanced
data is then used to learn affinities and LSDs (network 2), a uniform embedding (network 3), and binary expression
probabilities (network 4). Barcode affinities are computed on the uniform embedding and then combined with the predicted
affinities. Using a binary mask generated on the expression probabilities, a segmentation is then obtained in barcoded
neurons in a blockwise fashion. Largest ~5k segments visualized. B. Uniform embedding increases barcode separability.
Enhancing the raw barcodes smooths the signal inside objects but does not provide an easy way to separate objects.
The distributions of nearest cluster distances of each component (red: nearest true negative, green: furthest true positive)
demonstrate that while none of the intensities are distributed such that they could be directly clustered to segments
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Figure 3: (continued) (minimum inter: high, maximum intra: low), the uniform embedding does provide increased
separability (larger distribution of minimum inter-distances) which, in turn, allows for the direct computation of edge
affinities via the dot product. C. Example image data. Single channel raw GFP data and multi-channel enhanced barcode
data. D. Example meshes. Ground-truth mesh (skeleton constrained) and corresponding GFP and barcoded segmentation
meshes (with > 50% volumetric overlap). E. Barcodes improve segmentation accuracy. Across all validated metrics, the
accuracy of the segmentations improved when using enhanced barcodes as input compared to raw GFP.

Due to the optical resolution of PRISM we were also able
to investigate the fine-detail nanostructural organization of
synaptic connections. Specifically, we observed the elaborate
synaptic complexes known as thorny excrescences (TEs; Fig-
ure 5.F), formed by CA3 pyramidal neurons at contacts with
mossy fiber axons from granule cells in the dentate gyrus.
Since TEs contain multiple large synaptic active zones they
can greatly affect synaptic integration and dendritic mem-
brane potential. However, due to their complex morphology,
conventional light microscopy approaches have struggled to
characterize them (McAuliffe et al., 2011) and they are most
often studied using EM approaches, which lack molecular
information (Zheng et al., 2025). We therefore used the
molecular information in our PSD95 and Bassoon stains to
investigate a total of 247 proofread TEs across 6 dendrites in
CA3. We observed multiple TEs were often grouped close
together (inter-TE distance: 3.5 + 1.3 um; Figure 5.G) on
shorter sections of the dendritic tree, matching previous
descriptions of their cluster-like distribution in ~10 pm
stretches (Figure 5.H; Gonzales et al., 2001; McAuliffe et al.,
2011). TE volumes were highly diverse (Figure 5.I) with an
average volume of 1.37 + 0.51 pm?’. Similarly, the number
of postsynaptic densities present on each TE also strongly
varied (average: 10.38 + 2.42 synapses per TE; Figure 5.])
and was strongly correlated to volume size (r: 0.90; p<0.001;
Figure 5.K). Due to the observed clustered distribution of
TEs (Gonzales et al., 2001) we investigated whether nearby
TEs had similar properties compared to more distant TEs.
Interestingly, we discovered a strong correlation between
the volume of each TE and the average volume of nearby
TEs (<5 pm) on the same dendrite (r: 0.37; p<0.001; n =
228 TEs across 6 cells; Figure 5.L). One model that could
account for this observation is that clusters of TEs perform
similar sampling of the surrounding mossy-fiber input pool,
an effect potentially related to their relative position in the
mossy fiber pathway (Zheng et al., 2025).

Taken together, these examples illustrate how PRISM
can be applied to span studies of circuit-level innervation
patterns and nanoscale synaptic architecture that standard
light microscopy cannot resolve. Its iterative multiplexing
profiles the molecular machinery of these contacts and could
further be expanded with cell-type markers of interest for
targeted circuit mapping.

3 DISCUSSION

Recent advances in microscopy and sample preparation
now enable high-resolution brain imaging across large
spatial volumes, a critical step toward understanding the
cellular basis of brain function and informing therapeutic
development. However, these advances exceed our abil-
ity to reconstruct neuronal morphologies at scale. Scalable

neuron reconstruction faces two primary challenges: first,
the limitations in the accuracy of automatic neuron tracing
(“Scaling up connectomics — Reports,” 2023); and second,
signal discontinuities (e.g. staining artifacts or serial section
loss) which impair or prevent continuous neuron tracing.
Incorporating molecular annotations into morphological re-
constructions is also challenging, yet essential for under-
standing the complex interactions between drug targets
and the cells and circuitry which they target. To overcome
these challenges, we developed PRISM, a method for robust,
scalable, and molecularly-annotated neuron reconstruction,
designed to allow individual labs to incorporate morpho-
logical analysis into everyday neuroscience.

PRISM integrates complementary advances, including
protein barcode labeling with diverse antigens; expansion
microscopy with extensive multiplexing capacity; barcode-
augmented segmentation and proofreading; and molecular-
annotation of reconstructed neurons. We demonstrate a
system capable of delivering more than 100,000 unique
protein codes (theoretical maximum of 218 — 1 = 262,143).
Being protein based, these barcodes ensure morphological
filling in contrast to sparse RNA-based approaches (X. Chen
et al.,, 2019; Goodwin et al., 2022; Kebschull et al., 2016;
Yuan et al., 2024). This represents a 750-fold improvement
in the number of labels over previous multispectral methods
(Leiwe et al., 2024; Livet et al., 2007). Essential to PRISM is
a co-optimized method for iterative antibody staining and
destaining in expansion microscopy. By refining conditions
along multiple dimensions of gel chemistry and imaging
set-up, we achieved excellent preservation of both barcode
antigens and endogenous proteins. We applied PRISM to
generate a dataset in mouse CA3 hippocampus covering
over 10 million cubic microns and 23 molecular targets, pro-
viding a uniquely large and highly-multiplexed resource.

Using this dataset, we demonstrated that protein-based
neuronal barcoding has the potential to address the cost
and robustness challenges of scalable morphology recon-
struction. Incorporating barcode information in automatic
segmentation and proofreading rather than relying on shape
information alone (i.e., eGFP), improved multiple measures
of traceability, most prominently neurite run length (~8x
increase). Crucially, we showed automatic proofreading can
bridge spatial gaps to reconnect neurite segments both
locally and even across hundreds of microns, a major step
towards addressing signal discontinuity challenges. Finally,
we demonstrated the power of combining molecular anno-
tations with morphological reconstructions by revealing a
size correlation between TEs on the same dendrite.

PRISM could be applied in a range of existing neuro-
science work. This platform is ready for use, supporting
applications such as improved accuracy and throughput
in brain-wide projection mapping (Winnubst et al., 2019);
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Figure 4: Using barcodes for automated proofreading. A. Barcode relabeling overview. Given a split-preferring affinity
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Figure 4: (continued) graph segmentation, we skeletonize the segments and create match candidates using a KDTree with
two spatial queries (~10pm, ~30 um). Using the distance between the barcodes as edge weights, we perform a matching
and use the resulting clustering to relabel the initial segmentation. B. Example images. A maximum intensity projection
across 40 sections of enhanced barcode data, visualized with a multi-channel shader. Insets show the initial affinity
segmentation and the resulting barcode-relabeled segmentation. C. Example Meshes. Two example neurons with their
resulting meshes from the affinity segmentation and corresponding barcode-relabeled meshes (> 50% volumetric overlap).
Boxes correspond to panels below. D. Barcode expression. Corresponding raw data for boxes on above neurons for each of
the 18 channels. Expression is consistent across each neuron and different between neurons, allowing for gap crossing. E.
Barcode relabeling improves segmentation accuracy. By relabeling segmentations with the barcodes we are able to decrease
the split rate while not drastically increasing the merge rate. The accuracy is increased with the number of barcodes used
for matching. F. Crossing larger gaps. While barcodes can be used to match segments across gaps, the chance of barcode
collisions preventing successful matching increases with gap size and decreases as more barcodes are used.

barcoding of viral transgenes (e.g. enhancers Hunker et al.,
2025); lineage tracing (Li et al., 2021; Loulier et al., 2014);
barcoded screening and analysis of gene and cell thera-
pies (Borch Jensen & Marblestone, 2021); and multiplexed
synapse profiling (O'Rourke et al.,, 2012). Future devel-
opments could readily expand the capabilities of PRISM
with a minimum of risk, building from the firm foundation
here set. Integrating PRISM with ultrastructure labeling and
high expansion factors could extend self-correcting neuron
tracing to dense connectomics. As barcoding capacity scales
exponentially with detectable antigens, PRISM could scale
to millions or even billions of unique combinations with
the addition of a few new antigens and antibodies. For
example, expanding the antigen-antibody palette from 18
to 30 — newly feasible in the era of generative Al protein
design (Cao et al., 2022; Vosbein et al., 2024) — could enable
PRISM to uniquely barcode every cell in the mouse brain.
To image such large volumes, enhanced labels (Viswanathan
et al., 2015) and molecular signal amplification (Saka et al.,
2019; Schwarzkopf et al., 2021) could allow modern sci-
entific CMOS cameras to be run at maximum speed. To
fully segment such volumes, self-correcting barcodes could
be further augmented by advances in global shape-based
segmentation and proofreading (Januszewski et al., 2025;
Troidl et al., 2025). In conclusion, PRISM provides a scalable
foundation for next-generation morphological reconstruc-
tion techniques, addressing the disparity between the rapid
generation of imaging data and the slower pace of accurate
reconstruction and annotation.

4 METHOD

4.1 Barcodes
4.1.1 Barcode vector design, cloning, and production

Barcode vectors were assembled using pAAV-CAG-GFP as
a backbone vector. pAAV-CAG-GFP was a gift from Edward
Boyden (Addgene plasmid #37825; http:/ /n2t.net/addgene:
37825 RRID:Addgene_37825). Briefly, the backbone vector
was digested with BsrGI-HF and EcoRI-HF. Gblocks with
complementary overhangs were designed for Gibson as-
sembly and ordered from Integrated DNA Technologies. As-
semblies were transformed into NEB Stable cells and, after
Sanger confirmation in individual colonies of the correct
insertion, DNA was individually maxiprepped. The final
assembly and ITR stability was verified with whole-plasmid

sequencing performed by Plasmidsaurus. All plasmids used
are deposited with Addgene (Addgene #242764-242781).

AAV transfer vectors were pooled at equimass ratios and
packaged as a pool by Sanford-Burnham'’s Viral Vector Core.
Virus was purified via iodixanol gradient ultracentrifuga-
tion and quantified with qPCR of ITRs and measured at
9.1E13 vg/mL.

4.1.2 Barcode delivery

All animal work and injections were performed by the
Crick Biological Research Facility and Surgical Services.
51-52 week old C57BL/6Jax mice were subcutaneously
injected with meloxicam (10 mg/kg) and buprenorphine
(0.1 mg/kg), then unilaterally injected with 250 nl 9.1E13
vg/mL virus (A/P: -1.70 mm, ML: £ 1.00 mm, DV: -1.5
mm, Paxinos). At least 3 weeks after injections, mice were
perfused with ice-cold 1X PBS for 1 minute and then ice-cold
4% PFA in 1X PBS for 10 minutes under terminal anaesthe-
sia (intraperitoneal injection of 600 mg/kg pentobarbital).
Brains were harvested for downstream sample preparation
(Section 4.2).

4.2 Sample prep and imaging

Harvested brains were post-fixed in 4% (w/v) PFA in 1X
PBS for 28 hours at 4°C, then quenched in 0.1 M glycine
in 1M Tris, pH 7.5 for 20 hours at 4C, before sucrose
impregnation in gradient steps of 15% (w/v) sucrose in 1X
PBS, 0.05% (w/v) NaN3, overnight at 4°C followed by 30%
(w/v) sucrose in 1X PBS, 0.05% NaN3, for 2 days at 4C.
Brains were equilibrated in a 1:1 mixture of OCT and 30%
(w/v) sucrose for 4-6 hours at 4°C, incubated in 100% (v/v)
OCT for 2 hours at 4°C, then incubated in fresh 100% (v/v)
OCT overnight at 4°C. Brains were mounted in 100% OCT in
cryomolds and frozen on dry ice, before cryostat sectioning
50m coronal sections on a Leica CM1860 UV cryostat at
-20°C.

Due to inconsistencies in sodium acrylate quality across
commercial vendors, sodium acrylate for MAGNIFY gels
were synthesised by the Crick Chemical Biology STP by
dissolving acrylic acid in methanol and sodium hydroxide
in methanol in a 1:1 molar ratio in an ice-bath. Upon precip-
itation of sodium acrylate, the slurry was filtered through a
Biichner funnel and then vacuum desiccated for at least 2-3
days to yield sodium acrylate powder. Batches were quality
controlled via NMR and LC-MS/MS analysis.
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Figure 5: Analysis of synaptic connections and their distribution. A. Example synaptic marker detection of PSD95 (top)
and Bassoon (bottom). Left, raw intensity images of each antibody label. Center, predicted label masks. Right, composite
showing overlap between pre- and postsynaptic markers used to determine true synapses. B. Schematic of ML synapse
detection and assignment. Left, 3d volume of detected overlapping PSD95 (magenta) and Bassoon (cyan) labels. The center
of each detected label is shown as a solid sphere. Square highlights the zoomed-in region. Center, example assignment of a
pair of PSD95 and Bassoon labels to segmented neuronal morphology. Right, same area shown on the left but only showing
label markers that could be assigned to the shown dendrite. C. Example of proofread pyramidal neuron with assigned
excitatory synapses (magenta). D. Distribution of excitatory synapses on apical dendrites. Left, heatmap of excitatory
synapses per pm on a reconstructed dendrite. Right, density of excitatory synapses normalized to the maximum value
per cell as a function of soma distance showing that excitatory synaptic density increases with distance. E. Distribution
of excitatory synapses on basal dendrites. Same representation as in D but for basal dendrites. F. Example of a thorny
excrescence on a CA3 apical dendrite. Composite image showing single protein bit channel (gray) with PSD95 (magenta)
and Bassoon (cyan) antibody label. Right, 3d reconstruction of the same stretch of dendrite. The arrow highlights the
location of the thorny excrescence (TE) shown on the left. G. Histogram showing the distribution of distance between TEs
and their nearest neighbor on the dendrite. The dashed line shows the average value. H. Mapped TEs of a single dendrite
with their volume encoded by color. I. Histogram of detected TE volumes. The dashed line shows the average value.
Individual points
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Figure 5: (continued) mark the values of individual cells. J. Similar to I but shows the histogram of the number of
postsynaptic densities per TE. K. Correlation between TE volume and number of detected postsynaptic densities. The
gray dashed line indicates the best-fit linear regression and its statistical significance. L. Similar to K but showing the
correlation between a TE’s volume and the volume of those within 5 um, indicating that the volumes of neighboring TEs
on the same dendrite are significantly correlated. r=Pearson correlation coefficient, ***: p<0.001.

50 pm coronal sections positive for GFP barcode expres-
sion were pre- incubated in MAGNIFY monomer solution
(34% (w/v) sodium acrylate, 10(w/v) acrylamide, 4% (v/v)
DMAA, 1% (w/v) NaCl, 0.01% (w/v) bis-acrylamide, in
1X PBS) with 0.001% (w/v) 4-hydroxy-TEMPO, 0.2% (w/v)
TEMED, 0.2% (w/v) APS, on ice shaking in a 12-well plastic
plate, before gelation at 37C overnight in glass slide cham-
bers. Chambers consisted of untreated glass slide, where
brains were mounted, one #0 coverslip spacer on each side,
and a hydrophobic glass slide as the cap. After gelation,
GFP-positive regions of the sample were trimmed and
homogenized with pre-heated MAGNIFY homogenisation
solution (10% (w/v) SDS, 8M Urea, 25 mM EDTA, 2X PBS)
at 80°C in an oven for 7 hours, and then washed with 1X
PBS, 0.05% NaN3 for 20 min x 3 at room temperature (RT),
shaking, then 1% (v/v) DGME in 1X PBS for 1 hour at 60°C
in an oven, then washed with 1X PBS, 0.05% (w/v) NaN3 for
20 min x 3, at RT. Samples were then expanded in ddH20
for at least 10 min x 3.

Expanded MAGNIFY gels were trimmed and then pre-
incubated in re-embedding solution (4% (w/v) acrylamide,
0.15% (w/v) bis-acrylamide in 5 mM Tris with 0.1% (w/v)
TEMED and 0.1%(w/v) APS) on ice, shaking, in a 6-well
plate, before gelation overnight at 37°C. Gelation chambers
consisted of silanized glass-bottom 6-well plates (Cellvis)
with each spacer as 3x #2 glass coverslips and tops as 25-
30 mm Sigmacote-treated round #1 coverslips. Plates were
silanized by incubating 1 mL per well of bind silane solution
(1%(v/v) 3-(Trimethoxysilyl)propyl methacrylate (Sigma-
Aldrich M6514), 80% (v/v) ethanol, 2% (v/v) acetic acid)
for 1-3 minutes, followed by 3 x 30 sec washes with 1 mL of
100% ethanol per well and air drying. Gels were trimmed to
the MAGNIFY sample containing region, washed with 1X
PBS, and then processed for iterative immunostaining.

In each round of staining, imaging, and stripping, re-
embedded MAGNIFY samples were first blocked with
maleimide in 1X PBS for 30 minutes at RT in order to
block photo-crosslinking via oxidation of free sulfhydryl
groups during imaging (Gut et al., 2018). Samples were then
washed with 1X PBS for 10 min x 3, before blocking with
blocking buffer (1% (w/v) BSA in 0.2% (v/v) Triton X-100
in 1X PBS), 0.05% NaN3 for 1 hour at RT. Samples were
then stained with primary antibodies in blocking buffer
overnight at RT, shaking, then washed with blocking buffer,
20 min x 3, RT, before incubation with secondary antibod-
ies in blocking buffer overnight at RT, shaking. Secondary
antibodies were washed off with blocking buffer, 20 min x
3, RT. Samples were then mounted in glass-bottom 6-well
plate (Cellvis) with 2-stacked Bio-Rad gaskets as spacers
and a 25mm round coverslip and M15 washer on top. To
prevent photobleaching and photo-crosslinking, the imag-
ing chamber was filled to the brim with glucose oxidase-
catalase + Trolox buffer (1.4 mg/mL ~>140 U/mL glucose

oxidase (Sigma-Aldrich G2133), 4 ul/mL ~>1600 U/mL
catalase (Sigma-Aldrich C100) in 100 mM Tris, 25 mM NaCl,
10% (w/v) glucose, 2 mM Trolox (Sigma-Aldrich 238813),
pH 8.0) and sealed with a PCR film to maintain anoxic
conditions. Samples were imaged with a Nikon-CSU Ti-2
W1 system with a Nikon Apo LWD 40x WI AS DIC N2
(NA = 1.15) water immersion lens. After imaging, samples
were stripped with pre-heated MAGNIFY homogenisation
solution at 80°C for 5-6 hours, and then washed with 1%
DGME at 60°C in an oven, shaking, for 1 hour, then washed
with 1X PBS 20 min x 3 at RT, shaking, before the next round
of immunostaining.

4.3 Stitching and Registration

The reported image volume was captured by a total of 62
partially-overlapping (15% in each dimension) microscopy
image stacks each ~345x345x380 um in size. These volumes
needed to be computationally stitched together in order
to create a continuous volume. To achieve this, we made
use of the bigstitcher (Horl et al., 2019), and accompanying
bigstitcher-spark, software packages. In short, bright interest
points were identified in each volume using a difference-of-
gaussian spot detector approach (sigma=1.6). Fiducial de-
scriptors were then generated based on their spatial configu-
ration with their 3 nearest neighbors and matched with fidu-
cials in overlapping volumes. True matches were identified
using a translation-invariant, model-constrained Random
Sample Consensus (RANSAC) algorithm (Preibisch et al.,
2009). Identified pairwise links between all volumes were
then used to calculate a globally optimized affine for each
individual volume.

In order to register the imaged volumes from iterative
cycles of immunostaining together into a continuous vol-
ume, we imaged the abundant ALFA protein bit in every
consecutive round to act as a registration channel. ALFA
was chosen as a reliable channel validated across many
rounds of immunostaining and stripping. For alignment,
manual registration to the first imaging round was per-
formed on downsampled images (800x672x672 nm voxel
size) using the BigWarp software package in Fiji by selecting
matching fiducials in the registration channel of both rounds
(Bogovic et al., 2016; Schindelin et al., 2012). The resulting
landmarks were then used to compute a displacement field
with a thin plate spline function and applied to all high res-
olution channels using an adapted version of the BigStream
rendering algorithm®. Staging and execution of all related
stitching and registration functions was performed using
custom nextflow pipelines’ (Di Tommaso et al., 2017).

“https:/ /github.com/JaneliaSciComp /bigstream
*https: / /github.com/ellbio/voxelflow
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4.4 Segmentation

Following stitching and registration of barcodes across
imaging rounds, we developed a neuron segmentation
pipeline that incorporates the barcode color information.
Assuming a perfect barcoding space, the barcodes could
theoretically be directly clustered into segments. However,
in practice, this is challenging due to several factors, includ-
ing variability across datasets in the number of available
barcodes, noise, artifacts, and collisions in barcode space. We
therefore instead opted to incorporate the barcodes directly
into an affinity graph agglomeration pipeline, as this is ro-
bust to variations in data, is scalable, and trivially paralleliz-
able across chunks. Our segmentation pipeline processes the
registered multi-channel barcode volume through a series of
four specialized neural networks. Each network is trained
for a specific objective, and their outputs are combined to
produce the final neuron segmentation.

4.4.1
4.4.1.1 Barcode Signal Enhancement

Training objectives

Overview. Due to the noise and variable intensity ranges
across the volume, we first perform a supervised signal
enhancement and denoising. Traditional denoising methods
can be useful for removing noise prior to segmenting a
volume (Weigert et al., 2018). However, since we don't
have access to a clean target volume, we can’t utilize
supervised denoising approaches such as CARE (Weigert
et al., 2018). Furthermore, we found that unsupervised
denoising approaches, such as Noise2Void (Krull et al.,
2019), were insufficient for removing specific noise present
in the data. Since the main goal was to diffuse the barcode
signal throughout the objects, unsupervised denoising is
not sufficient as the model also needs to learn to fill in
gaps inside objects which is not achievable without target
ground-truth. Instead, using ground-truth labeled cells, we
derived ground-truth barcodes by computing the average
barcode intensities (across each channel) masked to each
label. We then trained a U-Net (Ronneberger et al., 2015)
to learn the average barcode from the raw intensities, in
a channel-agnostic fashion. While the main goal was to
diffuse barcode intensities throughout the volume, it also
resulted in the removal of noise as a side effect.

Formal Definition. Let ¢ : Q +— R® and z, : Q — R |
¢ € C where 2 C N3 represents the voxel spatial locations
in a barcoded 3D plus channels (C) image volume. Let
f(ze) : © — R be the enhancement network learning the
z. function. Given a sparse ground-truth instance segmen-
tation, let L = {0,1,...,1} where 0 denotes background
or unlabeled regions and > 0 denotes unique foreground
objects and y : 2 — L.
We define a binary weight mask w(v):

1 ify(v) >0,
w(v) = ) @
0 ifyv)=0
For each label k& € {1,...,l} we define a set of voxels

belonging to that label:

My = {v e Q| y(v) =k} @

15

And compute the average intensity p.(k) € R over all
voxels in My:

1

> ae(v) ®)
vE My
We then define the target function d.(v) as the difference
between the average yi.(y(v)) and input z.(v) image (i.e the
residual barcode):

de(v) = pie(y(v)) — we(v) fory(v) #0 @

Where the average can then be recovered (i.e., during
inference):

fie(v) = xc(v) + f () (v) ®)

Our primary learning objective is to then densely infer a
residual barcode from the raw barcode data for each labeled
object in the volume:

f(@e)(v) = de(v) = pe(y(v)) — zc(v) fory(v) #0 (6)

We then minimize a MSE loss in mini-batches, weighted
by the labeled regions:

e w() [1f(ze) (v) — de(v)|?
ZvEQ w(v)

Every operation z., f(z.), e, de, L can be trivially
vectorized into z¢, f(xzc), pe, do, Lo to operate on the
full set of channels C, including the network function f.
We do this in PyTorcht by simply treating channels as a
batch dimension in order to work with arbitrary numbers of
barcodes.

L.= @)

4.4.1.2 Affinities and Local Shape Descriptors (LSDs)

Overview. We next extracted a boundary representation
(affinity graph) from the enhanced barcodes. We learned
long range affinities (Lee et al.,, 2017) in addition to
nearest neighbor affinities as an auxiliary learning task
to force the network to use more context in its receptive
field, and to use as attractive/repulsive weights during
downstream processing. Additionally, we jointly learned
Local Shape Descriptors (LSDs) (Sheridan et al., 2022), to
further improve the added context for the network. This is
learned sparsely through a multi-channel 3D U-NET using
a weighted combined MSELoss minimizing the sum of the
affinities and LSDs losses (Sheridan et al., 2022).

Formal Definition. Following inference of the enhancement
network, using the enhanced barcodes = : 2 +— R we then
train (sparsely) a multitask (MTLSD) network to learn an
affinity graph with Local Shape Descriptors as an auxiliary
learning task (Sheridan et al., 2022).

4.4.1.3 Contrastive Uniform Embedding

Overview. We found a subset of merge errors on the learned
affinities occurred between neurons with distinct barcodes
due to a smooth change in intensities. We therefore aimed to
represent the distance between barcodes directly as affinities

*https:/ /pytorch.org/
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to enforce the constraint that different barcodes do not
get merged. However, since the raw barcode channels do
not have consistent intensity ranges, we used a simple
MLP to first project the barcodes into a higher-dimensional
space where distances are more reliably computed. Given
a barcode of length n we project it into a d-dimensional
space and enforce unit length while maximizing inter-
barcode distance. This pushes voxels inside a neuron closer
in embedding space while voxels across neurons are pushed
farther away. Since this is sensitive to noise and variance
in the image data, we train with the enhanced barcodes
as input rather than the raw barcodes. Inspired by other
contrastive learning approaches (Lee et al., 2021; Wang &
Isola, 2020), we compute cluster means and formulate the
learning objective as:

1) Minimize distances of samples to their cluster mean
(uniform objective).

2) Maximize distances between cluster means (align
objective).

This approach is similar to learning dense voxel embed-
dings via deep metric learning (Lee et al., 2021), with three
important distinctions:

1)  Our regularizing term encourages unit length.

2) We encourage the neuron embeddings to be uni-
formly distributed on the unit hypersphere, rather
than using a margin term.

3) Rather than learning this as a shape embedding (i.e
via a U-Net with spatial context), we simply use an
MLP to learn this as a color embedding (since this
information is directly encoded in the data).

Formal Definition. We first define our learned embedding
function f(zc) : Q — RP where C is our set of barcode
channels, and D is our set of embedding channels. To
define the learning objective, we need to compute the mean
barcode in our learned embedding space given some cluster
M k-

fip( ®)
UGIL[k
and normalize to unit length:
_ fip(k)
k ©)
o= ®

For the first objective, to maximize the distance be-
tween cluster means, we use the empirical approximation
of the logarithm of the expected pairwise Gaussian potential
(Wang & Isola, 2020):

> exp {Qt -fip(w) " fip(v) — 215}

u<veL
(10)
To minimize the variance within clusters we directly
minimize the angle between the cluster and the mean:

2
['inter(f;t) log l(l IR 1)

ze)(v) T ip(v)
|Mk|

UEMk

£intra

n--1%

kel

1)
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The final loss is then the sum of both losses with «, t as
tunable hyper-parameters:

E(f) = ﬁinter(f; t) + CVﬁintra(f)

4.4.14 Barcode Expression Probabilities

(12)

Overview. Due to the sparsity of the barcodes, a large
portion of the image is background and should therefore
be masked out during post-processing. We found that
training traditional 3D binary foreground/background and
semantic networks did not produce an optimal mask of
"barcode-able” regions, and therefore introduced significant
errors during segmentation. This was likely due to the large
variance in image intensities across the volume, and across
channels. Instead, we found a channel-agnostic approach to
this task yielded superior results. A traditional foreground
/ background network would be trained using a single
image with a single mask training signal. For k channels,
this would require £ highly redundant and expensive-to-
generate training masks. Instead, we simply used a single
channel mask of all labeled objects, and performed a max
projection across channels directly in the loss.

Formal Definition. Our learning objective is to densely infer
the probability of a barcode expressing in a given channel
from the raw barcode data, for each labeled object in the
volume. For this task, we reuse z. and x¢, and define a new
mask:

m:Q— {0,1}. (13)

The channel-agnostic binary network that we train now
operates in a map reduce framework, by taking the max
across channels of the predicted probabiltiies:

flze) : Q= R, f(ze)= Iprlezxéc(f(xc)) Q=R (14)

Due to the lack of differentiating signals between certain
objects such as dim cell bodies and bright background,
we also introduce a boundary-weighted mask where we
only consider the edges of objects within some distance
7 for training. This mask is computed on the thresholded

euclidean distance transform (EDT) of the labels:

1 if EDT
w(v) = ! (.y(v),
0 otherwise.

We then optimize a weighted binary cross-entropy (BCE)
loss:

v ST, (15)

L= Y w(@) ((f(ae) ), m(v)).

16
Z’UEQ 'LU(’U) veN ( )

4.4.2 Network Architectures

The affinities and LSDs were implemented in a multitask
U-Net architecture (Sheridan et al., 2022). Both the enhance-
ment and expression networks both used a channel-agnostic
U-Net in which the channel dimension was simply treated
as a batch dimension, in order to process datasets with
differing numbers of barcodes. The uniform embedding
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network was a simple MLPS. Networks were trained with
GunpowderT and Pytorcht. Training scripts are available
in a public repository''. For more details on training, see
Supplementary Section 6.2.2.

4.4.3 Post Processing

Prediction and post-processing were done in a block-wise
fashion. Block distribution was handled with Volara™ (Pat-
ton & Sheridan, 2025) and Daisy'" (Nguyen et al., 2022). For
more details see Supplementary Section 6.2.4.

4.5 Synaptic Reconstruction

A putative excitatory synapse was defined as colocalization
of the presynaptic marker Bassoon and the postsynap-
tic marker PSD95 (Michalska et al., 2024; Tavakoli et al.,
2025). First, we performed background removal on the
Bassoon and PSD95 channels using a difference-of-gaussian
approach (0 = 0.1 (signal) and o = 8 (background)) and
normalized the data to chosen global min/max values per
channel (min = 0 for both channels, max = 60 for PSD95
and 70 for Bassoon). The main challenges in reconstructing
the excitatory synaptic connections were the variability in
intensity, density, and shape of the synaptic markers as
well as the need to separate closely located structures. We
therefore developed a U-Net based segmentation approach
with a weighted binary cross-entropy (BCE) loss function
that emphasizes object boundaries. Separate Bassoon and
PSD95 networks were trained on manually-generated seg-
mentation and contour masks. The masks served as two-
channel objectives for network training, and more weight
was given to the contour mask channel in the BCE loss to
enforce clear separation of neighboring markers. Addition-
ally, the semantic mask loss was weighted using an inverted
distance transform, further emphasizing the boundaries of
the structures. Networks were trained using Gunpowder
and Pytorch*. During training, we sampled the batches con-
taining closely-located instances more frequently, to make
sure the model efficiently learned to avoid merge errors.
Simple and intensity augmentation was applied to the data.

Instance segmentations were generated by post-
processing predicted semantic masks with a seeded water-
shed algorithm. To generate seeds for the algorithm, we first
thresholded the predicted semantic segmentation (threshold
= 0.5) and then computed the distance transform on the
resulting thresholded network output. Next, we smoothed
the resulting distance transform and computed local max-
ima, which were used as input for the seeded watershed
algorithm. Processing of the full volume was done in a
block-wise fashion and information on the detected seg-
ments (centroid and size) was stored in a graph database
using Volara™ (Patton & Sheridan, 2025).

To detect putative excitatory synapses, we performed
overlap-based matching of the detected instances after di-
lating each segmentation instance by one voxel. Bassoon

SU-Net encoder with kernel sizes of 1 that is densely connected
from in channels to out channels

‘][https: / /funkelab.github.io/gunpowder/

I https:/ /github.com/ellbio/prism_training

“https:/ /github.com/ellbio/volara

thttps:/ /github.com/funkelab/daisy
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and PSD95 instances with the largest overlap were matched
together and identified as putative synapses. Here, we
enforced that PSD95 could only be assigned to one Bas-
soon instance while Bassoon could be matched to multiple
PSD95 instances. Finally, we assigned these detected puta-
tive synapses to segmented neuronal masks based on their
spatial overlap (>20%).

Validation was performed on an additional annotated
test crop from a different area of the full dataset by match-
ing ground-truth and predicted instances based on spatial
overlap. Since we focused here on mapping synapses on
dendritic morphologies, only one-to-one connections were
allowed for PSD95, whereas Bassoon instances could be
matched to multiple ground-truth objects. For the neuron-
centered validation, we first manually identified putative
excitatory synapses along a segmented neurite by using Bas-
soon and PSD95 imaging channels. Next, these ground-truth
point annotations were matched to automatically-generated
putative excitatory synapses from the same region using a
nearest neighbor approach''.

Due to the complex structure of the reconstructed thorny
excrescences and their unique synaptic appearance (Fig-
ure 5.F), manual annotation of synaptic densities were per-
formed for those sets of experiments.
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Combinatorial protein
barcodes enable
self-correcting neuron
tracing with nanoscale

molecular context
Supplemental Material

6.1 PRISM Multiplexing Details
6.1.1 Experimental details of CA3 dataset collection

Summary of imaging order, registration channels, hardware,
and laser power and exposure time settings for each color
channel detailed in Supplementary Table 2, Supplementary
Table 4, Supplementary Table 5. Ordering of targets was
optimized based on antigen sensitivity to photo-induced
epitope damage and heat-strip cycles. Imaging rounds,
including order of channels per round, were optimized
for imaging time and fluorophore bleaching. Note that in
between some strip cycles, staining and imaging of targets
were split into two consecutive parts to reduce imaging
time and thus risk of GLOX-catalase buffer acidification,
as well as photobleaching of sensitive fluorophores (e.g.
with low intrinsic fluorescence or tolerance to acidic pH)
(Supplementary Table 2)

6.1.2 Custom antibody production and conjugations

Custom antibodies were produced by ProSci against
MOON, SUN, TAG-100 (Supplementary Table 1), as there
were no commercially available antibodies suitable for
PRISM multiplexing. Peptide sequences KNEQELLELD-
KWASL, EELLSKNYHLENEVARLKK, and EETARFQP-
GYRS were generated for MOON, SUN, TAG-100, respec-
tively, and conjugated to a cysteine residue at the N-termini
or C-termini of each peptide for column purification. For
each antigen, N and C-terminal conjugates were mixed 1:1
and injected into each rabbit. Collected test bleeds were
validated with ELISA and affinity purified for downstream
PRISM multiplexing.

To expand the number of channels imaged per stain-
strip cycle, long Stokes-shift dye ATTO490LS was custom-
conjugated to polyclonal secondary antibodies. Antibodies
were purchased from Jackson ImmunoResearch (Supple-
mentary Table 3) in solution in 0.01 M Sodium Phosphate,
0.25 M NaCl, pH 7.6 Buffer. Dimethyl Sulfoxide (DMSO)
was added at 10% of total antibody volume and mixed
by pipetting. ATTO490LS linked with NHS ester PEG was
then incubated with the antibody-DMSO mixture at a 10-
fold molar excess (dye:antibody-DMSO), for 30 minutes at
room temperature in the dark. Afterwards, conjugates were
purified via size exclusion chromatography, using a Cytiva
Akta Avant FPLC instrument on a Sepax size exclusion
column (SRT-C SEC-150, 5 pm, 150 A, 7.8 x 300 mm, Sepax
Technologies) with 0.01 M Sodium Phosphate, 0.25 M NaCl,
pH 7.6 buffer as the mobile phase.

S1

6.1.3 Quantification of stripping efficiency in CA3 dataset

After each cycle of stripping, stripping was evaluated by
incubating and imaging samples in GLOX buffer as outlined
in Methods 2.2. In each instance, samples were first imaged
with a Nikon 10X (NA = 0.45) dry lens to capture the full
volume of the imaged areas alongside surrounding tissue
to identify any photoinduced crosslinking. Afterwards, a
full length Z-stack with Z-step size of 4 ym was acquired
with Nikon Apo LWD 40x WI AS DIC N2 (NA = 1.15) water
immersion lens, applying the same imaging settings (i.e.,
laser power, imaging exposure times, channels) of those in
the previous imaging(s) of the previous stain-strip cycle. The
same single tile was imaged for 40X lens stripping efficiency
validations throughout the dataset collection.

To quantify for stripping efficiencies between stain cycle
7 and 8, 10X downsampling was applied to imaging round
tiles to match the Z-step sizes of stripping validation data.
The stripping validation image was then registered with
BigWarp (Fiji) with 4x4 binning for landmark placement
and transformed with thin plate spline transformations at
the original resolution (Bogovic et al., 2016; Schindelin et al.,
2012). The matching processed imaging round and stripped
tiles were then aligned and cropped prior to segmentation.
Automated ROI segmentation was performed for each chan-
nel in the processed imaging tile by implementing a custom
built Python pipeline using scikit-image and scipy libraries
(van der Walt et al., 2014; Virtanen et al., 2020). Imaging
channels were pre-processed with Gaussian smoothing (o
= 0.8), and binary masks were generated with Otsu thresh-
olding (and Li’s minimum cross-entropy thresholding as a
fallback). Masks were morphologically processed via open-
ing followed by skeletonization and dilation of skeletons
(structural element radius = 2 pixels). Connected compo-
nent analysis was performed, before ROI filtering, in which
objects with areas of 200-50,000 pixels, aspect ratio < 50, and
solidity > 0.05, were retained.

ROIs were then applied to registered stripped images
to generate paired ROIs per channel, and the centroid
coordinates, area, and mean, maximum, minimum, and
total intensity values were obtained per ROI per condition.
Background values per channel per condition were obtained
by obtaining the 5th percentile intensity value of empty
regions (those outside of ROIs). Signal-to-background ratios
(SBR) were calculated for each ROI in each condition, in
which perfect stripping would equate to SBR of 1.

mean intensity

Signal to Background Ratio (SBR) = (S1)

background

Relative stripping efficiency per ROI was then measured
from SBR values, correcting for the original signal strength
in the pre-stripped image (SBRpefore):

SBRafter -1

——— | X100
SBRbefore -1

(52)

Relative stripping efficiencygy, % = |1

6.1.4 Experimental details and quantification of antibody
crosstalk

Hippocampal injection samples were prepared and stained
with mouse anti-PRTC, rabbit anti-MOON, and goat anti-
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HSV and donkey anti-mouse Cy3, donkey anti-rabbit Alexa
Fluor 647, and donkey anti-goat Alexa Fluor Plus 405, as
outlined in Methods 2.2, alongside ATTO488-conjugated
nanobody anti-ALFA as a registration marker. Samples were
incubated and imaged in GLOX buffer as detailed in Meth-
ods 2.2. To obtain pre-strip images (condition “stained,”
Supplementary Figure 2.D), a single tile, full-resolution Z-
stack (0.4 pm step size) was acquired in the CA3 region on
the contralateral side of the stereotaxic injection, matching
the spread and barcode density of that of the centerpiece
dataset, with a Nikon Plan Apo LWD 40x WI AS DIC N2
(NA = 1.15) water immersion lens on a Nikon-CSU Ti-2
W1 spinning disk confocal and Hamamatsu ORCA-Fusion
Digital sCMOS camera (standard scan mode). Samples were
then stripped as detailed in Methods 2.2, and then stained
overnight with ATTO488-conjugated nanobody anti-ALFA.
Afterwards, the same tile was imaged for stripping valida-
tion (condition “stripped,” Supplementary Figure 2.D) with
a full-resolution Z-stack (0.4 um step size). To test for anti-
body crosstalk, samples were then stained overnight with
the same secondary antibodies (condition “stripped+2°,”
Supplementary Figure 2.D) as in the first staining round and
imaged with a full-resolution Z-stack (0.4 pm step size).

16-bit images for each condition were then 10X down-
sampled and trimmed in Z-axis to ensure matched Z-length
and step sizes before transformation. Images of the stripped
and stripped with the secondary re-stain conditions were
each registered to the ALFA-ATTO488 channel of the refer-
ence image in 4x4 binning mode for landmark placement
with BigWarp software in Fiji (Bogovic et al., 2016; Schin-
delin et al., 2012). Thin plate spline transformation was ap-
plied to full resolution and 2x2 x/y binned images of the 10X
Z-downsampled stripped and stripped+2°conditions, with
xy-bin corrected landmarks. Images across all conditions
and xy-bin modes were then aligned and cropped.

XY-binned pre-stripped data were then used for auto-
mated ROI detection using a custom built Python pipeline
using scikit-image and scipy libraries (van der Walt et al.,
2014; Virtanen et al., 2020). Imaging channels were pre-
processed with Gaussian smoothing (o = 1.0), followed
by adaptive thresholding (Li method) and morphological
cleanup of small object removal (<100 voxels), hole filling,
and binary closing (single-pixel structuring element). Wa-
tershed segmentation was then performed by applying Eu-
clidean distance transform to binary masks, generating seed
points (>7 pixel separation, 20% maximum distance vol-
ume, <10,000 points), and implementing watershed algo-
rithm with inverted distance transform. Post-segmentation
processing was applied by removing gross artefacts (stripes
and aggregates), ROI filtering, and merging over-segmented
regions.

The final ROI masks were then applied to the stripped
and stripped+2°conditions, and the centroid coordinates,
area, and mean, maximum, minimum, and total intensity
values were obtained per ROI per condition. Background
values were obtained per condition per channel by obtain-
ing the raw intensity value of the 5th percentile of pixels in
empty regions (area outside of ROIs).

Due to fluorophore-specific differences in background
accumulation and photobleaching upon imaging, stripping,
or re-staining, signal to background ratio (SBR) was used

S2

as a metric robust to such variables to evaluate strip-
ping efficiency (Supplementary Section 6.1.3). SBR val-
ues were obtained for each ROI in the stripped and
stripped+2°conditions, and % crosstalk per ROI was mea-
sured by the following:

SBRstripped+ 2°

talk = [ -————"—
% crossta ( SBRuyipped — 1

) % 100 (S3)

6.2 Volume Segmentation Details
6.2.1

The fully registered target volume contained 40 channels (30
barcodes and 10 markers). We deemed 18 barcode channels
to be of high enough quality to use for the segmentation
pipeline. We additionally had access to two earlier datasets,
which had fewer available barcodes (12 and 11, respec-
tively). Annotations were performed by Ariadnett. We se-
lected crops from those volumes that contained varying
structures such as cell bodies, axons, dendrites, densities,
and noise. Individual neurons were sparsely reconstructed
inside these crops. The five crops from the 18-channel
volume are visualized in Supplementary Figure 4. Addi-
tionally, we selected crops from the 12-channel volume,
which contained varying semantic structures that were then
densely annotated. During training, these semantic classes
were combined into a simple foreground /background such
that neurons which were expressing in at least one channel
were labeled as foreground. Further crop details can be seen
in Supplementary Table 6, Supplementary Table 7.

Training Data

6.2.2 Training Pipeline

All networks were trained using Gunpowder! and Py-
Torcht. Batches were randomly sampled from the training
crops, normalized, and zero-padded to ensure valid label
density (> 50%) to account for elastic rotations. The data
was then augmented with spatial and intensity transforms
(Supplementary Table 10, Supplementary Table 12, Supple-
mentary Table 14, Supplementary Table 16). A hold-out crop
was used to validate networks.

Enhancement. The enhancement network was trained in a
channel-agnostic fashion and used all training samples as
input. A probability weighting was used to select samples
from the 18-channel volume more frequently. Only spatial
augmentations were applied, as intensity augmentations
would skew the input intensities from the target average
intensities. Additionally, the difference between the average
barcodes and the raw barcodes (i.e, the residual barcodes)
was used as the training target (in contrast to the direct
average barcodes). Validation was done using PSNR and
SSIM at various checkpoints during training. These metrics
both converged relatively quickly during training, and it
was decided to use a later checkpoint for inference after
empirically observing better diffusion of the barcode signal
throughout the neurons. For network details see Supple-
mentary Table 8.

Affinities and LSDs. Since this network was trained in a
multi-channel fashion, we first randomly duplicated (with
replacement) the sample channels (not including GFP) to

Hhttps:/ /ariadne.ai/
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the target number of channels (18) and then randomly shuf-
fled the channels. Spatial and intensity augmentations were
applied. Since the training data was sparsely annotated, a
label mask (true where labels > 0) was used to create a scale
array (via per batch inverse frequency weighting) to balance
the loss between class labels. This was done independently
per offset in the affinity neighborhood. We used an affinity
neighborhood with two long-range offsets (6 channels), in
addition to the short-range offsets (3 channels) and trained
with a weighted MSE loss. The final loss is a sum of the
affinities and LSDs losses. Validation was done on segmen-
tations generated at various iterations using a variation of
information (Vol), and the optimal checkpoint was used for
inference. For network details see Supplementary Table 9,
Supplementary Table 11.

Contrastive Uniform Embedding. The uniform embedding
model was trained only on the 18-channel data. For the
network to learn to compare specific channel intensities,
we did not expand and shuffle the other datasets which
contained fewer channels. Additionally, as this network
is a lightweight MLP, it can be trained quickly and can
therefore be dataset-specific. Thus, we did not apply spatial
augmentations. Small intensity augmentations were applied
to help the model generalize to slight distribution shifts
in the enhanced intensities. The model was trained with a
contrastive loss, constrained to labeled objects. Since small
changes in the loss could lead to significant qualitative
differences in the uniform embedding, but we did not
have a method for turning the predictions directly into a
segmentation for evaluation, the final model was chosen via
manual inspection of the predictions on a held-out dataset.
For network details see Supplementary Table 13.

Barcode Expression Probabilities. The goal of this model
was to learn per channel barcode expression probabilities,
which could ultimately be thresholded and combined to
generate a foreground mask for post- processing. We also
trained this network in a channel-agnostic fashion and
therefore trained on all samples. We trained with a binary
cross-entropy loss on the max projection across channels.
The large variation in intensity expression between and
within channels led to excessive false positives in the back-
ground. To mitigate this, we trained with a distance mask to
the nearest boundary, ignoring the loss deep within objects.
Networks were validated via binary cross entropy (BCE) on
a held-out dataset of semantic labels, and the final model
was chosen after manual inspection of the validation results.
For network details see Supplementary Table 15.

6.2.3 Inference

Prediction was done in a blockwise fashion using Volara™
(Patton & Sheridan, 2025) (and under the hood Daisy™
(Nguyen et al., 2022)) for each of the four described net-
works. Each block was processed using a Gunpowder pre-
dict node and distributed using Volara. Blocks were grown
to the maximum size that could fit in GPU memory ( 24
GB RAM). Inference of the full volume was then run on 175
AWS EC2 A10 GPUs. Enhancement took ~3.5 hours, while
other networks each took ~30 minutes. All networks wrote
predictions to Zarr, which were then used for downstream
processing.
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6.2.4 Post-Processing

Following block-wise inference of the above networks, we
first combined the predicted affinities with barcode affini-
ties, which were generated by taking the dot product on the
predicted uniform embedding. The affinity between pixels
inside the same object should be high (close to 1) while
the affinity between pixels across objects should be low
(close to —1). Clipping these barcode affinities between 0
and 1 produces results that are similar to what is trained
in the affinities network (Figure 3). Combining these two
approaches improves cases in which one approach correctly
predicts a split edge while the other one incorrectly predicts
a merge edge. Here, we combined the affinities by simply
multiplying the two across all neighborhoods. We also tried
computing a weighted sum of the two affinities, in which
we highly weight the predicted affinities in the short range
(for merging) and highly weight the barcode-affinities in the
long range (for splitting). The former approach (direct prod-
uct) resulted in fewer false merges, so we chose this strategy
as it is preferable for downstream barcode relabeling.

Since the networks were trained with sparse labels, there
was no explicit training signal to supervise the background
(i.e to predict zero in these regions). Masking is com-
monly used during segmentation post-processing pipelines
to prevent errors introduced by structures not contained in
neuropil (i.e. background, cell bodies, blood vessels, etc.)
(Januszewski et al.,, 2018; Macrina et al., 2021; Sheridan
et al., 2022). We similarly needed to employ a masking
strategy to prevent merges against the background (or non
"barcode-able” regions). We therefore created a mask of
foreground regions by computing the max across channels
on the predicted binary probabilities. To handle single-
channel outlier values, we only considered where > 2
channels were expressed rather than 1 channel. This mask
was then combined with a “valid” mask denoting the
boundaries of the fully registered volume. We then used
the combined affinities constrained to this mask to compute
a segmentation using a block-wise post-processing pipeline,
similar to what was proposed by Sheridan et al., 2022.

However, rather than using a seeded watershed and
hierarchical agglomeration approach, we first computed
supervoxels with blocks via mutex watershed (Wolf et al.,
2018), which makes use of the short-range affinities for
merging (attractive edges) and long-range affinities for split-
ting (repulsive edges). For each of these supervoxels, we
stored its center of mass and ID as nodes in a region adja-
cency graph (RAG). We then added edges to the region adja-
cency graph (RAG) between supervoxels that share affinities
and assigned them merge and split weights based on the
underlying affinities. We performed a final global mutex
watershed on the RAG edges to get a globally optimal
segmentation across blocks. For post processing parameters,
see Supplementary Table 17.

6.2.5 Barcode Relabeling

Following post-processing to obtain a segmentation, we
then developed an approach to reconnect split segments
using the barcode information. As an input for this step, it
was important to minimize the amount of false merges since
they would incorrectly skew the computed average bar-
codes. Additionally, we were able to focus on reconnecting
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across larger distances using the barcodes, since we already
agglomerated supervoxels into reasonably sized segments
using the affinities.

Given a segmentation, we first created skeletons for
each segment using Kimimaro (Silversmith et al., 2021),
a TEASAR algorithm (Sato et al., 2000) implementation.
This was done in memory on downsampled segments, (but
it could also be done in a block-wise fashion at higher
resolution and would thus result in more valid nodes to
consider for merging). We computed an average barcode
for each segment. We used a mapping from segment to
supervoxels, and then computed the average intensity in-
side each supervoxel. The segment barcodes were generated
via a weighted mean of the supervoxel barcodes to account
for variance in supervoxel size. The segment barcodes were
zero-mean normalized and assigned to the skeleton nodes.

We created a KDTree on end nodes and performed two
spatial queries. The first spatial query fetched all pairs of
nodes less than a distance match threshold (D) (~10 pm)
apart. Nodes were then mapped back to their skeletons,
leaving us with edges between skeletons that are less than
D,, apart. We then computed affinities via cosine similar-
ities between normalized skeleton barcodes. The second
query followed the same process to get affinities between
skeletons that at their closest point were less than D,, + ¢
apart (D) (~30 pm). We then filtered out any positive edges
from this list to use the larger distance query purely as
a splitting bias for mutex watershed. For efficiency, we
also removed redundant positive edges from the second
query that were present in the first smaller query. The
second larger query was important to mitigate the effects
of long chains of low-distance merge errors, resulting in a
merge between two skeletons with a large barcode distance.
Resulting edges were then clustered with mutex watershed
(Wolf et al., 2018) to obtain a final lookup table, mapping
original segments to barcode relabeled segments. Using this
lookup table, we relabeled the input segmentation similarly
to what was done for the affinity segmentation.

6.2.6 Evaluation
6.2.6.1 Data

We created 1542 ground-truth skeletons for testing, which
consisted of both large skeletons and fragments of skeletons
(due to the size of the sample). The skeletons contained
206,442 nodes (average=134), a total length of 232,296 pm
(biological distance, average=150m), and a total longest
path length of 31,017 um (avg=20 pm). See Supplementary
Figure 4 for a visualization.

Due to the expansion factor and sparsity of this dataset,
rather than focusing on tracing small spines, we created
ground-truth skeletons that were reconstructed along the
main paths of the neurons. We therefore do not consider
segmentation accuracy in the context of small spines in
this evaluation, but we anticipate trends to hold at higher
expansion factors for smaller objects.

6.2.6.2 Segmentation evaluation

Evaluated baselines. We conducted a “baseline” method
evaluation to gauge how adding barcodes and enhancing
the data improves segmentation accuracy (Supplementary
Figure 9). Evaluated "methods” are described below.
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e R-GFP: The minimal baseline considered. Since GFP
expresses in every labeled cell, it is a reasonable
proxy for a sparse morphology channel, or one in
which every barcode was imaged in a single channel.
The affinity network then sees a single channel as
input.

e R-Mean: Computed by averaging the raw barcode
intensities across channels into a single channel.
Since barcodes imaged in separate channels also
provide distinguishable intensity ranges, computing
the mean gives a better readout than by taking data
imaged in a single channel. The affinity network sees
a single channel as input.

e R-Stack: Computed by stacking the raw barcode
intensities into a multi-channel array. The affinity
network then takes all channels as input, and there-
fore has full access to the intensities provided by
imaging multiple barcodes.

e E-Mean: The raw barcodes are first enhanced and
then the average is computed across channels. The
affinity network sees a single channel as input.

e E-Stack: The raw barcodes are first enhanced, and
then stacked across channels. The affinity network
sees multi-channel input.

e E-Stack+U: The raw barcodes are enhanced and
stacked across channels. The affinity network and
uniform embedding network both see multi-channel
input.

Evaluation Method. We evaluated increasingly large
ROIs grown outward from the center of the full ROI The
largest ROI was empirically chosen to be a large enough ROI
to contain a reasonable amount of ground-truth skeletons
while minimizing the amount of stitching and registration
artifacts. Outside of this ROI, segmentation accuracy de-
creases substantially. For each ROI and method, we ob-
tained the RAG and fragments within the ROI. We cropped
the ground-truth skeletons to the ROI, masked, and then
relabeled connected components. We used a fixed mutex
watershed bias ([-0.4, -0.7]) to generate a segmentation.
This was the same bias used for generating supervoxels,
as it provides a reasonable intermediate for merging and
splitting. The segmentation was then evaluated against
the ground-truth using standard metrics (Vol, NVol, ERL,
NERL). We also evaluated MCM on all but the largest ROI
(due to memory constraints). For details, see Supplementary
Figure 9, Supplementary Figure 10, Supplementary Table 18.

Computational costs. For each evaluated method, we
computed the TeraFLOPs per pm? to gauge the computa-
tional costs. We found that simply incorporating the bar-
codes provides an immediate increase in accuracy with little
to no increase in computation (single channel vs 18 channel
input). Enhancing the barcodes is then a relatively expensive
operation (which scales by the number of barcodes), but
is necessary for the increased accuracy and for training
the subsequent embedding network (which greatly benefits
from clean input data). The final embedding then allows
for further accuracy increases (and split/merge tradeoffs)
with little increased computational cost (Supplementary
Figure 11).
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6.2.6.3 Barcode relabeling evaluation

We evaluated barcode relabeled segmentation on a smaller
candidate evaluation ROI, which contained a relatively
dense quantity of ground-truth skeletons with obvious splits
in the initial affinity segmentation. We evaluated standard
metrics (Vol, NVoI, ERL, NERL) in a grid evaluation to
assess the effects of the number of bits, match threshold,
and spatial distance threshold. We evaluated random sub-
sets of bits for matching and averaged across 10 runs. We
found that matching accuracy increases with the number of
barcodes used to match. Additionally we found the optimal
matching threshold to be around 0.9, and the optimal in-
ner spatial distance threshold to be 50000 nanometers, see
Supplementary Figure 13 for details.

6.2.6.4 Gap crossing evaluation

Evaluation Method. We then did a gap crossing evaluation
to see how well we could reconnect segments across increas-
ingly large spatial gaps using the barcodes. Here, we used
the fragments generated from the E-M+U network since it
had minimal false merges. We evaluated the gap crossing
on the same increasingly large ROIs as were used for the
segmentation evaluation. For each ROI we evaluated how
well we could match across regions of missing data. ROI
evaluation was performed by chunking the ROI into blocks
of size (full z shape, full y shape, fragment block size in
x). We then iterated over all pairs of chunks going from
the easy cases (two neighboring chunks) to the hardest case
(two chunks on opposite sides of the evaluation ROI). In
each chunk we assumed perfect segmentation according to
the intersecting ground-truth skeletons and computed the
mean barcode for each skeleton in each chunk via agglom-
erating supervoxels. We then zero-mean normalized the
computed intensities. Using these normalized intensities,
we performed a pairwise matching on embedding distance
with a threshold, enforcing at most one edge per node in
a chunk, and no edges between nodes in the same chunk.
Finally we computed the F1 score of the matched segments
against the ground-truth. The mean scores across all pairs
of chunks was reported for each evaluation ROL

Evaluation Results. We found that across the board, the
matching accuracy decreases as spatial distance increases,
as expected. The raw barcodes yielded the best results (over
the enhanced and discrete barcodes). The small improve-
ment over enhanced barcodes is likely due to the smoothing
losing important information for matching (especially in
fine processes). Similarly, the discrete barcodes remove even
more information that would be useful for matching (by
effectively turning the continuous signal into binary prob-
abilities). Notably, matching accuracy increases with the
number of barcodes used for matching which makes sense
considering collisions become rarer as the number of bar-
codes increases. Additionally, matching accuracy increases
when fewer skeletons are considered. This is important to
understand when considering that high F1 scores (close to 1)
at low distances may be due to simply not having that many
skeletons to match together. See Supplementary Figure 15
for details.
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Supplementary Figure 1: Demonstration of multiplexing and signal detection of all 18 protein bits in mouse
hippocampal CA3 dataset. A. Overview of entire FOV of stitched and registered raw mouse hippocampal CA3 dataset.
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Supplementary Figure 1: (continued) B. Single-plane raw images demonstrating detection of all 18 protein bits across 11
imaging rounds in the soma layer. Scale bar 20 um. C. Single-plane raw images demonstrating detection of all 18 protein
bits across five dendrites. Arrowheads point to the same dendritic spine for each dendrite. Arrowheads with asterisks are
different dendritic spines containing detectable protein bit signal, due to signal in the former spine being out of focus.
Scale bar 2 pm. D. Single-plane raw images demonstrating detection of all 18 protein bits in axons. (Left) A zoom-in of an
axon-rich region indicated in overview image (A). Dotted box demarcates ROI of breakout panel on right. Scale bar 2 pm.
(Right) Breakout panel of zoomed-in single-plane images per protein bit channel. Scale bar 1 um. All scale bars correspond
to pre-expansion distances.
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Supplementary Figure 2: Validation of PRISM multiplexing strategy for mouse hippocampal CA3 dataset collection. A.
Representative images showing high stripping efficiency after cycle 7 in a hippocampal dataset. (Left) Full-field single-plane
before (top) and after (bottom) stripping, acquired under identical imaging conditions and LUTs. Post-strip images were
transformed by BigWarp registration (Supplemental Methods). (Middle) Magnified regions from boxed areas in (left). Top
row: ROI masks detected pre-strip for quantification in B. Middle rows: matching LUT images before and after stripping.
Bottom row: same post-strip images shown overexposed. LUT min/max values (12-bit scale) indicated at right. Scale bars,
4pm. B. Quantification of stripping efficiency after cycle 7. (Left) Per-channel boxplots of signal-to-background ratio (SBR)
before and after stripping across all ROIs (Supplementary Material 5.1.3). Median [IQR], n ROIs: SPOT 95.1 [94.0-97.4],
n = 309; MOON 96.0[94.7-97.1], n = 1092; ALFA 93.5[91.5-95.1], n = 690; HSV 94.6 [93.2-95.8], n = 1191. (Right)
Boxplots of relative stripping efficiency (%) across ROIs (Supplementary Material 5.1.3).
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Supplementary Figure 2: (continued) Outliers outside the 5-95th percentile are shown as individual points. C. Example
regions in raw hippocampal dataset demonstrating minimal antibody crosstalk across rounds. Single-plane images
show non-overlapping signal between (top four rows) protein bits stained with same-species primary antibodies and
corresponding same-species secondary antibodies, or (bottom) a protein bit, HA, stained with secondary antibodies
raised in goat while protein bits in later rounds were detected with anti-goat secondary antibodies. Scale bars: 20 pm. D.
Demonstration of minimal antibody crosstalk with PRISM multiplexing. Registration channel is an ATTO488-conjugated
nanobody against ALFA. (Left) Representative images of the crosstalk experiment (Supplemental Methods) in the CA3
region of a separate barcoded sample. All post-strip images were transformed using BigWarp registration. Scale bar: 4 pm.
(Right, top) Boxplots of % crosstalk per matching ROI (Supplementary Methods 5.1.4). Median [IQR], n ROIs: PRTC
0.5[—0.5-1.5], n = 954; MOON 8.1 [4.0-12.0], n = 817; HSV —1.0 [-2.0-—0.1], n = 163. (Right, bottom) ROI-independent
pixel intensity histogram of MOON across conditions, indicating slightly higher apparent crosstalk due to global intensity
increases from addition of AF647-conjugated anti-rabbit secondary on stripped samples. X-axis limited to 0-1000 (1171
datapoints excluded). E. Strip cycle-by-cycle comparison of protein bit ALFA registration channel staining. (Left) Overview
of a neurite-rich region imaged before strip cycle 1, with boxed regions highlighting individual neurites shown at right.
Scale bar: 4 um. (Right) Zoom-ins of single-plane, non-registered images of a dendrite (top row) and two individual axons
(bottom row) across seven stripping cycles. Dendrite images include insets of two dendritic spines (arrowheads). Axons
are labeled “1” and “2” in the top-right corner of each image. Fluorophores on secondary antibodies are indicated for each
cycle (AF647 = Alexa Fluor 647). Scale bars: 1 pm. All scale bars correspond to pre-expansion distances.
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Supplementary Figure 3: Detailed barcode statistics and simulations. A. Hamming distances per soma to nearest neighbor
(mean = 3.2). The majority of cells with a collision are single-protein-bit cells (18/26, 69.2%). B. Mean pairwise Hamming
distances between all somas in the dataset (mean = 6.1). C. Frequency of barcode collisions. Proportion of soma barcodes
colliding with 1 or more other somas (unique = .82, non-unique = .18) D. Monte Carlo estimates of binary barcode
generation. Simulations estimate the total number of barcodes generated under four models. Data-fit is parametrized by
the observed epitope frequencies and barcode length distribution. Three cases represent best-case scenarios for binary
combinatorial labels with proteins using 3, 7 or 18 bits. The ideal models assume equal protein bit usage with a Poisson-
istributed barcode length centered at n/2. Simulations do not incorporate signal intensity information, as all methods
benefit at the same rate. E. Monte Carlo estimates of cell uniqueness. Using the same models as in D, we calculated
the fraction of unique cells at a given size up to 10° total cells. 95% confidence intervals shown as shaded regions. F.
Barcode generation across modeled systems. Representative number of barcodes generated across several simulated orders
of magnitude. Reported values are mean + standard deviation; data is a subset from all data shown in panel D. To improve
readability, small numbers (<100) are shown as integers, medium numbers (100-10,000) are rounded to the nearest 10 or 50,
and very large numbers (>10,000) are displayed in scientific notation. — indicates saturation at the previous value. Singlet
rate (SR) across modeled systems. The SR limit (SR,,) indicates the number of cells that can be labeled while retaining a p%
unique fraction. Limits (SRa5, SRs0, SR75) were estimated from Monte Carlo simulations (5,000 iterations per condition
per number of samples). Values are reported as mean + standard deviation.
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Supplementary Figure 4: Neuron segmentation ground-truth data overview. Training data shows five crops used to
train networks from the target 18 channel dataset (from left to right: raw barcodes, sparse ground-truth labels, overlay).
Additional crops from other 12 channel datasets were also used but omitted for clarity. Testing data shows 1500 ground-
truth skeletons used for evaluation and the largest 10 skeletons overlaid on the raw data. Zoom in shows example skeletons
over raw data.
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Supplementary Figure 5: Enhancement network overview. A. Target data generation. Given sparse ground-truth labels
and raw barcodes, sparse average barcodes are computed for each label. The raw barcodes are then subtracted from the
average barcodes to generate residual barcodes. B. Training objective. A channel agnostic UNet is trained to learn residual
barcodes from raw barcode input. C. Inference. Residual barcodes are predicted and then added to the raw barcodes to
obtain average barcodes (enhanced barcodes).
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Supplementary Figure 6: Uniform embedding objective. The uniform embedding (24 channels) aims to optimize two
objectives: minimizing the intra-object distance while maximizing the inter-object distance. This is done by projecting the
barcodes onto a unit sphere. Raw and enhanced data (18 channels) are visualized on unit sphere here for clarity. Image
data RGB-color encoded for visualization.
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Supplementary Figure 7: Mutex watershed overview. Weights are determined by affinity neighborhood. Short range edge
affinities are used as attractive weights (green, merge signal), while long range edge affinities are used as repulsive weights
(red, split signal).
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Supplementary Figure 8: Masking effect on segmentation quality. Initial masking with a multi-channel network contained
many false positives, even when randomly shuffling channels, likely due to large variability in cross channel and volume
intensity ranges. This led to significant false merges to the background. A channel agnostic approach yielded better
masking, and subsequent segmentation.
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Supplementary Figure 9: Segmentation Evaluation method and results. A. Overview of methods, demonstrating
increasing “color” information from barcodes and decreasing “noise” from enhancement. Inset in top left shows overview
of increasingly large ROIs used for evaluation. B. Evaluation results. Top two row metrics were evaluated up to and shown
on largest ROI (asterisk in inset). Bottom row metrics (min-cut metric related) were evaluated up to and shown on second

to largest ROI (double asterisk in inset) due to computational costs.
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Supplementary Figure 10: Segmentation Evaluation ROI evaluation. For each “method”, metric accuracy is shown against
volume size (log scale). The first three rows were evaluated up to largest ROI (asterisk in Supplementary Figure 9.B).
Bottom row metrics (min-cut metric related) were evaluated up to second to largest ROI (double asterisk in Supplementary
Figure 9.B) due to computational costs.
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Supplementary Figure 11: Computational costs of evaluated methods. For each "method”, accuracy (NVol Sum is shown
against Teraflops for the largest three evaluated ROIs (plotted on a log scale; dot sizes correspond to ROIs), computed
using the method from (Sheridan et al., 2022). Simply adding raw barcodes provides a significant accuracy increase over
raw GFP at no increased computational cost. Further accuracy increases are possible at an increased computational cost
due to the enhancement (which scales with number of channels). A final accuracy increase (and further merge/split tuning
can be achieved with the uniform embedding at no extra computational cost. All components are still computationally
“cheap”, relatively speaking - every network was trained on a single GPU and easily distributed over modest GPUs during

inference.
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Supplementary Figure 12: Example affinities generated from different methods. Red arrow shows two examples in which
the affinities from the single channel raw barcode input (R-Mean) struggle to form a boundary between two neurons,
which would likely lead to a downstream false merge. This boundary is resolved in the affinities from the enhanced and

uniform networks.
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Supplementary Figure 13: Barcode relabeling ablations. Evaluation metrics plotted against conditions from ablation grid
search. From left to right: segmentation accuracy increases with number of barcodes used to relabel segments, optimal
barcode distance matching threshold is around 0.9, optimal spatial matching threshold is around 40k nanometers. Except
for the value they are varying, each column by default uses 18 barcodes, a match threshold of .9 and an inner distance

threshold of ~10 pm.
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Supplementary Figure 14: Example barcode relabeling failure case. Four neurons are incorrectly split in the affinity
segmentation. The barcode relabeling falsely merges these into one segment. Looking at the underlying raw barcode
channel data at the cell bodies shows a collision in barcode space, making this merge unavoidable. While it would be
trivial to resolve these cases if they were restricted to cell bodies, collisions in axons/dendrites are more difficult to split
without global shape priors.
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Supplementary Figure 15: Gap crossing ablations. Each column corresponds to an evaluated metric. The score/count is
shown against the gap length (in um) for matching. Each row corresponds to an evaluated condition used for matching.
From top to bottom: intensity modality, number of barcode “bits”, matching threshold, skeleton ratio (i.e the percent of
skeletons used for evaluation), noise level.


https://doi.org/10.1101/2025.09.26.678648
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.26.678648; this version posted September 28, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

S22
Tag ID Alternate/Long Names Amino acid sequence Paper reference
SUN Suntag (GCN4) EELLSKNYHLENEVARLKK Tanenbaum 2014
TY1 TY1 EVHTNQDPLD Morriswood 2013
MOON Moontag (gp41 peptide) KNEQELLELDKWASL Boersma 2019
S1 S1 NANNPDWDF Wroblewska 2018
HSV HSV QPELAPEDPED Wroblewska 2018
ALFA ALFA SRLEEELRRRLTE Gotzke2019
SPOT SPOT PDRVRAVSHWSS Chromotek Spot Tag Systems
PRTC Protein C EDQVDPRLIDGK Kudo2022, Wroblewska 2018
cMYC c-MYC EQKLISEEDL Kudo2022
T7 T7 MASMTGGQQMG Kudo2022
OLLAS OLLAS SGFANELGPRLMGK Kudo2022, Wroblewska 2018
E2 E2 SSTSSDFRDR Kudo2022, Wroblewska 2018
HA HA YPYDVPDYA Kudo2022, Wroblewska 2018
NWS Strep II (NWS) NWSHPQFEK Kudo2022, Wroblewska 2018
VSV VSV YTDIEMNRLGK Kudo2022, Wroblewska 2018
AU5 AU5 TDFYLK Kudo2022, Wroblewska 2018
TG100 Tag-100 EETARFQPGYRS Kudo2022
ETAG Etag GAPVPYPDPLEPR Kudo2022
Linker sequence - GGSGGS =
Supplementary Table 1: Tag names and amino acid sequences for the tags used in the study to create protein bits.
. . . Conjugated
Target type Target Company Catalog no. Species (Isotype) Concentration Clonality [Clone no.] fluorophore
Protein Bit ALFA Synaptic Systems N1584 guinea pig 2pg/mL? monoclonal [1G5] -
Protein Bit ALFA Synaptic Systems N1586 human 2pg/mL” monoclonal [1G5] =
Protein Bit ALFA Synaptic Systems N1502-At488-L camelid 10 nM monoclonal [1G5] ATTO 488
Protein Bit ALFA Synaptic Systems N1502-AF568-L camelid 10 nM monoclonal [1G5] AZDye 568
Protein Bit AU5 ThermoFisher PA1-26552 rabbit 4-51g/mL* polyclonal -
Protein Bit c-Myc Invitrogen A-21281 chicken 2pg/ mL? polyclonal =
Protein Bit c-Myc Novus Bio NB600-335 goat 5pg/mL? polyclonal -
Protein Bit E-tag Novus Bio NB600-518 goat 4pg/mL? polyclonal -
Protein Bit E2 Abcam ab977 mouse (IgG1) 2.4ng/ mL? monoclonal [SE11] =
Protein Bit HA GenScript A01244 mouse (IgG1) 2ug/ mL* monoclonal [5E11D8] =
Protein Bit HSV tag Novus Bio NB600-513 goat 4dpg/ mL3 polyclonal =
Protein Bit Moon-tag ProSci Custom-made, 24947 rabbit 5.42ng/ mL® polyclonal -
Protein Bit NWS GenScript A01732 mouse (IgG1k) 4ng/ mL3 monoclonal [SA9F9] -
Protein Bit OLLAS Novus Bio NBP1-06713 rat (IgG1k) 5pug/ mL3 monoclonal [L2] -
Protein Bit Protein C GenScript A01774 mouse (IgG1k) 5pug/ mL3 monoclonal [2H12F4] -
Protein Bit S1 Proteintech 66165-1-1g mouse (IgG2b) 4.6pg/ mL? monoclonal [1A9B5] -
Protein Bit SPOT tag Proteintech 28a5 mouse (IgG1) 4dpg/ mL? monoclonal [28a5] -
Protein Bit Sun-tag ProSci Custom-made, 24946 rabbit 2.8 ug/mL3 polyclonal -
Protein Bit T7 Novus Bio NB600-371 goat 2 pg/mL” polyclonal =
Protein Bit Tag100 ProSci Custom-made, 24944 rabbit 9.64 pg/mL? polyclonal -
Protein Bit TY1 GenScript A01004 rabbit 2pg/ mL> polyclonal =
Protein Bit VSV-G ThermoFisher PA1-30138 rabbit 2ug/ mL* polyclonal =
Marker (Other) Beta-Amyloid, 1-16 BioLegend 803002 mouse (IgG1k) 1ng/ mL? monolconal [6E10] =
Marker (Other) GFAP Abcam ab254083 chicken unknown* (1:500) polyclonal -
Marker (Synaptic) Bassoon Enzo ADI-VAM-PS003 mouse (IgG2ak) 4ng/ mL3 monoclonal [SAP7F407] -
Marker (Synaptic) GABRA1 Proteintech 12410-1-AP rabbit 3.6 pug/mL3 polyclonal -
Marker (Synaptic) PSD-95 CST 3450T rabbit 0.076 pg/ mL? monoclonal [D27E11] -
Marker (Synaptic) Shank2 Synaptic Systems 162 204 guinea pig unknown* (1:500) | polyclonal (antiserum) =
Marker (Synaptic) Synapsin I/11 Synaptic Systems 106 004 guinea pig unknown* (1:500) | polyclonal (antiserum) -
Marker (Synaptic) VGAT Synaptic Systems 131 011 mouse (IgG3k) 2 pg/mL” monoclonal [117G4] -
Scaffold GFP Abcam ab13970 chicken 20 pg/mL° polyclonal -

* Concentration unknown due to antiserum format of the antibody.

Supplementary Table 2: Validated primary antibodies for PRISM multiplexing against targets in mouse CA3 hippocampal
dataset. All primary antibodies are unconjugated and stained with a fluorophore-conjugated secondary antibody (see
Supplementary Table 4), except for those indicated in “Conjugated Fluorophore” column.
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Stain-strip cycle | Imaging Round Target type Registration? Target Fluorophores Channel order t1 | Imaging settings 1 [ In dataset?
1 1 Protein Bit E2 ATTO488, FITC 0 488 Y
1 1 Protein Bit S1 Alexa Fluor 555, AZDye 568 1 555 Y
1 1 Protein Bit [R] ALFA Alexa Fluor 647 2 647 Y
1 2 Protein Bit TY1 Alexa Fluor Plus 405 0 405 Y
1 2 Protein Bit [R] ALFA Alexa Fluor 647 1 647 -
1 2 Marker (Other) GFAP ATTO 490LS 2 490LS N
2 B Marker (Synaptic) VGAT FITC 0 488 Y
2 3 Synaptic GABRA1 Alexa Fluor Plus 405 1 405 Y
2 3 Protein Bit HA Alexa Fluor 555, AZDye 568 2 G55, Y
2 3 Protein Bit [R] ALFA Alexa Fluor 647 3] 647 -
B 4 Marker (Synaptic) PSD-95 FITC 0 488 Y
3 4 Marker (Synaptic) Bassoon Alexa Fluor 555 1 555 Y
3 4 Protein Bit [R] ALFA Alexa Fluor 647 2 647 -
3 5] Marker (Other) Beta-Amyloid ATTO 490LS 0 490LS N
3 B Protein Bit c-Myc Alexa Fluor Plus 405 1 405 N
3 5 Protein Bit [R] ALFA Alexa Fluor 647 2 647 =
4 6 Protein Bit T7 FITC 0 488 Y
4 6 Protein Bit [R] ALFA Alexa Fluor 647 1 647 =
4 6 Marker (Synaptic) Synapsin I/11 Cy3 2 555 Y
4 6 Protein Bit VSV-G Alexa Fluor Plus 405 3 405 Y
5 7 Marker (Synaptic) Shank2 FITC 0 488 N
8 7 Marker (Synaptic) Bassoon Alexa Fluor 555 1 647 N
5 7 Protein Bit [R] ALFA Cy3 2 555 =
5 8 Protein Bit [R] ALFA Cy3 0 555 =
5 8 Protein Bit AU5 Alexa Fluor Plus 405 1 405 Y
6 9 Protein Bit [R] ALFA ATTO488, FITC 0 488 -
6 9 Protein Bit NWS Alexa Fluor 647 1 647 Y
6 9 Protein Bit Sun-tag Alexa Fluor Plus 555, Cy3 2 555 Y
6 9 Protein Bit E-tag Alexa Fluor Plus 405 B 405 Y
7 10 Protein Bit SPOT tag Alexa Fluor 555 0 488 Y
7 10 Protein Bit Moon-tag Alexa Fluor 647, Cy5 1 647 Y
7 10 Protein Bit [R] ALFA AZDye 568, Cy3 2 555 =
7 10 Protein Bit HSV tag Alexa Fluor Plus 405 3 405 Y
8 11 Protein Bit Protein C Alexa Fluor 488 0 488 Y
8 11 Protein Bit Tag100 Alexa Fluor 647, Cy5 1 647 Y
8 11 Protein Bit [R] ALFA Cy3 2 555 =
8 11 Protein Bit c-Myc Alexa Fluor Plus 405 3 405 Y
9 12 Protein Bit OLLAS Alexa Fluor 488, FITC 0 488 Y
9 12 Scaffold [R] GFP Alexa Fluor 647 1 647 Y
9 12 Protein Bit AU5 Alexa Fluor 555, AZDye 568, Cy3 2 555 N
9 12 Protein Bit c-Myc Alexa Fluor Plus 405 3 405 =

[R] Registration channel

Y Yes
N No

— Not in dataset but used for registration

t Imaging settings (See Supplementary Table 4)

11 Channels in zero order

Supplementary Table 3: Imaging and staining round-up of all imaged targets in mouse CA3 hippocampal dataset. Round of
staining specified by stain-strip cycle. Per stain-strip cycle, one or more imaging cycles were performed, imaging either the
entirety or subsets of stained targets. Stain-strip round-up of targets were optimized based on antigen sensitivity to photo-
induced epitope damage and heat-strip cycles. Imaging rounds, including order of channels per round, were optimized for
imaging time and fluorophore bleaching.


https://doi.org/10.1101/2025.09.26.678648
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.26.678648; this version posted September 28, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

S24
Mini-binders vs. Whole IgG | Antibody type [ Host Species Target [Clone no.*] Fluorophore Catalog no. Concentration
Mini F(ab’)2 donkey chicken IgY (H+L) Alexa Fluor 647 Jackson ImmunoResearch 703-606-155 1.5pg/mL
Mini F(ab’)2 donkey guinea pig IgG (H+L) FITC Jackson ImmunoResearch 706-096-148 1.5 pg/mL
Mini F(ab’)2 donkey guinea pig IgG (H+L) Cy3 Jackson ImmunoResearch 706-166-148 1.5-3 pg/mL‘x
Mini F(ab’)2 donkey human IgG (H+L) Alexa Fluor Plus 647 Jackson ImmunoResearch 709-606-149 1.5pg/mL"
Mini | F(ab)2 donkey human IgG (H+L) Cy3 Jackson ImmunoResearch 709-166-149 3pg/ mL?
Mini Fab donkey goat IgG (H+L) FITC Jackson ImmunoResearch 705-097-003 1.6 g/ mL?
Mini Fab goat guinea pig IgG, Fc Alexa Fluor 647 Jackson ImmunoResearch 106-607-008 1.5 pg/mL
Mini Fab donkey mouse IgG (H+L) Alexa Fluor 647 Jackson ImmunoResearch 715-607-003 1.5 pg/mL
Mini Fab donkey mouse IgG (H+L) Alexa Fluor 488 Jackson ImmunoResearch 715-547-003 1.6 pg/mL
Mini Fab donkey rabbit IgG (H+L) Cy3 Jackson ImmunoResearch 711-167-003 1.6 pg/mL°
Mini Fab donkey rabbit IgG (H+L) Alexa Fluor 647 Jackson ImmunoResearch 711-607-003 1.7 pg/mL’
Mini Fab donkey rat IgG (H+L) FITC Jackson ImmunoResearch 712-097-003 1.6 pg/mL’
Mini Fab fragment | goat guinea pig IgG, Fc Alexa Fluor 647 Jackson ImmunoResearch 106-607-008 1.5 pg/mL?
Mini Nanobody camelid chicken IgY, Fc [3G2] Alexa Fluor 647 (Fluo-Tag X2) NanoTag N0702-AF647-S 20 nM
Mini Nanobody camelid mouse IgG1, Fc [10A4] ATTO 488 (Fluo-Tag X2) NanoTag N2002-At488-S 10 nM
Mini Nanobody camelid mouse IgG1, Fc [10A4] AZDye 568 (Fluo-Tag X2) NanoTag N2002-AF568-S 20 nM
Mini Nanobody camelid mouse IgG2a/b, Fc [14A4] AZDye 568 (Fluo-Tag X2) NanoTag N2702-AF568-S 10 nM
Mini Nanobody camelid rabbit IgG, Fc [8C10/10E10] AZDye 568 (Fluo-Tag X4) NanoTag N2404-AF568-S 20 nM
IgG Whole IgG donkey chicken IgY (H+L) ATTO 490LS Custom-conjugated from Jackson ImmunoResearch 703-005-155 | 1.788 pg/mL?
1gG Whole IgG goat chicken IgY (H+L) Alexa Fluor Plus 405 ThermoFisher A-48260 4pg/mL?
IgG Whole IgG donkey chicken IgY (H+L) Alexa Fluor 647 Jackson ImmunoResearch 703-605-155 3pg/mL’
1gG Whole IgG donkey goat IgG (H+L) FITC Jackson ImmunoResearch 705-095-147 1.5pug/mL
IgG Whole IgG donkey goat IgG (H+L) Alexa Fluor Plus 405 ThermoFisher A-48259 4pg/mL*
IgG Whole IgG donkey guinea pig IgG (H+L) Cy3 Jackson ImmunoResearch 706-165-148 1.5-3 pg/mL
IgG Whole IgG donkey guinea pig IgG (H+L) FITC Jackson ImmunoResearch 706-095-148 3pg/ mL?
IgG Whole IgG donkey guinea pig IgG (H+L) Alexa Fluor 647 Jackson ImmunoResearch 706-605-148 2.25 pg/mL°3
1gG Whole IgG donkey human IgG (H+L) Alexa Fluor 647 Jackson ImmunoResearch 709-605-149 3pg/mL?
IgG Whole IgG donkey mouse IgG (H+L) Alexa Fluor Plus 647 ThermoFisher A-32787 2 pg/mL?
IgG Whole IgG donkey mouse IgG (H+L) Alexa Fluor 488 ThermoFisher A-21202 2 pg/mL?
IgG Whole IgG goat mouse IgG1 FITC ThermoFisher A-10530 4pg/mL’
IgG Whole IgG goat mouse IgG1 ATTO 490LS Custom-conjugated from Jackson ImmunoResearch 115-005-205 | 2.67 pg/mL?
IgG Whole IgG goat mouse IgG1 (H+L) Alexa Fluor 555 ThermoFisher A-21127 4pg/ mL?
IgG Whole IgG goat mouse IgG2a Alexa Fluor 555 ThermoFisher A-21137 2pg/mL?
IgG Whole IgG goat mouse IgG2b Alexa Fluor 555 ThermoFisher A-21147 4pg/mL”
IgG Whole IgG goat mouse IgG3 FITC Southern Biotech 1103-02 2 pg/mL?
1gG Whole IgG donkey rabbit IgG (H+L) FITC Abcam (ab6798) 4dpg/ mL?
IgG Whole IgG donkey rabbit IgG (H+L) Alexa Fluor Plus 405 ThermoFisher A-48258 4pg/mL*
IgG Whole IgG donkey rabbit IgG (H+L) Alexa Fluor Plus 555 ThermoFisher A-32794 2pug/mL’
IgG Whole IgG donkey rabbit IgG (H+L) Cy5 Jackson ImmunoResearch 711-175-152 3pg/ mL?
1gG Whole IgG donkey rabbit IgG (H+L) Alexa Fluor 555 Abcam ab150074 4 pg/mL“
IgG Whole IgG donkey rat IgG (H+L) Alexa Fluor 488 Invitrogen A-21208 4pg/mL”

Supplementary Table 4: List of all validated secondary antibodies for PRISM multiplexing against targets in mouse CA3
hippocampal dataset. Minibinders were used for more efficient penetration or whole IgGs when minibinders were not

available.

Laser Excitation Emission
Channel Name | A (nm) Max Power (mW) | A (nm) Bandpass filter type = Manufacturer / Catalog no.
405 405 120 447/60 BrightLine single-pass  Semrock / FF02-447/60-25
488 488 200 525/50 BrightLine single-pass  Semrock / FF01-525/50-25
490LS 488 200 708/75 BrightLine single-pass ~ Semrock / FF01-708/75-25
555 561 150 600/52 BrightLine single-pass  Semrock / FF01-600/52-25
647 638 200 708/75 BrightLine single-pass = Semrock / FF01-708/75-25

Supplementary Table 5: Imaging settings on spinning disk confocal for mouse CA3 hippocampal dataset. Details of laser
excitation and fluorophore emission capture by channels (listed in “Imaging Settings” column in Supplementary Table 2).
Light engine for all channels was the Omicron LightHUB Ultra, and all emission filters had a 25 nm diameter. Note that
Long Stokes shift dye ATTO490LS (”"490LS” channel) is excited by the 488 nm laser but captured by a Far Red emission

filter.
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Crop | Dataset | Channels Raw Shape Labels Shape | #Labels
0 231220 18 (300, 650, 650) (200, 500, 500) 23
1 231220 18 (300, 650, 650) (200, 500, 500) 13
2 231220 18 (300, 650, 650) (200, 500, 500) 225
3 231220 18 (300, 650, 650) (200, 500, 500) 44
4 231220 18 (300, 650, 650) (200, 500, 500) 27
5 230701 12 (300, 300, 300) (300, 300, 300) 233
6 230701 12 (450, 750, 1600) | (450, 750, 1600) 112
7 230701 12 (500, 1000, 1000) | (468,908, 908) 5
8 230701 12 (500, 1000, 1000) | (468, 908, 908) 20
9 230701 12 (468, 908, 908) (468, 908, 908) 26
10 230701 12 (500, 1000, 1000) | (468,908, 908) 27
11 230701 12 (500, 1000, 1000 | (468, 908, 908) 42
12 230703 11 (468, 908, 908) (468, 908, 908) 16
13 230703 11 (468, 908, 908) (468, 908, 908) 16

Supplementary Table 6: Training crops for instance segmentation.

Crop | Dataset | Channels | Raw Shape | Labels Shape | Classes
0 231220 18 (50, 300, 300 | (50, 300, 300 4
1 231220 18 (50, 300, 300 | (50, 300, 300 7
2 230701 12 (65, 300, 300) | (65,300, 300) 6
3 230701 12 (50, 300, 300) | (50, 300, 300) 6
4 230701 12 (50, 300, 300) | (50, 300, 300) 6
5 230701 12 (50, 300, 300) | (50, 300, 300) g
6 230701 12 (50, 300, 300) | (50, 300, 300) 5
7 230701 12 (50, 300, 300) | (50, 300, 300) 4
8 230701 12 (50, 300, 300) | (50, 300, 300) 4
9 230701 12 (50, 300, 300) | (50, 300, 300) 4
10 230701 12 (50, 600, 600) | (50, 600, 600) 4
11 230701 12 (50, 300, 300) | (50, 300, 300) 3
12 230701 12 (50, 600, 600) | (50, 600, 600) 7
13 230701 12 (50, 600, 600) | (50, 600, 600) 8
14 230701 12 (50, 300, 300) | (50, 300, 300) 5
15 230701 12 (50, 300, 300) | (50, 300, 300) B
16 230701 12 (50, 300, 300) | (50, 300, 300) 2
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Supplementary Table 7: Training crops for semantic segmentation (and binary expression).

Parameter Value
Model type UNet
Input feature maps 12
Layer fmap scale 5
Downsampling factors | [(1,2,2),(1, 2, 2), (2, 2, 2)]
Upsample Mode Trilinear
Residual blocks Yes
Input shape [52, 148, 148]
Output shape [20, 56, 56]
Loss MSE
Optimizer Adam
Learning Rate 0.5e-4
Betas (0.9, 0.999)
Epsilon 1x10-8
Iterations 150000
Checkpoint 60000

Supplementary Table 8: Enhancement network parameters.
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Parameter Value
LSD Mode Gaussian
LSD Sigma 10
LSD Downsample 2
Affinity Neighborhood | [(1, 1, 1), (6,9, 9), (12, 27, 27)]

Supplementary Table 9: Affinity and LSD parameters.

Augmentation | Probability Parameter Value
Mirror 1.0 axes X,y,X
Transpose 1.0 axes X,y
Elastic 1.0 control_point_spacing | (10,10,10)
jitter_sigma 2,2,2)
scale_interval (0.5, 2.0)
rotate True
subsample 2

Supplementary Table 10: Enhancement network training augmentations.

Parameter Value
Model type UNet
Input feature maps 12
Layer fmap scale 5
Downsampling factors | [(1,2,2), (1, 2, 2), (2, 2, 2)]
Upsample Mode Nearest
Residual blocks No
Input shape [76, 196, 196]
Output shape [44, 104, 104]
Loss MSE
Optimizer Adam
Learning Rate 0.5e-4
Betas (0.9, 0.999)
Epsilon 1x10-8
Iterations 150000
Checkpoint 140000

Supplementary Table 11: Affinity network training parameters.

Augmentation | Probability Parameter Value
Shuffle 1.0
Mirror 1.0 axes X,y,X
Transpose 1.0 axes X,y
Elastic 0.7 control_point_spacing (10,10,10)
jitter_sigma (2,2,2)
scale_interval (0.5, 2.0)
rotate True
subsample 4
Gaussian Blur 0.3 range (0.3,1.2)
Intensity 0.8 scale in [0.9, 1.2]
shift in [-0.1, 0.2]
clip True
channel _wise True
Section Defects 0.2 prob_missing 0.1
prob_low_contrast 0.1
contrast_scale 0.5
Shape Defects 0.3 num_channels 6

Supplementary Table 12: Affinity network training augmentations.
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Parameter Value
Model type MLP
Hidden features 1024
Layers 6

Input shape [1,212,212]
Output shape [1, 212, 212]

Loss Contrastive
Optimizer Adam
Learning Rate 0.001
Betas (0.9, 0.999)
Epsilon 1x10-8
Weight Decay 0.0001
Batch Size 10
Iterations 10000
Checkpoint 10000

Supplementary Table 13: Contrastive embedding network training parameters.

Augmentation | Probability Parameter Value
Mirror 1.0 axes X,y
Transpose 1.0 axes X,y
Elastic 0.2 control_point_spacing (10,10,10)
jitter_sigma 2,2,2)
scale_interval (0.8,1.2)
rotate True
subsample 2
Intensity 0.8 scale in [0.9, 1.1]
shift in [-0.2, 0.2]
clip True

Supplementary Table 14: Contrastive embedding network training augmentations.

Parameter Value

Model type UNet
Input features 18
Layers 6

Input shape [48, 148, 148]
Output shape | [16, 24, 24]

Loss BCE
Optimizer Adam
Learning Rate 0.001
Betas (0.9, 0.999)
Epsilon 1x10-8
Weight Decay 0.0001
Batch Size 4
Iterations 100000
Checkpoint 100000

Supplementary Table 15: Binary expression network training parameters.
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Augmentation | Probability Parameter Value
Mirror 1.0 axes X,y
Transpose 1.0 axes X,y
Elastic 0.2 control_point_spacing (10,10,10)
jitter_sigma 2,2,2)
scale_interval (0.8,1.2)
rotate True
subsample 2
Intensity 0.8 scale in [0.9, 1.1]
shift in [-0.2, 0.2]
clip True

Supplementary Table 16: Binary expression network training augmentations.

Parameter Value
bias [-0.4, -0.7]
strides [(1,1,1),6909), (12, 27,27)]
randomized strides True
remove debris 64

Supplementary Table 17: Mutex watershed parameters.

Method | NVol Split (|) | NVol Merge (J) | NVol Sum () | ERL (um, 1) | NERL (1)

R-GFP 0.165 0.171 0.336 5.384 0.046
R-M 0.135 0.111 0.246 7.577 0.064
R-S 0.140 0.111 0.251 10.4 0.069
E-M 0.102 0.090 0.192 13.19 0.112
E-S 0.094 0.082 0.176 14.67 0.124

E-S+U 0.108 0.055 0.163 21.28 0.180

Supplementary Table 18: Segmentation evaluation results on largest Rol.

Method | Merges needed ({) | Splits needed (]) | Merges and splits needed (|) | Unsplittable fragments ()
R-GFP 905 561 1466 250

R-M 724 478 1202 203

R-S 661 456 1117 209

E-M 477 362 839 152

E-S 325 311 636 142
E-S+U 451 239 690 95

Supplementary Table 19: Segmentation evaluation results on second largest Rol.

Channels | FP(}) | EN({) | TP (1) | F1 (1)
3 285 80 30 0.225
6 157 34 76 0.443
9 85 18 92 0.612
12 51 23 87 0.694
15 30 8 102 0.801
18 19 8 102 0.841
Supplementary Table 20: Gap crossing evaluation results at ~75 microns.
Channels | FP (}) | EN({) | TP (1) | F1 (1)
3 7292 2779 297 0.045
6 5088 1794 1282 | 0.174
9 3304 1126 1950 | 0.293
12 2375 892 2184 | 0.355
15 1720 614 2462 | 0.432
18 1336 604 2472 | 0.464

Supplementary Table 21: Gap crossing evaluation results at ~200 microns.

S28
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