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Although metastatic disease is the leading cause of cancer-related deaths,
its tumor microenvironment remains poorly characterized due to technical
and biospecimen limitations. In this study, we assembled a multi-modal

spatial and cellular map of 67 tumor biopsies from 60 patients with
metastatic breast cancer across diverse clinicopathological features and nine
anatomic sites with detailed clinical annotations. We combined single-cell

or single-nucleus RNA sequencing for all biopsies with a panel of four spatial
expression assays (Slide-seq, MERFISH, ExSeq and CODEX) and H&E staining
of consecutive serial sections from up to 15 of these biopsies. We leveraged
the coupled measurements to provide reference points for the utility and
integration of different experimental techniques and used them to assess

variability in cell type composition and expression as well as emerging spatial
expression characteristics across clinicopathological and methodological
diversity. Finally, we assessed spatial expression and co-localization features
of macrophage populations, characterized three distinct spatial phenotypes
of epithelial-to-mesenchymal transition and identified expression programs

associated withlocal T cell infiltration versus exclusion, showcasing the
potential of clinically relevant discovery in such maps.

Although malignant cells are the defining feature of cancers, tumors
comprise malignant and non-malignant cells interacting in complex
ecosystems that shape disease progression’. Understanding these
interactions has potential for clinical translation. For example,
although tumor-infiltrating lymphocytes (TILs) are generally associ-
ated with favorable prognosis, there is substantial heterogeneity?.
In primary breast cancer (BC), TILs are predictive of response to
neoadjuvant chemotherapy and improved survival in triple-negative
breast cancer (TNBC) and human epidermal growth factor receptor
2-positive (HER2*) BC, but theirimpactin hormone receptor-positive
(HR") BCremains unclear and may depend on distinct states of malig-
nant cells or TILs>.

Recent advances in single-cell and spatial profiling enable inter-
rogation of tissue ecosystems at unprecedented resolution. However,
few studies have focused on metastatic disease, likely due to sample

limitations, including availability, size and diversity. Moreover, the
panoply of available methods with distinct design parameters poses
challenges for users in choosing methods*”. As part of the Human
Tumor Atlas Network (HTAN)®, we used single-cell and single-nucleus
RNA sequencing (sc/snRNA-seq) and four distinct spatial expression
methods (CODEX"®, targeted ExSeq’, MERFISH'* "> and Slide-seq®) to
profile tumor biopsies from a cohort of patients with metastatic breast
cancer (MBC), theleading cause of cancer-related deathamong women
worldwide", toward informing practical application of these methods
and refining understanding of MBC.

Results

Single-cell and spatial expression profiling of clinical variables
To compare profiling methods and characterize cellular expression
profiles of MBC biopsies, we created acomprehensive dataset covering
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relevant clinical variables and diverse profiling methods (Fig. 1a), along
with an analysis framework to integrate the resulting data, by harmo-
nizing features, data formats, positional resolution, coordinates and
spatial registration (Fig. 1b and Methods), and we analyzed key fea-
tures, including cell composition, gene expression programs, immune
phenotypes and co-localization (Fig. 1b). We profiled 67 biopsies from
60 patients with MBC (30: scRNA-seq, 37: snRNA-seq) across receptor
subtypes (44: HR"/HER2", 3: HR"/HER2", 3: HR"/HER2",16: HR /HER2")
and frequent sites of disease (37: liver, 9: axilla, 7: breast, 5: bone, 3:
chestwall, 3:neck, 1: brain, 1: lung, 1: skin; breast biopsies were collected
fromthe primary site after MBC diagnosis) (Fig. 1a,c and Extended Data
Fig.1a).For15biopsies, we collected matching spatial data from serial
sections of asecond biopsy core fromthe samelesion/procedure, using
up to four spatial methods and hematoxylin and eosin (H&E) staining
(Fig. 1c, Extended Data Fig.1a,b and Supplementary Tables1and 2).

The spatial techniques represent a range of design parameters
(Extended Data Fig. 1b). Slide-seq profiles the whole transcriptome
with near-cellular capture resolution using 10-umbeads (located inde-
pendently of sample structure). CODEX, MERFISH and ExSeq target
selected panels of proteins (CODEX) or RNAs (MERFISH and ExSeq)
using imaging at single-cell, subcellular or super-resolution, respec-
tively. Although ExSeq canbe targeted or untargeted and MERFISH can
potentially target up to thousands of RNAs, we designed a dedicated
panel of 297 genes for MERFISH and ExSeq based on sc/snRNA-seq data
and prior knowledge (Supplementary Table 3 and Methods).

We selected biopsies for tumor content and tissue quality and to
cover arange of combinations of site and receptor status. We obtained
high-quality Slide-seqand CODEX datafrom 15 of 15 and 13 of 13 biop-
sies, respectively, and MERFISH and ExSeq data from nine of 14 each
(Fig. 1c and Extended Data Fig. 1b). The expert laboratories set sam-
ple quality control (QC) criteria individually (Methods). The com-
paratively low success rate of MERFISH is explained by its stringent
inclusion criterion (Pearson’s r > 0.6 between MERFISH and matched
sc/snRNA-seq pseudobulk profiles); for ExSeq, it was attributed to
technical challenges (including tissue preservation, RNA quality and
autofluorescence).

We analyzed single-molecule-resolution MERFISH and ExSeq
dataintwo ways: aggregating signal per cell after cell segmentation or
aggregating signal in10 x 10-um spatial bins. We analyzed Slide-seq by
its native 10-um beads and CODEX at the level of segmented cells
(Fig. 1b,c). Analyzing single-molecule data by 10 x 10-um bins gener-
ated coarser datainsilicobut avoided segmentation biases and allowed
comparison to Slide-seq data while maintaining other method-specific
properties (for example, detection sensitivity).

As expected, the methods varied in the captured number of
observations (cells/nuclei/beads/bins) and molecular features (genes/
proteins) per observation (Fig. 1c, Extended Data Fig. 2a,b and Sup-
plementary Tables 1 and 2). There was a higher number of observa-
tions and features per observation using snRNA-seq than scRNA-seq,
whereas Slide-seq had a similar number of observations but many
fewer features per observation. By definition, the number of features
detected by approaches with predefined panels (MERFISH, ExSeq
and CODEX) was lower per observation (Fig. 1c and Extended Data
Fig. 2b). Between CODEX and MERFISH, which both captured the

entire tissue section, CODEX yielded more observations per section
than the segmented version of MERFISH but fewer than the binned
version (Fig. 1c and Extended Data Fig. 2b). ExSeq, which captured
only asmallfield of view (FOV) (<1 mm?), yielded the lowest number of
observations per sectioninits segmented version, and this only slightly
increased with binning (Fig. 1cand Extended Data Fig. 2b). Pseudobulk
sample-wise expression profiles were correlated between all methods
except ExSeq (Spearman p = 0.41 (CODEX versus scRNA-seq) to 0.75
(Slide-seq versus scRNA-seq), p = —0.1to 0.086 (ExSeq)) (Fig. 1d). As
expected, segmented and binned versions of MERFISH and ExSeq
showed near-perfect correlations of 0.97 and 1, respectively (Fig. 1d).

Clinical features are associated with cell type composition

We annotated cell types in sc/snRNA-seq using a semi-automated
approach (Methods and Fig. 2a), combined with examination of the
top five marker genes for each cell type (Extended Data Fig. 3a,b).
Although most celltypes were identified in snRNA-seqand scRNA-seq,
some were detected only in snRNA-seq (adipocytes, neurons, some
endothelial subsets, stellate cells and smooth and skeletal muscle cells)
or scRNA-seq (neutrophils, mast cells, erythrocytes and keratinocytes)
(Fig. 2a and Extended Data Fig. 3a,c), largely consistent with previous
reports™'°, Several cell subtype signatures from scRNA-seq of primary
BC" scored highly in the expected cell types (Extended Data Fig. 3d).
Asexpected, most of the scRNA-seq-derived signatures scored higher
in scRNA-seq than in snRNA-seq.

Although most malignant cells displayed epithelial-like expression
profiles, in afew samples we observed chondroid (sample 586-8599),
stem-like (sample 917-4531) or neuronal (samples 944-7479 and
890-7299) expression profiles (Extended Data Fig. 3a-c). Interest-
ingly, these were associated with unique clinicopathologic character-
istics. The sample with stem-like expression profiles came from the
patient withthe cohort’s shortest overall survival from initial diagnosis
(<2 years), despite presenting with stage I disease and receiving appro-
priate treatment. The sample with achondroid expression profile was
the only biopsy with metaplastic histology, and the clinical pathology
independently described chondroid differentiation. Metaplastic BC
is arare and heterogenous subtype associated with poor prognosis
overall®and poor response to cytotoxic chemotherapy'>*° but in which
preliminary data suggest the possibility of responsiveness to immu-
notherapy with frequent PD-L1 expression” and a subset of patients
with exceptional responses to combined checkpoint blockade on a
phase 2 trial”. Although anecdotal, these vignettes demonstrate that
expression features recovered by sc/snRNA-seq can be consistent with
rare clinicopathologic features and may warrant further investigation.

Biopsy composition by four major compartments (malignant,
stromal, myeloid and lymphoid) varied across samples but, overall,
scRNA-seq captured a higher fraction ofimmune cells, and snRNA-seq
had greater representation of malignant and stromal cells (Fig. 2b),
whichare prone to death during dissociation®. To investigate sources
of composition differences, we analyzed the biopsies from seven
patients with two biopsies each. In one, two cores from the same pro-
cedure were profiled with snRNA-seq and scRNA-seq. These showed
the expected bias toward enriched immune cells in scRNA-seq and
malignant and stromal cells in snRNA-seq (Fig. 2¢). In three patients,

Fig. 1| Profiling of MBC biopsies using scRNA-seq, snRNA-seq and four
spatial expression methods. a, Schematic illustrating sample acquisition and
datageneration. Core biopsies dedicated to research were embedded in OCT
or subjected to scRNA-seq. Per biopsy, one fresh or frozen core was used for
scRNA-seq or snRNA-seq, respectively. For matching spatial profiling, asecond,
OCT-embedded core from the same biopsy procedure was cut in two sets of
five 10-um serial sections for processing with four spatial expression methods
(Slide-seq, CODEX, MERFISH and ExSeq) and H&E staining. b, Schematic
illustrating the properties of the different produced data types, the data
processing framework and the performed analysis. ¢, Overview statistics of the

produced scRNA-seq, snRNA-seq and spatial expression data as well as exemplary
H&E images for the core biopsies used in spatial profiling. Biopsy site and
receptor status for each of the profiled cores isindicated as well as the number of
profiled observations (cells, beads or bins) and the number of detected features
(RNA species or proteins). The number of replicates for each spatial expression
method and biopsy is indicated in the respective blobs. HR, hormone receptor
(ESR1and PGR). Biopsies from the same patient are indicated with bold font

and connected throughlines. d, Clustered heatmap depicting the pair-wise
Spearman correlation of methods based on sample-wise pseudobulk expression.
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the paired biopsies were obtained from the same lesion at different  frequencies (two decrease, one increase). In contrast, in each of the
timepoints (70-220 days apart), and each pair showed relatively simi-  three patientsin whom the paired biopsies were from different lesions
lar compositions overall but with changes in T cell and macrophage or sites, we observed more substantial differences, largely driven by
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Fig. 2| Cell type composition and expression variance in snRNA-seq and
scRNA-seq data. a, UMAP representation of snRNA-seq and scRNA-seq data,
colored by cell type. b, Stacked bar plots showing the cellular compartment
composition for each sample in the snRNA-seq and scRNA-seq data. Samples
that come from the same patient are highlighted in bold. ¢, Stacked bar plots
showing the cell type composition for pairs of samples from the same patient.
sc, scCRNA-seq; sn, snRNA-seq. d, Violin and box plots representing the percent
variancein cell type frequency explained by the indicated variable for each of
the 26 annotated cell types (e). n = 26 cell types; tx, treatment. e, Stacked bar
plots showing the percent variance in cell type frequency explained by the
indicated variables for each of the 26 annotated cell types. f, Box plots with
overlaid data points (=samples), representing the normalized macrophage
frequency (Pearson’s contingency ratio) stratified by different properties
ofthe two variables that explain variance in macrophage frequency (e). The
significance of differences in ‘one against all others’ comparisons (two-sided
Wilcoxon test, Benjamini-Hochberg correction) isindicated. nindicates the
number of biopsy samples. g, Dot plots depicting the expression level (mean

expression) and frequency (fraction of expressing cells) of malignant marker
genes as well as disease-relevant BC biomarkers across malignant cells, grouped
by =profiling method and receptor status. h, Clustered heatmap of pair-wise
correlations between pairs of pseudobulk expression profiles representing

each sample’s malignant cell population, corrected for profiling method using
ComBat (Methods). Inset: box plots overlaid with individual data points (=sample
combinations as in the heatmap) showing the pair-wise Pearson correlation
across samples within PAMS50 groups. The significance of differences between
the basal and all other groups (two-sided Wilcoxon test) is indicated. i, Violin

and box plots representing for all genes the percent variance in normalized
expression levels across sample-wise and compartment-wise pseudobulk
profiles, explained by the indicated variable. The top 3-5 genes are indicated.
n=26,539 genes.j, Stacked bar plots showing the percent variance in normalized
expression levels across sample- and compartment-wise pseudobulk profiles,
explained by the indicated variables from i for the three receptor status defining
genes, ESR1, PGR and ERBB2.

hepatocytes and fibroblasts. Irrespective of method, biological factors,
such as individual, time, lesion and site, can have substantial effects
oncomposition.

We examined the impact of scRNA-seq (four biopsies) versus
snRNA-seq (one biopsy) in bone biopsies, a clinically relevant meta-
static site thatyields lower content biopsies (Extended DataFig. 3e,f).
Although scRNA-seq captured malignant cells in only two of four,
snRNA-seq captured the malignant compartment well but yielded
fewerimmune cells (Extended Data Fig. 3e), suggesting that snRNA-seq
might be more suitable when prioritizing malignant cell profiling,
and scRNA-seq might be more suitable when prioritizing associated
immune cells. Notably, expression of genes previously reported to
be implicated in bone metastasis**® was detected across all biopsy
sites (not bone specific) and was rather cell type specific (Extended
Data Fig. 3f), with two exceptions (SPPI and CCN2), which were more
highly expressed in axilla, bone and breast macrophages and fibro-
blasts, respectively (Extended Data Fig. 3f). We also examined the
ability of snRNA-seq to profile brain metastases, a clinically relevant
site underrepresented in genomic datasets. snRNA-seq captured
both malignant cells and tumor microenvironment well, anecdotally
supporting this approach (Extended Data Fig. 3e).

Next, we systematically quantified the contributions of biological,
clinical and technical variables to variability in cell type composi-
tion (Methods). Patient ID, profiling method and site explained the
most variability overall (Fig. 2d), but other variables had considerable
effects on variation in particular cell types (Fig. 2e). Approximately
20% of the variability in chondrocytes was explained by histology,
whereas variability in macrophages was explained by treatment class
(-50%) and receptor status (-10%) (Fig. 2e). Higher macrophage abun-
dance wasassociated with recentimmunotherapy and with HR/HER2™
disease (Fig. 2f).

Clinical features explain variation in expression profiles

Although non-malignant cells clearly grouped by cell type across
biopsies, malignant cells grouped first by patient (Fig. 2a) as previously
described in scRNA-seq of solid tumors'"?, consistent with diverse
patterns of inferred copy number aberrations (CNAs) between
patients (Extended DataFig. 4a,b). Conversely, biopsies fromthe same

patient had congruent inferred CNAs across lesions (Extended Data
Fig.4c), profiling method (Extended Data Fig. 4d) and time (Extended
Data Fig. 4e,f). Two biopsies taken 220 days apart (patient 862), with
intervening therapy, retained the same subclonal structure, albeit with
varying proportions (Extended Data Fig. 4e).

As expected, inter-patient variability in the expression of ESRI,
PGR and ERBB2 aligned well with clinical receptor status. Nevertheless,
among estrogen receptor-positive (ER*) samples, ESRI expression was
captured morerobustly in snRNA-seq (Fig. 2g). Inter-patient variability
inestablished epithelial BC marker genes (EPCAM, KRT8, KRT18, KRT19
and TRPSI) was minimally impacted by receptor status but notably by
profiling method (Fig. 2g).

Atthelevel of expression programs, clustering malignant profiles
by meangene set enrichment analysis (GSEA) hallmark signature scores
in malignant cells yielded clear grouping in snRNA-seq (for example,
interferon response, estrogen response and MYC/G2M checkpoint
groups) but less soinscRNA-seq, with few exceptions (forexample, 414
and 586 scoring highly for epithelial-to-mesenchymal transition (EMT)
and angiogenesis, respectively) (Extended Data Fig. 5). Clustering of 40
cross-sample malignant expression programs learned withintegrative
non-negative matrix factorization (iNMF)** separately from snRNA-seq
and scRNA-seq (Methods) revealed six clusters, five of which included
programs derived from both methods. Three of these had highly cor-
related programs and congruent biological processes: two associated
with cell cycle and the third with EMT (Extended Data Fig. 6). To further
compare malignant cell states, we clustered pseudobulk profiles gener-
ated from the malignant cells of each biopsy. This revealed two major
clusters: one predominantly comprised HR* and LumA/B tumors and
was enriched in liver biopsies (P=0.0185, two-sided Fisher’s exact
test), and the other predominantly comprised HR/HER2™ biopsies,
which further separated into basal-like and HER2-like subsets and was
enriched in axilla biopsies (P=4.92 x 107, two-sided Fisher’s exact
test) (Fig. 2h). Basal-like biopsies formed a highly correlated exclu-
sive subcluster (Fig. 2h), suggesting higher expression stability of the
basal subtype, consistent with previous reports® . Notably, biopsies
fromthe same patient grouped together, evenin two cases where they
changed from HR" or HER2* to HR"//HER2", confirming the relative
stability and patient specificity of malignant cell-intrinsic expression

Fig. 3| Spatial expression profiling of MBC biopsies. a, Overview of all spatial
expression datasets covering all samples and methods included in this study.

For each successful sample-method combination, a spatial scatter plot is shown
where each observation (cell, bead and bin) is displayed and colored by its OT
annotated cell type. Data for the same biopsy are spatially aligned and depicted
atthe same scale. A more detailed view of individual samples for which dataare
available fromall spatial profiling methods is provided in Supplementary Figs.1-5.
b, Schematicillustrating the comparison by Pearson correlation of high-resolution

cell type composition within spatially corresponding 100 x 100-um bins across
methods, within biopsies. An example for one bin (white star) within one biopsy
isshown. ¢, Box plots displaying the correlations between cell type compositions
within spatially corresponding 100 x 100-pm bins as measured by the indicated
pairs of methods, displayed individually per biopsy. Correlations within the same
method were calculated when technical replicates were available. The mean
Pearson correlation for each pair of methods is indicated by the color-scaled
inset. nindicates the number of 100 x 100-um bins.

Nature Medicine | Volume 30 | November 2024 | 3236-3249

3240


http://www.nature.com/naturemedicine

Article https://doi.org/10.1038/s41591-024-03215-z

a 944 895-7359 880-7179 878-7149 812- 514-6760 982- | 997- | 917- | 853- | 313- [ 330- | 783-4081 | 364-1321 213-6752
7479 8239 7629 | 7789 | 4531 | 4381 | 932 | 1082
o
: : 1N
)
3
7
— -— - — - - - - — — —
1mm Tmm 1mm 1mm Tmm| Tmm |[1mm Tmm (Tmm |1mm 1mm Tmm [1Tmm
T
(7]
o
o
w
=
— -— — - - MBC
Tmm Tmm Tmm Tmm [(Tmm B MBC_stem-like
= < B MBC_neuronal
g ;Te’fi Endothelial
T B Endothelial_sinusoidal
% s B Endothelial_angiogenic
fii] 4 B Endothelial_vascular
= Fibroblast
B Smooth muscle_vascular
B Stellate
— — — — - - -
1mm Tmm | 1Tmm 1mm Tmm 1mm [1mm B Skeletal muscle
Hepatocyte
B Neuron
g2 Macrophage
g ={ B Monocyte
2 e d B Mast
B B_plasma
s
T
— — - - -— — — B NK
Tmm 1mm 1mm Tmm Tmm Tmm [1Tmm 1mm 1mm
<
= . '
3
<
w
— — — - - - — —
1mm 1mm Tmm Tmm Tmm (1Tmm 1mm 1mm
P :
<
g ‘}
o ;
) 2
4
— — - - - - — — — =
1mm Tmm  Tmm 1mm Tmm 1Tmm 1mm 1mm Tmm 1Tmm
b c CODEX samples
1045 1 =]
Tissue CODEX MERFISH MEE.F ';SH Slide-seq  ExSeq E(’l‘]s.e;’ T ® 213-6752  ® 783-4081 895-7359
in in 051 « H m ® 313-93; 812-8239 917-4531
c H H x ® 330-1082 ® 853-4381 944-7479
o 0 [ ® 364-1321 ©® 878-7149 982-7629
i O N L E= 5|8 ® 514-6760  ® 880-7179 997-7789
I \ I \[[1 i | & -0.51 33 .
g- 10 =888 & ExSeq Mean Pearson correlation
u B B 1.0 1 S —
HFEEH B FREH PR PR 8 CTT | o
g o5 LT @ 6O @O O ®
Q | 3 o 22 00 NN 0
= > j 1 Qa Q707 070" 0" Q7 O
LV Y Y A AV g 0 1 q =
oorn I40.5 ©Rons 2 [oX ~ .
(010) 1 5 -10-LZ%EeE 8 e ExSeq (bin) MERFISH
1.0 4 — - =
Example [ os_o % _5 0 H *’HT ° ? & ? :
100 x 100 pm | 959 Lot = 051 i P i =
binEl(28) | T ° ol T:L P - el
= i L T 1 : [ o |2
MBC S 05" g s 3 g = 32 |P
T 2 2eonz i N
Fibroblast g 40L% gegs LA g 8 E10.75 s 5 8 m MERFISH (bin)
Macrophage 2] 1'0 4 - -
g 07+ 7 all I g7 T o oAl =
Correlations of cell type fractions o 05 i 1] ! ) | | I =
for each method combination 3 ol! ik . ! : %]
] i i | i : i g3 o | T
L -051 "Iz 8 3 2 2 LI > gz |
S Summarize bin-wise S ol% B3P o B[z o SOEH|[: g i 2 Slide-seq
Q correlations as £ CTT P TR - = — B
< = T H i | i ! ] | iH
S box plot per S 1T : ! 0. | Ik | T | i QT:B! @
= method combination ) s ‘ ik i ; ‘:_1 S 2
T H i | ' 1 ;
28 2 2 & h ¢
steee  s[HA|| sEees 3 [OH '

Nature Medicine | Volume 30 | November 2024 | 3236-3249 3241


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-03215-z

a sc/snRNA-seq Slide-seq MERFISH MERFISH (bin) ExSeq (bin)
o
o
>
Z
°
(@]
<
o
IS
[
g
K3
=
c
2
=]
©
o
<4
7]
2
[
=2
5]
c
[}
-
]
-
Cell type Congruence of Leiden clustering with
I MBC Endothelial Fibroblast Hepatocyte M B_plasma Patient/sample Cell type
B MBC_stem-like B Endothelial_sinusoidal B Smooth muscle_vascular B Neuron EB ¥ 1
B MBC_neuronal B Endothelial_angiogenic B Stellate Macrophage T sCRNA-seq L] [N i
B Endothelial_vascular B Skeletal muscle B Monocyte B NK snRNA-seq i ! ] [] i L]
B Mast Slide-seq { # 'y h ® All cells
Patient/sample MERFISH L [ 1 b .
MERFISH (bin) o oy ©® Non-malignant
N 944-7479 W 812-8239 917-4531 W 783-4081 i ¥ X
B 895-7359 W 514-6760 M 853-4381 B 364-1321 CODEX e ih © Malignant
N 880-7179 W 982-7629 MW 313-932 W 213-6752 ExSeq Wy
B 878-7149 W 997-7789 W 330-1082 ExSeq (bin) H L]
0 05 10 0 05 1.0
Adjusted Rand index
(] Slide-seq MERFISH MERFISH (bin) ExSeq ExSeq (bin) CODEX
514-6760: Short-range accumulations
= 15
é's 1.0
1o\ ‘
2ls -
2L o /—’ T SR——— )CQ&'X?.VQM
8 -os :
0 100 200 300 400 500 O 100 200 300 400 500 O 100 200 300 400 500 O 100 200 300 400 500 O 100 200 300 400 500 O 100 200 300 400 500
Distance Distance Distance Distance Distance Distance
917-4531: Long-range accumulations
g, 2
HE
ela 1
5 © ;_q, — ?""Q&?‘ e %w—
L
O 100 200 300 400 500 O 100 200 300 400 500 O 100 200 300 400 500 O 100 200 300 400 500 O 100 200 300 400 500 O 100 200 300 400 500
Distance Distance Distance Distance Distance Distance
313-932: Intermixing
= 1.0
Sls
ZE 05
i NS ST [ P \
al o VTS T R Ty | | o —— = = /W—-m—__—f_,
jo
£ o5
O 100 200 300 400 500 O 100 200 300 400 500 O 100 200 300 400 500 O 100 200 300 400 500 O 100 200 300 400 500 100 200 300 400 500
Distance Distance Distance Distance Distance Distance
d Macrophage co-localization with... e Macrophage co-localization with f 3&%%2153'
NK 8 o o O 8 o < Malignant cells Macrophages
T4 o o O o | 917-4531 =
B1{O o0 o0 0 Q O |3 1 gg;:%gg Qo)o R (%) 9 o o OOC.) 92% CD163" 5y
Bplasma{ O ©O O ° [e] @ 944-7479 8 . S o o . (2}
Mast{ © O o O o s o 9174531 |© ® ® D o 6006 o CD163 expressior o
Monocyte | O © O O O | g |4 895-7359 ) o o o . =
Macrophage - o o O O o | =& 880-71791 0 0 O « o OO o .0 @ Low —_HE [
Neuron 4 o 3 -2 878-7149 1 O o s« 0|l O O o o 500 pm o
Hepatocyte | 0 0 o O 0 ¢ 853-4381{ o oo oflo S o 0 @
Skeletal muscle { O o 8 -3 812-8239 o o O o o o O e T (1 5
Stellate 1 © o o @ < Q 783-4081 8 ) o0|/lo o o O e
Smoothmusclevasc. 1 O 0 O O O O S @ 100 514-67601 © © 0o © o o O o o 0 0 & @
Fibroblast 1 O O O O QO O | § g 500 364-13211 Q) O © Q o o o 2
Endothelialvasc. { © O o o O O | ¢ 330-1082{ © o o (@) 8 o o o [
Endothelial_angio. { QO o o | S @ 300 313-932{ e o o ¢ O 0|0 O 0 0o O 0 %3
Endothelial_sinus. 8 e - O < 0O | &§ 213-6752 { O ol o [e) o
Endothelial o o o 8 0o Té @ 200 < J N . NN 2
1 o . ) o o . ) o
Vecteniel 8 0 0 § % 9% @ s FEGE ST TS 2
10 o o o 0 o]° SR PO S PP =
D PN SV N < \\\‘& © \“& by
000 ‘J{O 0\‘0 ‘83\ Q‘\‘o 6,2;5 Malignant subtypes Co-localization range Co-localization strength T
& g ® MBC 7]
P ~ & X © MBC neuronal 9000 %
& ® MBC stem-like =
500400300200100 -1 0 1 2 3

Nature Medicine | Volume 30 | November 2024 | 3236-3249

3242


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-03215-z

Fig. 4 | Recovering spatial and molecular signals across spatial expression
profiling methods. a, UMAPs of all data across biopsies based on their
expression profiles, generated with the indicated methods, with observations
colored by TACCO-OT annotated cell type, patient/sample and Leiden clusters
(resolution, 0.8). b, Error bar plot with mean + s.d. showing the ARI quantifying
cluster cohesion between Leiden clusters and patient/sample or cell type
annotation across 10 bootstrappingiterations for each indicated method, asin
a.ARIrangesbetween-1and1, wherelindicates perfect agreement, O indicates
arandom agreement and -1indicates completely different groupings.n =10
bootstrappingiterations. ¢, Line plots depicting co-localization strength (y axis)
of macrophages with all other measured cell types in dependence of distance
(xaxis), derived from the indicated data types in the indicated three biopsies,

selected to represent three spatial co-localization phenotypes (short-range
accumulation, long-range accumulations and intermixing). The distance is
measuredin pm. d, Dot plot displaying aggregated (mean across samples)
co-localization range (size) and strength (color) of macrophages with all other
cell types per method. Co-localization strength values lower than O indicate
exclusion/repulsion. e, Dot plot displaying co-localization range (size) and
strength (color) of macrophages with other macrophages or malignant cells for
allsamples and methods. Co-localization strength values lower than O indicate
exclusion/repulsion. f, Spatial scatter plot of macrophages overlaid onto H&E
images showing the expression levels of CD163 in the depicted macrophages, for
the three example biopsies representing the three co-occurrence casesasinc,
based on cell-segmented MERFISH data.

profiles through MBC disease progression, possibly due to the strong
effect of CNAs on expression®**,

To dissect inter-patient expression variance in each compart-
ment, we estimated, for each gene, the variability explained by clinical/
technical covariates (Methods and Fig. 2i). These variables explained
alarge fraction of the inter-patient variance in intrinsic expression in
the stromal (median, ~65%) and malignant (median, ~-85%) compart-
ments but much less in the immune compartments (median, ~30%).
Consistent with our other observations, patient ID explained the most
variance in the malignant compartment but played a negligible rolein
theimmune compartments. Conversely, histology explained approxi-
mately 10% variance in the myeloid compartment but was negligible
forall others. Across all compartments, profiling method explained a
median of approximately 20-25% variance, consistent with previous
reports™'® (Fig. 2i and Extended Data Fig. 5). ComBat*® adequately
corrected such ‘platform effects’ at the pseudobulk level, revealing
relevant biology across methods (Fig. 2h), and Harmony* (but not
BBKNN*) produced an aligned embedding at the single-cell level that
appropriately grouped non-malignant cells across patients/methods
while maintaining biological variability in the malignant compartment
(Extended DataFig. 7).

Although receptor status explained a sizeable fraction of the
expression variation of PGR (-56%), ESR1 (~44%) and ERBB2 (~68%)
in the malignant compartment (Fig. 2j), it only explained substantial
variance (>44%) in 34 other genes (Supplementary Table 4), some of
which were reassuringly associated with one of the receptors. These
included STARD3, GRB7, MIENI and LASPI, which are adjacent to
ERBB2 on 17q12 and subject to co-amplification, and MTA2, whose
expression is associated with ERa expression®. Others, including
TMSB4X and BECN1, were previously associated with metastatic pro-
gression but not with BC receptor expression*®*?, suggesting the
potential to uncover novel associations.

These results show strong inter-patient variability of malignant
expression profiles, with patient-specific profiles maintained during
MBC progression throughtime, site and even changesinreceptor status.
In contrast, the expression profiles in the immune compartments

showed only low levels of explainable variance by these characteris-
tics. Additionally, although profiling methods have non-negligible
effects on all compartments, these can be mostly addressed by data
integration methods before comparing cell or gene profiles.

Comparison of spatial expression profiling methods

Our experimental design enabled profiling serial sections of the same
biopsy withup to four different methods (Fig. 1a). We used acommon
observation x features format for analysis, where observations cor-
responded to segmented cells (MERFISH, ExSeq and CODEX), beads
(Slide-seq) or 10 x 10-pum bins (MERFISH (bin) and ExSeq (bin)), and
features corresponded to RNA or protein sets denoted as the official
genealiasforallmethods (Fig.1b and Methods). We scaled to a1-um-per-
pixel positional resolution (Methods), registered to a common
coordinate system, and applied quality filtering in a method-specific
manner (Fig. 1b and Methods). We annotated cell types by label trans-
fer from the matching sc/snRNA-seq using RCTD** and TACCO-OT**
(Methods). TACCO-OT was selected for downstream analyses as it
was better able to handle both count and non-count data (Extended
DataFig. 8a and Supplementary Figs.1-5a,b).

Spatial cell type maps appeared broadly congruent across serial
sections profiled by different methods (Fig. 3a and Supplementary
Figs. 1-5) but ranged in their FOV from the whole biopsy (MERFISH
and CODEX) to a circular area with an approximately 3-mm diameter
(Slide-seq) to approximately 1 mm? (ExSeq). Binned MERFISH
and ExSeq patterns matched the segmented ones but were more
pronounced and less sparse, likely due to a combination of signal
included in binning but lost due to non-assignment in segmentation
as well as signal filling of cell-proximal extracellular space in binning.
To assess the agreement between methods inlocal cell type organiza-
tion, we calculated pair-wise correlations between methods based
on cell type composition in aligned 100 x 100-pm bins (Fig. 3b,c
and Extended Data Fig. 8b). Correlations were high across method
combinations and samples (median Pearson’s r= 0.9), except for
three samples (330, 364 and 783) with no correlation (median, r = 0)
amongany of the three methods (CODEX, ExSeq and Slide-seq) (Fig.3c).

Fig. 5| Characterizing macrophage and malignant expression phenotypes
across spatial expression profiling methods. a, UMAPs of all observations
confidently annotated as macrophages across biopsies based on their
expression profiles, colored by log-normalized expression of CD163, log-
normalized expression of HLA-DRA or Leiden clusters. b, Dot plot depicting
the scaled expression (by gene, across clusters) and fraction of expressing cells
of macrophage marker and function genes as well as marker genes for other
celltypes and differentially expressed genes between clusters as ina for cell-
segmented MERFISH data. Side bar plots indicate the number of cells in each
cluster. ¢, Clustered heatmap depicting the pair-wise Spearman correlation of
methods based on sample-wise pseudobulk expression of macrophage marker
and function genes asinb. d, UMAPs of all observations annotated as malignant
cellsacross biopsies based on their expression profiles, colored by their EMT
score expression (capped at -1 and 1 for comparability) or patient/sample.

e, Spatial scatter plots of the cell-segmented MERFISH data where each cell

is colored by its EMT score expression (capped at -1 and 1 for comparability).
Samples are grouped into three spatial EMT phenotypes—EMT-high, EMT-low
and EMT-patched—based on the distribution of the EMT signal across space.

f, Dot plot depicting the differential expression significance (two-sided Welch’s
t-test, Benjamini-Hochberg correction) of genes overexpressed in one of the
three spatial EMT phenotypes (EMT-high, EMT-low and EMT-patched), as
detected in the cell-segmented MERFISH data (e). g, Scatter plot relating the log
fold changes of gene expression between EMT-high and EMT-patched samples
asdetected in cell-segmented MERFISH to the corresponding expression
changes detected in the other indicated methods. The significance of differential
expression was calculated by a two-sided Welch'’s t-test and Benjamini-Hochberg
correction. The Spearman correlationis indicated. Error bands indicate standard
error. h, Clustered heatmap depicting the pair-wise Spearman correlation of
methods based on gene-wise log fold changes between EMT-high and EMT-
patched samples, defined asin e and related to g. FC, fold change; man, manual.

Nature Medicine | Volume 30 | November 2024 | 3236-3249

3243


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-03215-z

-2

Segmented MERFISH
clusters

log,FC(high/patched)
(indicated method

Macrophages (Harmony-aligned UMAP)

sc/snRNA-seq scRNA-seq Slide-seq

MERFISH (bin)

CODEX

snRNA-seq MERFISH
v X,

ExSeq (bin)

onN B O ®

4 : 1 8 o 6 6

[32] 6 6

3 3 3 A

o | 2 2 4 4

o 2
1 1 2 2
0 0 o 0 o
8 8 8

= 6 6 6 6 6

o

D 4

< 4 4 4 4

)

I 2 2 2 2 2
0 0 0 [} [

2

53

8

>

=

o ,z ; 2

c e &

S <

S

] &

—

Leidenclusters MO W1 W2 W3 W4 W5 W6 N7 "8 WO W10 W1 W12 W13 W14 W15

Macrophage marker genes Macrophage function genes  Other cell type markers  Differentially expressed genes € Spearman correlation of @é’ @@ . 10
sample-wise mean M® < %e}) 05
01 . : N marker & function & F &> -
% KN expression &° Q %&\6@ & o
4 Qe
5 -
6 -0
7 @
8 -0
9 - e
10 Fraction of cells
1 ingroup (9
12 o000
:‘IZ 1030507090
15 erosaon
_—
0 05 10
sc/snRNA-seq Slide-seq MERFISH MERFISH (bin) ExSeq ExSeq (bin)
= -‘{ 1.0
<
> [} o 05
=) s} & 3
B 8 '2 o
—
c Z || -05
S z
= -10
c
3
2
2 g §944-7479
2 2 < 880-7179
o % o ¥ u 878-7149
2 & B u 812-8239
c 2 ‘ ‘  514-6760
S s|® @ X 1 982-7629
= 2 % * B 917-4531
3
g : 853-4381
= ‘ 313-932
---EMT-patched---
cDC20 { o (e} e
853-4381 917-4531 CTSL{ e o e @ Enriched
812-8239 SDC1 4 o o ]
2 B 944-74791-3 O Depleted
982-7629 1-2 878-7149 BGN { O ° (]
1 o -log,, FDR
880-7179 514-6760 RB1 @ O 9o
ZEB1 4 (] (©] (@) e 1
CCND1 { o e O
NF1 4 © ] o o 2
cD3G 1 © ) o ®:
AGR2 {1 @ ° (0] o
EMT score i
SIAH2 (*] o (?

-1.0 0
—
Tmm

1.0

sc/snRNA-seq Slide-seq MERFISH (bin) MERFISH (man) ExSeq ExSeq (bin) CODEX

T T T T T T T

rs=0.4)4 rs=0.9)9 rs=0.928 rs=1 rs=0.026 rs=0.d1 rs=0.102

y , . ; '

' | ; ! \
4 g P sl FA | o =

h 1 ' | i ] '

| | ' | | I I

i | ' | | i |

i | ' | | \ |

| | ' | | | I

| | ' | ! ! |

| | ' | | | |

\ | ' | | | I

h \ ! \ \ \ \
630 3 66303 6-6-30366-30123266-30366-30236-6-303 6

log,FC(high/patched) Diverging © P<0.05 © P>0.05
(MERFISH)

Low Patched High
EMT phenotype

Spearman correlation
of gene-wise
log,FC (high/patched)

Nature Medicine | Volume 30 | November 2024 | 3236-3249

3244


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-03215-z

These three samples did not pass MERFISH QCs, suggesting that more
stringent pass/fail QC may be appropriate for other methods. Notably,
cell type composition from spatial data also correlated well with
sc/snRNA-seq across all methods (Pearson’s r = 0.9) and slightly more
highly with snRNA-seq than scRNA-seq (Extended Data Fig. 8c). This
weakly supports snRNA-seq’s capacity to more faithfully represent
cell type composition.

To assess each method’s cell or bin/bead-level profiles across sam-
ples, for each method (separately), we clustered all profiles, created a
low-dimensional embedding for visualization and quantified the asso-
ciation of clusters with patient or cell type using the adjusted Rand
index (ARI) (Fig. 4a,b and Supplementary Figs. 1d, 2d, 3d, 4d and 5d).
sc/snRNA-seq and cell-segmented MERFISH grouped primarily by cell
type and patient for normal and malignant cells, respectively (Fig.4a,b).
Conversely, binned orbead-based methods, where profilesareacompos-
iteacross cells, reflected mostly amalignant cell, patient-specific signal,
withless separation between clusters, and lower cell-type-drivensepara-
tion of non-malignant cells, suggesting adominating signal from preva-
lent malignant cells. CODEX clusters were also indistinct and mostly
driven by patient, not cell type, possibly related to the antibody panel.

To assess each method’s capacity to capture local organization, we
quantified, for each method, the co-localization of each cell type (as an
‘anchor cell’) versus all other cell types within 50 pm, showing consist-
ency across methods (Supplementary Figs. 1c, 2¢, 3¢, 4c and 5¢). To
assess abroader distance range of 0-500 pm and systematically com-
pare methods, we focused on macrophages, as they are presentin most
samples and are captured well by all methods. In general, Slide-seq,
MERFISH and CODEX all captured short-range and long-range accumu-
lations and intermixing of macrophages and other cell types similarly
(Fig.4c—e).ExSeqwas often the weakest at capturing accumulation pat-
terns (Fig. 4c). Notably, across all biopsies, macrophages preferentially
co-localized with other macrophages and weakly avoided malignant
cells (Fig. 4e). Visual inspection of macrophage distributions relative
to the matching H&E images showed a distinct long-range pattern with
macrophage islands and more homogenous short-range and intermix-
ing phenotypes (Fig. 4€).

Overall, there was relatively high congruence among meth-
ods, but MERFISH showed several benefits: a large profiling area,
clear spatial patterns and clear, sc/snRNA-seq-like clustering of cell
profiles. As our MERFISH experiments only measure the expression
of =300 genes, we further assessed its ability to detect cell subsets
without matching sc/snRNA-seq data. We compared clustering-based
cell annotations obtained from segmented MERFISH to those from
RCTD and TACCO-OT (Extended Data Fig. 8d,e). Although most werein
agreement, MERFISH-based assignments lacked some granularity (only
oneendothelial celllabel, joint T/NK labels) but captured other distinc-
tions missingin sc/snRNA-seq, including asmall cluster of Bregulatory
cells jointly expressing FOXP3 and FCRLS5 (Extended Data Fig. 8e).

Spatial profiling of tumor-associated macrophages
Tumor-associated macrophages (TAMs) are implicated in multiple
stages of tumor progressionand have prognosticimplicationsin solid
tumors, including BC*™*". However, their role, diversity and therapeutic
potential remain only partially understood*®*°. For example, although
CD68" leukocyte density alone was not found to be a prognostic bio-
marker in primary treatment-naive BC,a CD68", CD4", CD8" immuno-
profile was associated with reduced overall survival and recurrence-free
survival®®, and the presence of TAMs expressing the CD163 scavenger
receptor was associated with adverse prognostic featuresin BC*. Inour
data, macrophages were ubiquitous across samples and measurement
methods; their variable frequency across samples in our sc/sn composi-
tion analysis was highly explained by the most recent treatment class
(withimmunotherapy being weakly associated with higher macrophage
frequencies) (Fig.2d-f), and their spatial organization varied between
samples and measurement methods when chosen as the ‘anchor cell’
(Fig. 4c-fand Supplementary Figs. 1c, 2¢, 3¢, 4c and 5c¢).

Macrophage co-localization phenotypes (Fig. 4c,e) were neither
specifically enriched nor depleted with expression of CD163, a key
macrophage marker, with the three representative samples show-
ing predominantly CD163" macrophages (Fig. 4f). Moreover, most
(73-93%) macrophages in the other biopsies profiled by MERFISH
were also CD163*, with few intermixing CD163™ macrophages
(Fig. 4f and Extended Data Fig. 9a). In the two notable exceptions
(878 and 880), most macrophages were CD163™ (Extended Data Fig. 9a).
Due to methodological limitations, these observations were only
possible with MERFISH.

To investigate broader macrophage expression states, we inte-
grated all observations identified as macrophages using Harmony?’
(within each method separately) and clustered them (Fig. 5a and
Extended Data Fig. 9b). Using the same clustering resolution for all
methods, we retrieved 4-15 clusters per method (Fig. 5a). Across
all methods, there were two major clusters of highly correlated
method-specific clusters: a CD163" cluster with high expression of
macrophage markers as well as HIFIA and APOE/APOCI and a CD163"
cluster associated with lower macrophage marker expression and
expression of MKI67 (Extended Data Fig. 9¢,d). ExSeq and Slide-seq
had much lower signal for macrophage markers overall (Fig. 5a and
Extended Data Fig. 10a), but Slide-seq still showed moderate corre-
lation to other methods. MERFISH was the most correlated with sc/
snRNA-seq (p = 0.64-0.84; Fig. 5c) and demonstrated a similar pat-
tern, with two large clusters along a single continuum (one CD163",
the other CD1637; Fig. 5a) as well as 13 small clusters of approximately
100 cells each, expressing shared macrophage markers and distinct
cluster-defining genes associated with different states or functions,
such as ANLN or CDK6 (proliferation), MMPII (tissue remodeling) or
FCNI (angiogenesis)** (Fig. 5b and Extended Data Fig. 10b). Previous
studies of primary BC described APOE-expressing macrophages as

Fig. 6 | Characterizing the cellular neighborhoods of malignant expression
phenotypes across spatial expression profiling methods. a, Dot plots
depicting the log fold change (color) and significance (size) of differences in cell
type frequencies between EMT-high and EMT-low neighborhoods (100 x 100-pm
bins) within each section for MERFISH, Slide-seq and CODEX. ExSeq datadid
notyield any significant results. Replicates (serial sections) of the same biopsy
are denoted with ‘_1-3". Pvalues were calculated using a two-sided Wilcoxon test
and Benjamini-Hochberg multiple testing correction. b, Scatter plot relating
thelog fold changes of cell type frequency between EMT-high and EMT-low
neighborhoods within samples as detected in cell-segmented MERFISH to the
corresponding cell type frequency changes detected in the other indicated
methods. The significance of differential cell type frequencies was calculated by
atwo-sided Wilcoxon test and Benjamini-Hochberg correction. The Spearman
correlationisindicated; error bands indicate standard error. ¢, Clustered
heatmap depicting the pair-wise Spearman correlation of methods based on cell
type frequency log fold changes between EMT-high and EMT-low neighborhoods

withinsamples, defined as in Fig. 5e, related tob. d, Spatial scatter plots of the
malignant cells within the cell-segmented MERFISH data where each cell is
colored as to whether or not it resides in the same 100 x 100-um bin as at least one
T/NK cell. e, Clustered binary heatmaps of whether or not agene isamong the
top 10 differentially expressed genes between malignant cells residing close to a
T/NK cell and those that do not within each biopsy, measured by cell-segmented
MERFISH. Only genes that occur in at least two samples are shown. Genes are
colored by their directionality in the common differential expression analysis.
Genes with different directionality between patient-specific and combined
analysis show discordant coloring. f, Volcano plot of differential gene expression
analysis (two-sided Wilcoxon test, Benjamini-Hochberg correction) between
malignant cells residing close to a T/NK cell and those that do not across all
biopsies, measured by cell-segmented MERFISH data. Genes are colored by their
directionality in the sample-specific differential expression analysis. Genes with
different directionality between patient-specific and combined analysis show
discordant coloring. FC, fold change; man, manual.
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lipid-associated macrophages (LAMs), comprising up to 30-40% of all
myeloid cells”. In our MERFISH data, the fraction of APOE-expressing
macrophages varied from 24%to 85% of all macrophages (mean, 48%).

Spatial interaction and expression phenotypes

We examined the spatial organization of malignant cells considering
their expression of the EMT program initially identified with scRNA-seq
(Extended Data Fig. 6a). We observed intra-patient and inter-patient
variability in EMT signals among the malignant cells across allmethods
(Fig. 5d). Although cells from samples with low and high EMT scores
showed little variation of EMT scores across space, intermediate scor-
ing samples showed patches of high-scoring cells (Fig. Se, segmented
MERFISH data), suggesting a spatially determined component.

We partitioned the samplesacross three spatial EMT phenotypes—
EMT-low, EMT-patched and EMT-high—andidentified genes that were dif-
ferentially expressed between malignant cellsin tumors from the three
spatial EMT phenotypes (Fig. 5f). EMT-patched and EMT-high pheno-
types were each characterized by distinct cell cycle genes (EMT-patched:
CCND1,RB1 and NF1; EMT-high: CDC20); EMT-low samples were further
characterized by AGR2, a potential biomarker of poor prognosis****.
The differential expression changes between EMT-patched and
EMT-high phenotypes were largely congruent across MERFISH,
Slide-seq and sc/snRNA-seq but not CODEX or ExSeq (Fig. 5g,h).

EMT-high (> sample median) and EMT-low (< sample median)
local neighborhoods (100 x 100-um bins) showed differences in cell
type composition (Fig. 6a). Across all samples and methods (except
ExSeq—nosignificant enrichments), malignant cells were depleted and
fibroblasts were enriched in EMT-high neighborhoods (Fig. 6a). Interest-
ingly, in EMT-high neighborhoods of sample 917 (the one sample with
stem-like and non-stem-like malignant cells), stem-like malignant cells
were depleted and non-stem-like malignant cells were slightly enriched
(Fig. 6a; MERFISH and CODEX but not Slide-seq). Myeloid and lymphoid
celltypes showed mostly sample-specific enrichments (Fig. 6a). Overall,
replicate sections (Fig. 6a) and all methods except ExSeq showed rela-
tively good agreement (0.32 < p < 0.68) in terms of cell type composition
differences between EMT-low and EMT-high neighborhoods (Fig. 6b,c).

Torecover spatial patterns related to interactions between malig-
nant and lymphoid cells, we tested if differences in malignant cell
expression profiles are associated with differences in their proximity
to T/NK cells (Methods). T/NK" 100 x 100-pm bins generally formed
patches, regardless of the overall level of T/NK infiltration (Fig. 6d).
Malignant cells in T/NK' bins showed higher expression of MHC-l1and
MHC-Il genes (HLA-E, CD74, B2M, HLA-DRA and HLA-B), as expected,
but also luminal epithelial genes (KRT8, KRT18 and MUCI) and ISG15
(Fig. 6e). On the other hand, genes upregulated in malignant cells in
the T/NK™ binsincluded SOX4 (in six of nine biopsies), consistent with
the association of SOX4 expression with lower CD8" T cell infiltra-
tion in primary TNBC®. Thus, SOX4-expressing malignant cells that
seemingly avoid T/NK contact coexist in the same biopsies with malig-
nant cells that engage in T/NK cell interactions. These patterns were
also observed when analyzing malignant cells across all metastases
jointly (Fig. 6f), as were additional key genes (for example, GATA3and
FOXAIinT/NK' regions; TMSB10 and AZGP1in T/NK  regions) that were
recovered in different categories compared to the patient-specific
analysis. Thus, although combining different biopsies can increase
the power to detect common signals, patient-specific signals might
belost oreveninterpretedinversely.

Discussion

We generated anintegrated atlas of MBC based on single-cell and spatial
expression profiling of 67 core needle biopsies from 60 patients. Span-
ning the clinical and molecular heterogeneity of MBC and incorporating
acareful experimental design that enables comparison across methods
provide opportunities for advances across BC research as well as
method and algorithm development. This breadth-centered approach

limits the statistical power for analyses of clinicopathologic subsets,
and unique aspects of individual methods could not always be rep-
resented, including ExSeq’s nanometer resolution and Slide-seq’s
potential for decomposed analysis. Nevertheless, in addition to
providing insight into the architecture of MBC—including cell
types, expression programs and their spatial relationships—and
practical comparison across methods, we also leveraged the dataset to
explore sources of heterogeneity and spatial expression phenotypes.

On a technical level, profiling method contributed to observed
expression variability, including in key genes such as ESRI and TRPS1,
afinding withimplications for marker gene-based approaches. Among
single-cellmethods, snRNA-seq not only captured epithelial and stro-
mal cells more efficiently but also more closely matched spatial data.
ComBat performed well for platform correction ona pseudobulk level,
and Harmony integrated the data well at the single-cell level.

Spatial profiling methods generally showed high agreement,
and allrecovered co-localization patterns within their profiling areas.
ExSeqdiverged the most from other methods, althoughlocal cell type
frequencies were still similar. MERFISH performed particularly favora-
bly in terms of separable, single-cell molecular profiles and faithfully
recovered patient-specific expression signals as the primary driver of
malignant, but not non-malignant, cell-intrinsic variability.

The malignant compartment was characterized by substantial
inter-patient heterogeneity but still revealed intriguing patterns:
basal-like biopsies formed a highly correlated exclusive subcluster;
EMT programs were robust among single-cell methods and demon-
strated inter-patient and intra-patient heterogeneity in three spatial
phenotypes, complementing prior studies of EMT marker expression
heterogeneity both within primary BC** and between matched primary
and metastatic biopsies®’; and patient-specific CNA profiles and expres-
sion programs were maintained across time, site and even changes in
receptor subtypes, in contrast to prior orthogonal studies of genomic
evolutionand diversity through disease progressionand metastasis™°°.

In the immune compartment, macrophages were the most fre-
quent cell type, although their frequency was influenced by the most
recent treatment class and specifically increased with prior immu-
notherapy. Across methods, we identified two macrophage states
characterized by CD163/CD68/APOE/HIFIA and MKI67, respectively.
Although APOE expression was reported to promote T cell effector
functions®, we did not find a significant spatial correlation between
expression of APOE inmacrophages and PDCD1 or CTLA4in T/NK cells.
While macrophages were ubiquitous, they weakly avoided malignant
cells; T/NK cells showed more variable infiltration levels. Notably,
T/NK localization relative to malignant cells was associated with
expression patterns in malignant cells— co-localization with higher
expression of MHC components; exclusion with increased SOX4—
expanding on previous studies linking SOX4 expression to immune
evasion in primary TNBC®. Future work will further investigate the
molecular underpinnings of these cell states and spatial interactions
and their translational significance.
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Methods

Ethics statement

Allsamplesincludedin this study were voluntarily donated by patients
who provided informed consent under an institutional review board
(IRB)-approved protocol (DF/HCC no. 05-246), whichincludes permis-
sion for sample acquisition, clinical data abstraction, sample analysis
and data sharing. Analysis of biospecimens at the Broad Institute was
performed under Broad Institute protocol number 15-370B.

Sample acquisition, handling and annotation

Tissues were collected as described in detail previously®. Clinical anno-
tations were generated from the electronic medical record under the
supervision of aboard-certified medical oncologist and a cancer regis-
trar following HTAN clinical data standards (https://humantumoratlas.
org/standard/clinical), whichare based on the National Cancer Institute
Genomic Data Commons model (https://gdc.cancer.gov/about-data/
gdc-data-processing/clinical-data-standardization).

For snRNA-seq and spatial expression assays, core needle biop-
sies were either snap frozen or frozen in optimal cutting temperature
(OCT) compound (Tissue-Tek, Sakura) to preserve. Cores were pre-
coated with OCT by putting a thin layer of OCT down in the cryo-
mold before placing an individual core in the center of the OCT mold
in a straight line and adding additional OCT to fill the cryomold.
The cryomold was then placed on dry ice for 5-15 min until the
block was opaque before storing it at =80 °C. For scRNA-seq, core
needle biopsies were transferred from interventional radiology into
DMEM medium and processed upon arrival at the Broad Institute.

Generation of snRNA-seq data

snRNA-seq was performed as described previously®. Specifically,
frozen tissue was placed on ice and in one well of a plate (STEMCELL
Technologies, 38015), and 1 ml of TST buffer was added to the well. Tis-
suewaskeptoniceand cutinto pieces with Noyes spring scissors (Fine
Science Tools, 15514-12) for 10 min. Tissue mixture was filtered through
a40-pm Falcon cell strainer (Thermo Fisher Scientific, 08-771-1). The
well was washed and filtered with 1 ml of detergent buffer solution,
and 3 ml of 1x ST buffer was added to a total well volume of 5ml. The
solution was centrifuged in a 15-ml Eppendorf tube for 5 min at 500g
and 4 °Cinaswingingbucket centrifuge. Pellet was resuspended in 1x
ST buffer with a resuspension volume of 100-200 pl based on pellet
size. The single-nucleus suspension was filtered through a 35-pum Fal-
con cell strainer (Corning, 352235). Intotal, 8,000 (V3) or 10,000 (V2)
nuclei were selected with a C-chip disposable hemocytometer (VWR,
82030-468) and transferred to Chromium chips for the Chromium
Single Cell 3’ Library (V2 or V3) per the manufacturer’s instructions
(10x Genomics).

Generation of scRNA-seq data

scRNA-seqwas performed as described previously”. Specifically, sam-
ples were washed in cold PBS and transferred into a 2-ml Eppendorf
tube containing dissociation mixture (950-pul volume of RPMI 1640
(Thermo Fisher Scientific, 11875093) + 10 pl of 10 mg mI™ DNAse |
(Sigma Aldrich, 11284932001) + 40 pl of 2.5 mg ml™ Liberase (Sigma
Aldrich, 5401127001)). Next, the sample was minced in the Eppendorf
tube using springscissors (Fine Science Tools, 15514-12) into fragments
less than approximately 0.4 mmand incubated at 37 °Cwhile rotating
horizontally at approximately 14 r.p.m. for 10 min, followed by pipet-
ting the sample 20 times with a1-ml pipette tip at room temperature.
The incubation and pipetting were repeated a second time before
transfer to a 1.7-ml Eppendorf tube and centrifugation at 300-580g
for 4-7 min at 4 °C. The pellet was then resuspended in 200-500 pl
of ammonium-chloride-potassium (ACK) RBC lysis buffer (Thermo
Fisher Scientific, A1049201) and incubated for 1 min on ice, followed
by the addition of cold PBS at twice the volume of the ACK. The cells
were pelleted by a short centrifugation for 8 s at 4 °C using the short

spin setting with centrifugal force ramping up to, but not exceeding,
11,000g. This procedure was repeated up to three times until the pellet
was no longer red or pink. To remove cell clumps, the pellet was
resuspended in 100 pl of TrypLE (Life Technologies, 12604013) and
incubated while constantly pipetting at room temperature for 1 min
with a 200-pl pipette tip. TrypLE was inactivated by adding 200 pl
of cold RPMI1640 with 10% FBS. The cells were pelleted using short
centrifugation as described above. The pellet was resuspended in
50 pl of 0.4% BSA (Ambion, AM2616) in PBS. To assess the single-cell
suspension, viability and cell count, 5 pl of Trypan blue (Thermo Fisher
Scientific, T10282) was mixed with 5 pl of the sample and loaded onto
an INCYTO C-Chip Disposable Hemocytometer, Neubauer Improved
(VWR, 82030-468). The cell concentration was adjusted if necessary
toarange of200-2,000 cells per microliter. A total of 8,000 cells were
loaded into each channel of the 10x Genomics Single Cell Chromium
Controller for the Chromium Single Cell 3’ Library (V2 or V3) per the
manufacturer’s instructions (10x Genomics).

10x library generation and sequencing

Single cells and nuclei were partitioned into droplets with gel beads
in the Chromium Controller. After emulsions were formed, barcoded
reverse transcription of RNA took place. This was followed by cDNA
amplification, fragmentation and adapter and sample index attach-
ment, all according to the manufacturer’s recommendations. Librar-
ies from four 10x channels were pooled together and sequenced on
one lane of an Illumina HiSeq X, or on one flow cell of a NextSeq, with
paired-end reads as follows: read 1, 26 nt; read 2, 55 nt; index 1, 8 nt;
index2, O nt.

Processing and quality assurance of the sc/snRNA-seq data
Rawsequencing reads were processed using the cellranger_cellbender_
workflow snapshot 6 on TERRA (https://app.terra.bio/), using the
human genome GRCh38 as reference and retaining intronic reads for
snRNA-seqbut not for scRNA-seq. This workflow featured Cell Ranger
version 3.0.2and Cell Bender version 0.1.0. Aninitial processing of the
resulting count matrices, including quality assessment and automated
cell type annotation (see below), and doublet detection with scrublet
version 0.2.1was performed individually for each sample using Seurat
version 3.1.1°%).

Quality filtering was performed simultaneously on all sam-
ples, once all samples had been obtained and processed, to obtain
data-driven quality filtering thresholds to account for biological and
technical differences between samples. For example, immune cells
that tend to contain less RNA than malignant cells were filtered with
more lenient thresholds.

Following this rationale, low-quality cells were filtered out based
onlow or extremely high unique molecular identifier (UMI) counts, low
gene counts and high mitochondrial read contributions in a manner
dependenton cell type, protocol and chemistry (V2/V3).

The following algorithm was used to determine the thresholds
for eachfilter group:

High threshold filter: mitochondrial genes <50%, number of genes
<8,000, number of UMIs <20,000.

Low threshold filter for genes per cell: If the median number of
genes per cellinthe filter group of agiven cellis >1,300, then cells with
>700 genes areretained; if the group medianis <1,300 and >600, then
cells with >300 genes are retained; if the group median is <600, then
cellswith >100 genes are retained.

Low threshold filter for UMIs per cell: If the median number of
UMIs per cellinthefilter group of agiven cellis>1,800, then cells with
>1,100 UMIs are retained; if the group medianis <1,800 and >900, then
cells with >600 UM s are retained; if the group median is <900, then
cellswith >300 UMIs are retained.

Samples with extremely low numbers of recovered cells were
excluded as failed.
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Cell type annotationin sc/snRNA-seq

In aninitial automated and sample-wise annotation, cells were anno-
tated using the R package SingleR version1.0.3 (https://bioconductor.
org/packages/release/bioc/html/SingleR.html) with both its built-in
reference datasets (HPCA and Blueprint) in a cell-wise and cluster-wise
annotationscheme, and annotations were thenrefined by harmonizing
labels across the reference dataset and within clusters.

After combining all snRNA-seq or scRNA-seq samples into one
anndata object each, as well as joint processing using the SCANPY
version1.7.2 workflow, including normalization, loglp transformation,
scaling, highly variable gene selection, regression of total counts and
mitochondrial counts, principal component analysis (PCA), nearest
neighbor finding, Leiden clustering and two-dimensional (2D) projec-
tion using uniform manifold approximation and projection (UMAP),
theinitial automated annotation was further refined using the context
of all sc/snRNA-seq samples, respectively.

Single cells that were annotated with a cell type label that was not
compatible with their cluster’s annotation were removed as unreli-
able. Clearly distinct clusters that were annotated with the same cell
type label wereinvestigated in detail using marker genes and assigned
more specific cell type labels. For asimplified annotation, all cells then
received a second label based on their cell type label to be assigned
to one of the four compartments: malignant, stromal, myeloid and
lymphoid.

CNAinthe sc/snRNA-seq data
CNAs in the sc/snRNA-seq were scored using InferCNV version 1.2.0
(https://github.com/broadinstitute/inferCNV). Sample-wise analy-
sis was performed by assigning the following cell types as normal
reference—T cells, NK cells, monocytes, macrophages, fibroblasts and
endothelial cells—and calling CNAs in all other cell types. In particular,
we did not include hepatocytes as reference cells because they are
known to be polyploid and B/plasma cells because of disproportion-
ately high expression of certain genes related to antibody production.
The cross-sample combined analysis was performed by select-
ing normal (non-malignant) reference cells across all samples in an
even manner and calling CNAsin all malignant cells across all samples
separately for the snRNA-seq and scRNA-seq data. InferCNV’s built-in
CNA heatmap was then assessed for interesting patterns and used for
presentation.

Variance analysis in the sc/snRNA-seq data

Variance analysis in the sc/snRNA-seq data was performed using the
R package variancePartition version 1.14.0 (ref. 63), which uses linear
mixed models to quantify variation in gene expression that can be
attributed to different biological or technical variables (patient ID (indi-
vidual), method (sc/sn), site, most recent treatment class, histology,
metastatic presentation and receptor status). Apart from using this
tool for the study of expression variability in pseudobulk data (average
expressionacrossall cells per sample and compartment), we also used
ittoassess variability in cell type composition. The rationale behind this
approachisthatboth RNA-seq expressionand cell type abundances are
primarily count data that are normalized to represent the frequency
or representation of one entity (gene or cell type) among all measure-
ments. However, to account for stronger expected interdependence
between celltypes due to their lower number comparedto genes (20
versus-20,000), we used Pearon’s contingency ratios®* instead of nor-
malization by total counts as used for the expression variance analysis.

De novo characterization of malignant expression programs
using iNMF

To find de novo malignant expression programs in our sc/snRNA-seq
across all samples, we used iNMF as implemented in the R package
LIGER version 0.5.0.9000 (ref. 30), which identifies and separates
common and sample-specific factors in high-dimensional single-cell

data. Weranthis analysis separately for snRNA-seq and scRNA-seq data,
setting thek parameter to 20 to receive 20 expression programs and the
lambda parameter to 40 to ensure sufficient integration and separation
of sample-specific signals. These parameters were found empirically.
The thus-obtained 40 expression programs were then correlated by
pair-wise Pearson correlation based on the gene importance for the
respective programs as represented in the feature matrix W. This way,
we were able toidentify corresponding programs in the sc/snRNA-seq
dataas highly correlated programs.

Scoring of expression programs in sc/snRNA-seq and spatial
data

Expression programs defined by specific sets of genes were performed
using either Seurat’s version 3.1.1 or SCANPY’s version 1.7.2 built-in
functions AddModuleScore or score_genes, respectively, with default
parameters. Seurat was used to score the subcell-type marker genes"”
as well as the hallmark gene sets in the Molecular Signatures Data-
base (MSigDB)°>*¢, and SCANPY version 1.7.2 was used to score the
scRNA-seq-derived iINMF EMT program genes (/IGFBP7,SPARC, COL1A2,
COL4A1,COL3A1,BGN,ACTA2,FNI1,COL4A2, TAGLN, DCN, COL1A1,LUM,
COL6A3, POSTN, AEBP1, COL6A2, VIM, TIMP1, TPM2, COL5A1, CALDI,
COL6A1, A2M, SPARCL1, THY1, VCAN, CCN2, GNG11, PDGFRB, RGSS,
ITGA1, MYL9, COL5A2, COL18A1, THBS2, IGHA1, CAVINI, ELN, NID1,
LHFPL6, APOE, IGLC3, HSPG2, CAVI1, TCF4, NNMT, ASPN, FSTLI and
MGP), of which 20 genes are represented in MERFISH and ExSeq (TCF4,
COL4A1,BGN,COL1A2,FN1,COL1A1,ACTA2, MYL9,HSPG2, TIMP1, VIM,
THY1, APOE, COL3A1, DCN, LUM, TAGLN, TPM2, GNG11 and COL4A2)
and threein CODEX (VIM, THY1 and COL4A2). Scoring was performed
onallsamples profiled with a given method. The choice of which tool
to use was based purely on the environment (R versus Python) that
the respective analysis branches were performed in.

Integration of sc/snRNA-seq data or spatial dataona
pseudobulk or single-cell/bead/bin level

To compare malignant pseudobulk expression profiles, the pseudobulk
expression matrix was corrected for profiling method effects using
the ComBat function from the R package sva version 3.34.0 (ref. 67),
with profiling method as batch variable and receptor status as well as
biopsy site as covariates.

Tointegrate snRNA-seq and scRNA-seq data at the single-cell level,
the function ‘harmonize’ from the Python package Harmony-pytorch
version 0.1.4 (ref. 37) and SCANPY’s BBKN wrapper (external.pp.bbknn)
based on the Python package BBKNN version 1.5.1 (ref. 38) were used.
Each function was run with profiling method as batch variable and
default parameters otherwise. After integration, Leiden clustering
was performed using the SCANPY function ‘leiden’ with a resolution
of 0.4. Theintegrated dataset was only used to demonstrate datainte-
grationbut not for other analyses. (These methods donot correct the
expression matrix but align the observations in a lower-dimensional
space (Harmony: PCA; BBKNN: k-nearest neighbor graph)).

To analyze macrophage subsetsin sc/snRNA-seq and spatial data,
annotated macrophages were integrated separately for each measure-
ment method using the function ‘harmonize’ from the Python package
Harmony-pytorch version 0.1.4 with patient as batch variable and
default parameters otherwise. After integration, Leiden clustering
was performed using the SCANPY function ‘leiden’ with a resolution
of 0.6. Small clusters expressing non-macrophage marker genes were
detected in all methods and removed from further analysis, followed
by re-intergation and re-clustering.

PAMS50 molecular subtype assignment

Toassign research-based PAM50 subtypes, log2 + 1-transformed counts
from the full (including all cell types) pseudobulk data were rescaled
relative to those of a receptor status-balanced version of this cohort,
in which samples were resampled to achieve the ER* to ER" receptor
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status ratio in the UNC training set, from which the PAMS50 subtype
centroids were derived®®®’. The R package genefu version 2.20.0
(ref. 70) was used to call research-based PAMS50 subtypes using the
rescaled expression values and Spearman correlation to the PAM50
subtype centroids. Samples with a PAMS50 centroid correlation less
than 0.10 for each centroid were not assigned a PAMS50 subtype.

Sectioning for spatial expression profiling and H&E staining
The tissue OCT blocks were acclimated to —20 °C inside the cryostat
(Leica, CM1950) for 30 min before sectioning at 10-um thickness.
Serial sections were placed on the required glass slides for each of
the methods used. Sections were placed such that the same region of
interest could be assessed across all methods.

H&E staining and histopathological annotation

A slide adjacent to the experimental slides was stained for H&E with
standard histology techniques. H&E slides were scanned on an Aperio
Pathology AT2 Slide Scanner (Leica) using x20 magnification. Each
H&E slide was reviewed by aboard-certified pathologist (S.).R.) for QC
assessment and annotated to indicate the location of tumor regions
using standard pathological criteria. This review was conducted with
atraditional bright-field microscope and included assessment of pres-
ervation of tissue integrity and morphology after freezing and OCT
embedding, evaluation of tissue viability, assessment of tumor content
and fibrotic tissue content and scoring for inflammationona 0-3 scale.
Samples that failed this QC step (9/25 samples) exhibited either very
low sample viability (<2% viable cells) or extensive tissue damage or
had less than 5% tumor content.

Slide-seq data generation

To generate Slide-seq data, the Slide-seq puck was placed on a micro-
scopeglassslide with the beads facingupwards and held in place witha
drop of water between the glass slide and the puck coverslip. By turning
the microscope glass slide upside down, the puck surface was aimed
attheregion of interestin the tissue section by lowering the puck over
the tissue section and allowing a quick melting of tissue and puck to
occur before removing the puck:tissue sandwich outside the cryostat.
The puck was moved with forceps to an Eppendorftube pre-filled with
200 pl of hybridization buffer (6x SSC with 2 U pl™ RNase inhibitor
(Lucigen, 30281)) and incubated for 15 min at room temperature. A
wash followed hybridization by dipping the puck once into 1x Maxima
RT buffer. First-strand cDNA synthesis was performed by placing the
puckin200 pl of first-strand synthesis mixture (1x Maxima RT buffer,
1mMofeachdNTP,0.05 U ul™' RNase inhibitor (Lucigen, 30281), 2.5 uM
template switch oligonucleotide (Integrated DNA Technologies (IDT),
5-AAGCAGTGGTATCAACGCAGAGTGAATrG+GrG-3’) and 10 U pl™
Maxima H Minus Reverse Transcriptase (Thermo Fisher Scientific,
EP0742)) and incubated at room temperature for 30 min followed by
52°Cfor 90 min.

Tissue digestion was thereafter performed by the addition of
200 plof2xtissue digestion mix (200 mM Tris-ClpH 7.5,400 mM NaCl,
4% SDS, 10 mM EDTA) with 1:50 proteinase K (New England BioLabs
(NEB), P8107S) to the first-strand reaction mixture with gentle pipette
mixing and incubation at 37 °C for 30 min.

After the addition of 200 pl of wash buffer (10 mM Tris pH 8.0,
1mMEDTA, 0.01% Tween 20) to the tissue digestion mixture, the puck
beads were removed from the coverslip surface and released into sus-
pension by vigorously pipetting, and the glass was discarded. The beads
were pelleted by centrifugation at 3,000g for 2 min, and the superna-
tantwas removed. The bead pellet was washed in 200 pl of wash buffer
and centrifuged as before for atotal of three washes, followed by a final
washin 10 mM Tris-HCI, pH 7. Subsequent exonuclease treatment was
performed by resuspension of the bead pelletin 200 pl of Exonuclease
I reaction mixture (1x Exol buffer with 10 U pl™ Exonuclease I (NEB,
MO0293L)) and incubated at 37 °C for 50 min, followed by one wash

with200 pl of wash buffer added directly to the exonuclease mixture.
After supernatantremoval, the wash step was repeated twice for atotal
of three washes. The bead pellet was resuspended in 200 pl of freshly
prepared 0.1 N NaOH and incubated for 5 min at room temperature.
After theaddition of 200 pl of wash buffer, the beads were centrifuged
for 2 min at 3,000g, and the wash was repeated a total of three times.

Second-strand synthesis was performed by the addition of 200 pl
(1xMaximaRT buffer,1 mM of eachdNTP, 10 uM dN-SMRT oligonucleo-
tide (IDT, 5-AAGCAGTGGTATCAACGCAGAGTGANNNGGNNNB-3’) and
0.125 U pl™Klenow enzyme (NEB, M0210)) to the bead pelletand incu-
bationat 37 °Cfor1h. Thereafter,200 pl of wash buffer was added tothe
mixture and centrifuged for 2 minat3,000g. The washwasrepeateda
total of three times, followed by a final wash in RNase/DNase-free water.
The bead pellet was resuspended in 50 pl of PCR mix (1x Terra Direct
PCR mix buffer, 2 pl Terra polymerase (Takara, 639270), 2 uM TruSeq
PCRhandle primer (IDT,5’-CTACACGACGCTCTTCCGATCT-3’) and 2 pM
SMART PCR primer (IDT, 5-AAGCAGTGGTATCAACGCAGAGT-3")).PCR
was performed with the following program: 98 °C for 2 min; four cycles
of 98 °C for 20 s, 65 °C for 45 s and 72 °C for 3 min; 11 cycles of 98 °C
for20s, 67 °Cfor20 sand 72 °Cfor3 min; 72 °Cfor 5 min; hold at4 °C.

The cDNA was incubated with 0.6x volumes of AMPure XP beads
for 10 min at room temperature. The AMPure XP beads were then pel-
leted using a magnetic separator for 5 min, followed by two washes
with 80% ethanol for 30 s each, and the cDNA was eluted with 50 pl of
EB solution. The bead purification was repeated at a 0.6x volume of
AMPure XP beads:cDNA with two washes with 80% ethanol and final
elution with 12 pl of EB. The size and concentration of the final cDNA
were assessed on a Bioanalyzer high-sensitivity DNA chip (Agilent,
5067-4626) and on a Qubit high-sensitivity dsDNA kit (Invitrogen,
Q32851), respectively. Thereafter, 600 pg of cDNA was tagmented
with aNextera XT kit (Illumina, FC-131-1096) according to the manufac-
turer’sinstructions. Thelibraries were indexed with PCR amplification
with TruSeq5 (IDT, 5’- AATGATACGGCGACCACCGAGATCTACACTCTTT
CCCTACACGACGCTCTTCCGATCT-3") and the N700 series barcoded
index primers and the following PCR program: 72 °C for 3 min; 95°C
for30s;12 cyclesof 95°Cfor10s,55°Cfor30s,72°Cfor30sand72°C
for 5 min; hold at4 °C.

Final purification of the DNA with AMPure XP beads at a 0.6:1
volume ratio of beads:DNA and elution with 12 pl of EB yielded
sequencing-ready libraries. The library concentrations were diluted
to 4 nM each, and three Slide-seq samples were pooled together. The
samples were sequenced at a 1.8 pM concentration on an Illumina
NextSeq high-output flow cell with the following settings: readl, 44
bases; read2, 39 bases; and index1, 8 bases.

Raw data were processed using the Slide-seq pipeline (https://
github.com/MacoskoLab/slideseq-tools).

The quality of allsamples was evaluated, and samples with an aver-
ageread count per bead lower than 150 as well as those with an unrec-
ognizable shape (which prevented spatial alignment) were excluded
from further analysis.

CODEX datageneration

CODEX datageneration was performed as described previously with-
out major adjustment for the MBC tissue”®. The detailed protocol
is available on https://www.protocols.io/ (ref. 71). Specifically, anti-
body panels for CODEX imaging were chosen to include targets that
would be anticipated to identify MBC as well as cells of the innate and
adaptive immune system. Each antibody was conjugated to a unique
oligonucleotide barcode. Detailed panel information can be found in
Supplementary Table 5. For panel validation, antibody-oligonucleotide
conjugates were tested in low-plex fluorescence assays. Staining pat-
terns were compared against the expected patterns already established
forimmunohistochemistry within positive control tissues of the human
tonsil. Staining patterns were also compared against H&E morphology
staining to confirm the location of the markers. Signal-to-noise ratio
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was also evaluated at this step. Antibody-oligonucleotide conjugates
were then tested altogether in a single CODEX multicycle.

CODEX multiplexed imaging was executed according to the pre-
viously described protocols and imaging setup and instructions for
CODEX staining of frozen specimens from Akoya Biosciences. In brief,
after the sample acquisition and OCT embedding, 7-umsections were
cut in a cryostat after OCT blocks were equilibrated to the cryostat
temperature for atleast 30-40 min. Tissue sections were dragged over
thesurface of cold poly-L-lysine-coated coverslips and spreadinside the
cryostatby transiently warming up the bottom surface of the coverslip
with a finger. Before staining, the sections removed from the freezer
were dried for 5 min onthesurface of Drierite. Dried coverslips with sec-
tions onthem were dipped for 10 mininto room temperature acetone
andthen fully dried for 10 minatroom temperature. Sections were then
rehydrated for 5 minin S1(5 mMEDTA (Sigma-Aldrich)), 0.5% w/v BSA
(Sigma-Aldrich and 0.02% w/v NaN; (Sigma-Aldrich) in PBS (Thermo
Fisher Scientific)) and further re-fixed for 20 min at room temperature
in S1 with 1.6% formaldehyde. Formaldehyde was washed off twice
with S1, and sections were equilibrated in S2 (61 mM NaH,PO, - 7 H,0
(Sigma-Aldrich), 39 mM NaH,PO, (Sigma-Aldrich) and 250 mM NaCl
(Sigma-Aldrich)ina1:0.7 v/v solution of S1and double-distilled water
(ddH,0); final pH 6.8-7.0) for 10 min and blocked in blocking buffer
(ref. 2) for 30 min. All steps to follow were exactly as in Black et al.® or
the Akoya CODEX instructions—this entails cyclic stripping, annealing
andimaging of fluorescently labeled oligonucleotides complementary
to the oligonucleotide on the conjugate.

Automated image acquisition and fluidics exchange were per-
formed using an Akoya CODEX instrument driven by CODEX driver
software (Akoya Biosciences) and a Keyence BZ-X710 fluorescence
microscope configured with four fluorescent channels (DAPI, FITC, Cy3
and Cy5) and equipped witha CFIPlan Apo A x20/0.75 objective (Nikon).
Hoechst nuclear stain (1:3,000 final concentration) was imaged in
each cycle at an exposure time of 1/175 s. Biotinylated CD39 (clone
Al, Biolegend) was used at a dilution of 1:500 and visualized in the
last imaging cycle using DNA streptavidin-PE (1:2,500 final concen-
tration). DRAQS nuclear stain (1:500 final concentration) was added
and visualized inthe lastimaging cycle. Each tissue was imaged witha
x20 objectiveina7 x 9 tiled acquisition at 1,386 x 1,008 pixels per tile
and 396-nm-per-pixel resolution and 13 z-planes per tile (axial resolu-
tion, 1,500 nm). Images were subjected to deconvolution to remove
out-of-focus light.

Raw imaging data were processed using the CODEX Uploader
(https://github.com/nolanlab/CODEX) for image stitching, drift com-
pensation, deconvolution and cycle concatenation. Processed data
were then segmented using CellVisionSegmenter, an open-source,
pre-trained nucleus segmentation and signal quantification software
based onthe Mask region-convolutional neural network (R-CNN) archi-
tecture. CellVisionSegmenter was trained on manually annotated
CODEX multiplexed imaging data and can successfully segmentboth
dense and diffuse cellular tissues (https://github.com/bmyury/CellVi-
sionSegmenter; https://github.com/michaelleel/CellSeg)®s. As such,
only one parameter was altered for the segmentation of the HTAPP
dataset: the growth pixels of the nuclear mask. This was experimentally
determined to be optimal at a value of 3. After the upload, the images
were visualized in ImageJ (https://imagej.net/) and re-evaluated for
specific signal. Any markers that produced alow signal-to-noise ratio or
anuntenable pattern were excluded from the ensuing analysis. Finally,
all samples were manually checked for presence of obvious signs of
unexpected signal appearance or distribution indicative of device or
protocol error. None was detected, and all samples were considered
fit for downstream image analysis.

Gene panel design for MERFISH and ExSeq
Toselectaset of genes for spatial profiling of MBC biopsies with MER-
FISH and targeted EXSEQ assays, we developed a ‘collect-and-filter’

approachtoallow flexibility in the final number of selected genes. First,
apreliminary list of 510 potentially relevant genes was assembled (col-
lected) based on prior knowledge and literature as wellas on our MBC
sc/snRNA-seq data. Genes were chosen to represent various aspects
of BC biology, metastasis and the tumor immune microenvironment
aswellas celltypes and programs discovered from sc/snRNA-seq. The
preliminary list was then filtered down to 300 genes (the experimental
size of the panel) based on expression statistics as measured in the MBC
scRNA-seqdataset and manual priority (0-1) assignment. During probe
design, three of the selected 300 genes were excluded as they did not
meet technical criteria (all three transcripts were too short), reducing
the final gene set to 297 genes. Below, we describe in more detail the
initial selection of 510 genes and their filtering down to 300.

Gene collection. To generate a preliminary list of genes likely to be
broadly relevant for characterization of cell types and programs in
MBClesions, we pursued three broad criteria: (1) prior knowledge based
onexpertise and relevant scientific publications; (2) genes coding for
proteins targeted in CODEX proteomic assays also applied tothe same
MBCHTAPP tumor samples; and (3) genes representing cell types and
programs from preliminary sc/snRNA-seq data from 21 MBC biopsies.

The prior knowledge-driven gene selection (1) started by identify-
ing categories of genes known to be importantin MBC and in cancer
in general and reviewing available literature to select representative
genes of each category:

e Canonical cell-type-specific markers (for example, EPCAM for
epithelial cells, CD19 for B cells, CD4 for T helper cells, CD8
for cytotoxic T lymphocytes, CD56 for NK cells and CD14 for
macrophages)

« Clinical breast cancer biomarkers (for example, ESR1, PGR and
ERBB2)

< Breast cancer intrinsic subtypes

« Hallmarks of cancer: evasion of apoptosis, for example, BCL2;
EMT, for example, VIM; immune evasion, for example, CD274;
senescence, for example, TP53; proliferation, for example,
MKI67, etc.”"

< Epithelial hierarchy in the normal breas

+ ERsignaling™

« Genomic landscape of MBC and therapeutic resistance®*’°™

72,73

t74f77

The pre-defined CODEX target genes were included in the panel
to ensure congruence and subsequent integration with matching
CODEX data. To this end, we translated protein identifiers to gene
identifiers and assigned the resulting genes priority 1to be included
inthe panel (see the ‘Gene filtering’ subsection).

Thedata-drivengeneselectionwas performed onthe sc/snRNA-seq
data available at that time using Seurat version 2.3.4. The data used
for gene selection consisted of 21 MBC samples (six snRNA-seq,
15 scRNA-seq) and represent only a subset of the final dataset of 37
snRNA-seq and 30 scRNA-seq. Single-cell profiles with fewer than
500 genes and single-nucleus profiles with fewer than200 genes were
removed. Preliminary cell types were annotated using the R package
SingleR version 1.0.1 (https://bioconductor.org/packages/release/
bioc/html/SingleR.html) in single-cell mode with the built-in HPCA
reference and standard parameters. To identify cell-type-specific
genes—thatis, genes with high cell type predictive power—we trained
asupportvector machine (SVM) classifier (R package liblineaR version
2.10-8) and used the assigned feature weights to select highly predic-
tive genes for each cell type. Data were downsampled to 200 randomly
selected cells per cell type to ensure class balance, and predictive power
of the classifier was assessed through five-fold cross-validation and
predictionaccuracy. Inafirst pass, baseline accuracy was determined
by training and testing a classifier on all variable genes. In a second
pass, per celltype, only genes with aranked cumulative relative weight
below 0.4 (single-nucleus data) and 0.45 (single-cell data) (that is,
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alltop weighted genes that together account for 40% or 45% of relative
weight, respectively) were used to train a second classifier onasecond
independently downsampled dataset with the same specifications.
Again, accuracy was assessed in five-fold cross-validation and com-
pared to baseline accuracy to ensure that, by reducing the number of
genes and using a different subset of the data, accuracy was not sig-
nificantly reduced. Additionally, we also determined the classification
error rate using a random forest classifier (R package randomForest
version 4.6-14) to confirm that the observed good performance was
not classifier dependent. Of the thus-selected genes, all genes with a
ranked cumulative relative weight below 0.3 (single-nucleus data) or
0.35 (single-cell data) were assigned priority 1, whereas the remaining
geneswere assigned priorities lower than 1based ontheir relative total
weights across all cell types (see the ‘Gene filtering’ subsection).

To represent the BC-intrinsic subtypes, the PAM50 subtype-
defining genes® were refined using a similar approach as the one
described above based on the single-cell and single-nucleus data. In
afirst pass, all 50 PAMS50 genes were used to detect baseline accuracy
of discriminating the PAM50 subtypes, and, inasecond pass, all genes
witharanked cumulative relative weight lower than 0.8 (single-cell and
single-nucleus data) were used to determine classification accuracy
and assigned priority 1, whereas the remaining genes were assigned
priorities lower than 1 based on their relative total weights across all
cell types (see the ‘Gene filtering’ subsection).

Toselect genes that represent cellular programs within cell types,
we applied topic modeling separately on the major cell types present
inthe single-cell dataset (malignant cells, T cells, NK cells, fibroblasts,
endothelial cells, monocytes/macrophages/dendritic cells, B cells
and plasma cells). We used the FitGoM() function of the R package
CountClust version 1.12.0 to fit a grade of membership (GoM) model
to the raw count data of up to 4,000 randomly sampled cells per cell
type. The tolerance value of the GoM model was set to 0.01 for all cell
types. The number of topics (K) to be fitted was empirically determined
for each cell type by fitting models with a range of sensible values for
K and comparing the Bayesian information criterion (BIC) of the dif-
ferent models. For each cell type, K was selected to be greater than or
equal to 3 and to represent a local minimum in BIC. Finally, separate
models were fit for each of the following cell types with the indicated
parameters after excluding ribosomal and mitochondrial genes: malig-
nant cells (K=13), T cells (K=3), NK cells (K =3), fibroblasts (K=4),
endothelial cells (K=5), monocytes/macrophages/dendritic cells
(K=7),Bcells (K=3) and plasma cells (K =10). For each topic, the top
30 genes were identified using the function ExtractTopFeatures()
and subjected to GSEA using enrichR version 1.0% querying the
GO_Biological_Process_2018 database. Topic loadings across cells
as well as Gene Ontology (GO) terms enriched with an adjusted
P value false discovery rate (FDR) < 0.05 were manually inspected
for interesting patterns. Of the genes defining topics and GO terms
deemed interesting, the gene with the highest loading for each topic
was assigned priority 1, whereas the other genes were assigned priority
0 (see the ‘Gene filtering’ subsection).

Gene filtering. To select 300 genes from the list of 510 assembled
through the different approaches described above, we devised afilter-
ing strategy tomake sure that genes are expressed in, and are variable
across, the single-cell expression dataset while preserving the diver-
sity of cellular and biomedical aspects represented by the 510 genes
and summarized as nine categories and 83 selection types of genes. A
gene wasincluded under the following conditions: (mean normalized
expression > 0.15 OR variability > 0.025 OR number of categories > 1)
AND (meannormalized expression >1.5and <4 OR variability > 0.250R
priority =10R number of categories > 1) with variability defined as the
fraction of cells with an absolute scaled expression value greater than
lacrossall cellsand mean normalized expression calculated across all
cells of the highest expressing cell type or epithelial (malignant) cellsin

the case of genes selected due to their known relevancein MBC. Three
genes were identified as being too short during the probe generation
step, because they did not have sufficient length to accommodate the
placement of a sufficient number of unique probes. The total number
of genes assessed was, thus, 297, representing all nine categories and
82 of the 83 original gene types (Supplementary Table 3). This high
retention rate of represented gene types confirmed that we were still
covering all major celltypes, subtypes and programs of interest with the
reduced gene set and allowed us to confidently move forward with it.

MERFISH data generation

The detailed protocol for MERFISH data generation is available
on https://www.protocols.io/ (ref. 84). The MERFISH protocol was
divided into three parts: probe design/generation, tissue processing
and imaging and analysis/segmentation.

In addition to the 297 genes selected for MERFISH as described
above, two additionalgenes, ALBand LIPE, were added to the gene panel
for ready identification of the common host tissue cell types found in
liver (hepatocytes) and adipose (adipocytes) tissues, respectively. For
design and construction of encoding probes, each of the 291 genes
imaged in the combinatorialimaging rounds was assigned to aunique
binary barcode drawn from a 22-bit, Hamming distance 4, Hamming
weight 4 encoding scheme. Ninety-four extra ‘blank’ barcodes that
were not assigned to any genes were included to provide ameasure of
the false-positive rate. Each bit of the 22-bit code was associated with
aunique readout sequence, and, for each gene, the readouts corre-
spondedtothe four ‘on-bit’ (bits thatread 1’) of the gene’s assigned bar-
code.Foreachgene, 60 encoding probes were generated, comprising
a30-mer target sequence, three readout sequences corresponding to
the gene and PCR primer sequences for library amplification. Template
DNA for the encoding probes used for the 291 multiplexed genes was
synthesized as a complex oligo pool and used to construct the final
MERFISH probe set, as described previously®. Encoding probes for
the eight genes measured as sequential single-molecule FISH (smFISH)
rounds were designed in a similar fashion as described above, except:
(1) 48 probes were generated for each gene; (2) one unique readout
sequence was used for each gene; and (3) PCR primers were omitted.
Encoding probes were then synthesized in a 96-well plate format and
mixed to suitable final concentration.

Sliced samples were placed on poly-D-lysine-coated coverslips,
fixed with 4% formaldehyde, permeabilized in 70% ethanol, pho-
tobleached with white light and then hybridized with the MERFISH
probe library and a poly(A) anchor probe. After hybridization, sam-
ples were embedded in a 4% polyacrylamide gel, optically cleared in
adigestion buffer containing protease and mild detergent and stored
at4 °Cuntilimaged.

MERFISH imaging of samples was performed on a homemade
imaging platform. Before imaging, samples were stained with two
segmentation markers, DAPI and an Alexa Fluor 488-conjugated
readout probe complementary to the poly(A) anchor probe. Forimag-
ing, samples were held inside a flow chamber to accommodate buffer
exchanges over the many rounds of MERFISH imaging. Each imaging
round consisted of readout probe hybridization, imaging each FOV
(220 pm x 220 pm per FOV) and readout probe fluorophore cleavage.
Imaging consisted of 17 rounds. After imaging the segmentation
markersinround1, the barcode-encoded RNA species were imaged
inrounds 2-12 (combinatorial smFISHrounds), and the individually
labeled RNA species wereimaged in rounds 13-16 (sequential smFISH
rounds). In rounds 1-12, images of each FOV were acquired at seven
focal planes separated by 1.5 uminz.Inrounds 13-16, images of each
FOVwere acquired at one focal plane 3.5 pm above the glass surface.
In addition, every imaging round included a single z-plane image of
the fiducial beads on the glass surface for image registration. The
number of FOVs imaged for each sample varied based on the size of
the sample.
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Subsequently, all MERFISH image analysis was performed using
the MERIlin Python package (https://github.com/ZhuangLab/MERIin).
First, for each FOV, the images from each imaging round were aligned
to correct for x-y drift in the stage position. For the combinatorial
rounds, image stacks for each FOV were high-pass filtered, decon-
volved using Lucy-Richardson deconvolution and, finally, low-pass
filtered. Individual RNA molecules were then identified by a pixel-based
decoding method as previously described". All cell segmentation was
performed using the cellpose Python package (https://github.com/
MouseLand/cellpose) using the ‘nuclei’ model applied to the DAPI
image for each FOV. Identified individual RNA molecules were then
assigned to individual cells based on if they were located within
the segmented boundaries. For the sequential smFISH rounds, images
were high-pass filtered and background subtracted, and the expres-
sion of each genein each cell was calculated as the sum of the fluores-
cence intensity of all pixels within the segmentation boundary of the
central z-plane of each cell. The signals from the eight sequential
genes were merged with the RNA counts matrix from the 291 genes
measured in the combinatorial smFISH rounds to generate a final
expression matrix for each tissue slice. Each slice was then evaluated
against QC criteria to determine if it would be included in further
analysis. The QC criteria for each slice consisted of (1) the average
number of RNA counts per cell (=50 to pass) and (2) the Pearson cor-
relation of the average gene expression between the MERFISH dataset
and an scRNA-seq dataset derived from the same tumor (Pearson
correlation coefficient > 0.60 to pass). Both criteria had to be met
to pass QC.

Targeted ExSeq data generation

Thedetailed protocols for targeted ExSeq data generation are available
as a protocols collection on https://www.protocols.io/ (ref. 86). The
overall structure of the work is in three parts: experimental design,
experimental execution and analysis. In the experimental design step,
padlock probes were designed that targeted the genesidentified above.
In the experimental execution steps, tissue sections were fixed and
expanded, followed by targeted in situ sequencing library prepara-
tion and in situ sequencing of the prepared library. Finally, in situ
sequencing data were decoded to identify specific RNA transcripts
inthe specimen.

Padlock probes were designed that targeted the genesidentified
above, following the ‘Targeted ExSeq-Probe Generation’ protocol. In
brief, logical barcode sequences of length 7, with each position in the
barcode being a number between 0 and 3, were generated and ran-
domly assigned to the genes of interest. These barcodes were designed
to have a minimum Hamming distance of 3, enabling error detection
and correction. These logical barcodes were then implemented as
nucleic acid sequences on the backbone of the padlock probe, with
one sequence for readout with the Illumina sequencing-by-synthesis
chemistry (used in this work) and another sequence for readout with
the SOLiD sequencing-by-ligation chemistry (not used here). Both
sequences are included in the backbone of the probe adjacent to the
sequencing primer site. Probe homology sequences were then gener-
ated by performing a sliding window search along each transcript.
Candidate regions were excluded for sequence complexity (more than
five consecutive repeated bases, containing three or fewer unique
nucleotides, GC content outside of 40-65%), physical considerations
(melting temperature (T,,) of either arm of the padlock probe below a
gene-specific T, threshold, T, difference between the two arms exceed-
ing 8 °C, presence of hairpins or dimers in the homology region) or
significant homology to a different transcript that spans the ligation
junction. For each gene, the first 16 homology regions starting from
the 5’ end of the transcript were selected. If fewer than 16 homology
regionswereidentified, allwere selected for use. Probes for each gene
were assembled by combining the homology regions with a back-
bone sequence shared across all probes for that gene (containing

the barcodes). Designed padlock probes were then purchased in
plate-based format from IDT and pooled together.

The first experimental step was tissue preparation following the
‘Targeted ExSeq-Tissue Preparation’ protocol, following path Cin the
flowchart in the protocol abstract. In this step, tissue sections were
fixed, expanded and prepared for targeted ExSeqlibrary preparation.In
brief, after cryosectioning onto Superfrost Plus glass slides (described
above), tissue sections were fixed withice-cold 10% formalin for 12 min
and then washed three times for 5 min each wash with ice-cold 1x PBS.
Slides were then stored in 70% ethanol and stored at 4 °C for up to
1week. To begin gel embedding, slides were briefly dried with a labo-
ratory wipe, and a Bio-Rad Frame-Seal sticker was placed around the
tissue section, forming a chamber for washes. The tissue was rehy-
drated by washing with1x PBS and then treated with 0.1 mg ml™ LabelX
overnightat37 °Cto enable nucleicacid anchoringinto the expansion
hydrogel. The tissue was then embedded into the expansion micros-
copy hydrogel and digested following the Robust Digestion Conditions
described in the protocol. After digestion, the sample was expanded
and re-embedded into a non-expanding polyacrylamide gel to lock
in the expansion factor. The fixed charge of the carboxylates in the
original expansion gel was then chemically passivated using EDC-NHS
activation of carboxylate groups, followed by amide bond formation
with ethanolamine. Gels were then trimmed to size.

The second experimental step was library preparation following
the ‘Targeted ExSeq-Sequencing Library Preparation’ protocol. In
brief, padlock probes bearing barcode sequences are hybridized to RNA
transcripts. Padlock probes are then enzymatically circularized using
SplintR Ligase and then enzymatically amplified using rolling circle
amplification using Phi29 DNA Polymerase, forming amplicons (also
called RCA colonies, or rolonies). Theamplicons are then cross-linked
to each other and the sample and are ready for in situ sequencing. For
these samples, the universalamplicon detection hybridization step was
skipped here and performed after in situ sequencing was completed.

The third experimental step was in situ sequencing following the
‘Targeted ExSeq-In Situ Sequencing (Illumina Chemistry)’ protocol.In
brief,samples (gel-embedded tissues with in situ sequencing libraries)
were covalently anchored to glass-bottom plates forimaging by func-
tionalizing the plate surface with acryloyl groups, placing the speci-
men gel inside the well and casting a second re-embedding gel that
anchored the specimen gel to the glass-bottom plate. The sample
was then prepared for sequencing by capping free 3’ ends of DNA in
the sample with dideoxy nucleotides using TdT tailing. The lllumina
sequencing primer was hybridized to amplicons within the specimen,
and seven rounds of lllumina sequencing-by-synthesis were performed
insitu using reagents collected from MiSeq version 3 sequencing kits.
Each round of sequencing consisted of base incorporation (addition
of the next base), four-color imaging of the amplicons on a spinning
disk confocal microscope and cleavage of the reversible terminator,
enabling the next round of sequencing to be performed. After the
final round of sequencing, the universal amplicon detection probe
was hybridized to the sample (see library preparation protocol), and
afinalround of imaging was performed.

Data analysis to convert in situ sequencing images to localized
reads in space was performed using the established ExSeqProcess-
ing pipeline (https://github.com/dgoodwin208/ExSeqProcessing)
using the Big Experiment (BigEXP) approach for image registration
after color correction and normalization. After image registration
is puncta extraction and base calling, using the probe barcodes as
the reference library. Manual cell segmentation was performed in 2D
by using VASTLite version 1.3.0 (ref. 87) to manually annotate nuclei
boundaries of a 2D maximum intensity projection image of the DAPI
channel. Readslocalized within nuclei were assigned to that cell; reads
outside of segmented nuclei were discarded. The quality of each sample
was evaluated, and samples with an average read count per cell lower
than 50 were excluded from further analysis.
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Processing and quality assurance of the spatial expression
data

All spatial expression data were received in their respective typical
formats. In afirst step, all data types were transferred into acommon
observation x feature matrix format following the format of scRNA-seq
data. For single-molecule data (MERFISH and ExSeq), two matrices
were created, one cell x feature matrix using the accompanying cell
segmentationinformationand onebin x feature matrix where expres-
sionwasrepresented per10 pm x 10-um bin, resembling Slide-seq data.
Additionally, spatial coordinates were adjusted toall startat[0 | O] and
scaled torepresenta positional resolution of 1 pixel per pm, whichwas
the lowest original resolution of the data. Note that, in spatial expres-
sion data, we distinguish between ‘positional resolution’and ‘capture
resolution’: positional resolution is the resolution at which the posi-
tion in space of an observation or molecule is reported, whereas the
capture resolution is the resolution at which molecules are distinctly
captured. For example, in Slide-seq, the positional resolution (that
is, the resolution at which the position of the beads is reported) is
0.65 pum per pixel, and the capture resolution is 10 pm (=diameter of
a bead) because molecules that get captured by the same bead have
a maximum distance of 10 pm from each other. For single-molecule
resolved methods, positional and capture resolution are identical.

Having brought all data into the same format allowed their
efficient processing together with the matching sc/snRNA-seq data
as an anndata object using SCANPY®:, This way, for each patient
and method, one anndata object was created and processed indivi-
dually. The same measures were applied onall data types as reasonable
given the differences in design parameters between the different
methods.

Quality filtering was applied using the SCANPY version 1.7.2 func-
tions filter_cells with method-specific parameters and filter_genes
with the min_cells parameter set to 3. The following filter_cells param-
eters were used: min_counts =20 and min_genes =1 (MERFISH and
ExSeq), min_counts =30 and min_genes = 30 (initial Slide-seq and sc/
snRNA-seq). For Slide-seq and sc/snRNA-seq, an additional iterative
process of step-wise min_counts parameter increase was performed
to ensure that the fraction of low-quality beads with fewer than 100
counts retained in the data did not surpass 35%. This adaptive proce-
dure ensured sufficient quality while retaining the maximum num-
ber of observations possible. This procedure was also performed on
sc/snRNA-seq data that had already been quality filtered as described
above to ensure equivalent filtering in the extremely unlikely case
that this procedure might prove to be more stringent in specific cases.
For CODEX, the parameter settings min_counts =1and min_genes =1
were used, translating into a requirement of a value of greater than 1
in at least one gene, essentially disabling this filtering step for these
intensity-based data, because cell quality filtering had already taken
place during the segmentation process.

After filtering, the SCANPY workflow, including normalization,
loglp transformation, scaling, highly variable gene selection, regres-
sion of total counts and mitochondrial counts (where possible), PCA,
nearest neighbor finding, Leiden clustering and 2D projection using
UMAP, was applied. For CODEX, normalization and regression were
not performed given the intensity-based (not count-based) nature of
the data and the within-sample scope of this analysis.

Finally, the spatial expression data and H&E images were aligned
in a semi-manual process to honor their serial nature and allow effi-
cient comparison as well as transfer of histopathological annotations
from the H&E images. To this end, we devised custom functions that
allow for all necessary transformations (rotation, translocation, flip-
ping and scaling) and, using Jupyter notebooks, manually found and
recorded the respective parameters for each sample until all data
fromonebiopsy were adequately registered to acommon coordinate
systeminareproducible manner. Tofilter out spurious measurements,
all observations that resided outside of the area covered by the H&E

section were removed, and observations were annotated according
to the histopathological annotation that they overlapped.

Cell type annotation of the spatial expression data by
annotation transfer from the sc/snRNA-seq data

For all spatial expression data, cell types were annotated using the
TACCO framework version 0.0.1 (ref. 44) together with the matching
sc/snRNA-seq data as reference. Specifically, we used two conceptu-
ally different annotation methods wrapped in the TACCO framework
that are both able to deconvolve cell type mixtures. We used RCTD
version1.2.0 (ref.43) as a previously published, well-accepted tool that
was designed for the annotation of Slide-seq data and that explicitly
models cell-type-specific read count distributions to determine the
cell type composition of observations. We also used TACCO’s own
annotation method, whichis based on unbalanced optimal transport
(OT), which makes fewer assumptions about the properties of the input
dataand, in particular,isnot, per design, limited to count data, whichis
necessary for acoherentannotation, including the CODEX data. RCTD
was run with default parameters except for min_ct =2. OT was run
withlamb = 0.001and ‘boosted’ by using TACCO’s platform normaliza-
tion, multicenter (multi_center=4) and bisectioning (bisections =4,
bisection_divisor = 3) functionalities. Per observation, compositional
as well as categorical (maximum cell type) annotations were stored
for further use.

Cell type frequency correlation analysis

Toassessthe agreement of local cell type frequencies across the serial
sections of the same biopsies profiled with different methods, we
defined, for each biopsy, a universal grid of 100 x 100-pm bins, and,
within eachbin and section, the cell type composition was calculated
based on the previously assigned categorical cell type annotations,
yielding, for eachbinand section, a vector of cell type frequencies with
thelength of the cell types seenin any of the sections of agivenbiopsy.
Pair-wise Pearson correlations were then calculated per bin between
the cell type composition vectors derived from each of the sections,
representing different profiling methods and/or replicates.

Analysis of cluster congruence using the ARI

To assess congruence of expression-based Leiden clusters and cell
type or patient/sample annotations, respectively, with the assessed
communities (Leiden clusters, patients/samples and cell types) con-
sisting of individual observations (single cells/beads/bins), the ARIwas
calculated using the function adjusted_rand_score from the Python
packagescikit-learn version 0.24.1. Bootstrapping across 10 iterations
was used for statistical robustness, and results are reported as mean
and standard deviation.

Cell type co-localization analysis

Cell type co-localization analysis was performed using TACCO’s
version 0.2.2 co_occurrence function based on the compositional
OT annotations for a distance of up to 500 pm and using the ‘log_occ’
score. Inbrief, at each distance from a selected central cell type (here,
macrophages), the function calculates the probability of finding the
otherannotated cell typesrelative to the case where acentral cell type
isnotselected. Two scores were then derived from the co-localization
score: co-localization strength, defined asthe score of the first distance
interval, and co-localization range, defined as the score at the distance
interval where the score has decayed to 25% of the score in the first
distance interval.

De novo cell type annotation of the cell-segmented

MERFISH data

Leveraging the single-cell-like behavior of the cell-segmented MERFISH
data, in addition to the annotation transfer as described above, we
performed manual cluster-wise and marker gene-based annotation as
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is frequently done in scRNA-seq data. To this end, all cell-segmented
MERFISH datawere combined into one anndata object and processed
using SCANPY version 1.7.2 functions as described above. For con-
sistency, we used a similar level of resolution for the annotated cell
types as was used in the sc/snRNA-seq annotation and assigned new
cell type labels only when clusters clearly displayed features that did
not match to any previously annotated cell types, which was the case
for a small population of potentially regulatory B cells expressing
FOXP3in addition to the typical B cell marker FCRLS.

Characterization of macrophage subclusters

To characterize macrophage subclusters in each profiling method,
Leiden clusters were called on Harmony-aligned data (as described
inthe subsection ‘Integration of sc/snRNA-seq data or spatial data on
apseudobulk or single-cell/bead/bin level’). Differentially expressed
genes were called using the function rank_genes_groups of the Python
package SCANPY version 1.7.2 with the method parameter set to
‘wilcoxon’ and default parameters otherwise. One or two of the top
five differentially expressed genes were selected for display.

Differential expression analysis between EMT phenotypes

To detect differentially expressed genes among the three spatial
phenotypes (EMT-high, EMT-low and EMT-patched), the function
‘enrichments’ of the Python package TACCO version 0.2.2wasusedina
one-against-all-others or EMT-high versus EMT-patched setup with the
following relevant parameters: p_corr = ‘fdr_bh’ (multiple testing cor-
rection using Benjamini-Hochberg correction), position_split = (1,2)
(split sample in two parts along the y axis to capture within-sample
variability), method = ‘welch’ (Welch'’s ¢-test for statistical significance
testing), direction = ‘both’ (test for increased/enriched or decreased/
depleted expression), reduction = ‘mean’ (measure to calculate pseu-
dobulk values across sample splits) and normalization = ‘clr’ (use center
log-ratio normalization).

Differential cell type composition analysis between EMT
defined neighborhoods

To detect differences in cell type composition between EMT-high and
EMT-low neighborhoods, a two-sided Wilcoxon test and Benjamini-
Hochberg multiple testing correction were applied on center log-ratio
normalized, cell type compositions in 100 x 100-pm bins. EMT-high
and EMT-low neighborhoods were defined as100 x 100-pum bins with
amean EMT score greater (high) or smaller (low) than the median EMT
score for agiven sample.

MERFISH-based differential expression analysis between T/NK
proximal and distal malignant cells

Toinvestigate differencesin expression profiles of malignant cells that
arelocated in proximity of T or NK cells and those that are not, we used
the cell-segmented and manually annotated MERFISH data and defined
T/NK high-malignant cells as those that reside in a100 x 100-pm bin
togetherwith atleast one T or NK cell and the T/NK low-malignant cells
asthose that resideina100 x 100-pm bin that does not containa T or
NK cells. We then ran the SCANPY version 1.7.2 function rank_genes_
groups using the Wilcoxon test and Benjamini-Hochberg correction
to compareboth groups of malignant cells and rank the genes by their
expression difference. This analysis was performed in a sample-specific
setup as well as acombined setup across all samples.

Statistical analysis

Box plots follow the standard format (center line corresponds to
the median; box limits correspond to the upper and lower quartiles;
whiskers represent the 1.5x interquartile range; points represent out-
liers). Where there were too many data points to show individually,
width-scaled violin plots were used to represent the distribution of data
points, where graphically possible (otherwise only box plots are shown).

Pearson correlation and Spearman correlation coefficients were
calculated using the cor or cor.test function from the R package ‘stats’
or the corr function of the Python package ‘pandas’ version 1.1.3.

AllTUMAPs were created using SCANPY’s version 1.7.2 umap func-
tion with default parameters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data can be retrieved from Synapse or the database of Genotypes
and Phenotypes (dbGaP) (accession number: phs002371) through
the HTAN Portal at https://humantumoratlas.org and the associated
HTAN Publication Page https:/humantumoratlas.org/publications/
htapp_mbc_klughammer_2024. For convenience, processed data are
additionally available from the Single-Cell Portal (https://singlecell.
broadinstitute.org/single_cell/study/SCP2702) and interactively
browsable through CELLXGENE (https://cellxgene.cziscience.com/
collections/a96133de-e951-4e2d-ace6-59db8b3bfbld). The pre-built
Cell Ranger reference GRCh38 version 3.0.0 (November 2016) in its
spliced (scRNA-seq) and pre-mRNA (snRNA-seq) version was provided
by 10x Genomics (https://www.10xgenomics.com/support/software/
cell-ranger/latest/release-notes/cr-reference-release-notes).

Code availability

Code used to perform the presented analysis is available on GitHub:
https://github.com/klarman-cell-observatory/HTAPP-Pipelines/tree/
master/HTAPP_MBC.
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Extended Data Fig.1| Overview of biopsy sample handling and profiling methods. a) Flow diagram outlining biopsy enrollment and allocation. b) Table outlining
the key characteristics and design parameters of the profiling methods employed in this study.
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Extended Data Fig. 2| Quality statistics overview for sc/snRNA-Seq and distribution of the indicated quality measures for the indicated spatial methods,
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biopsy samples according to the axis labels. b) Box- and violin plots depicting the
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Cell type characterization of the sc/snRNA-Seq data.
a, b) Stacked violin plots depicting the expression of the top 5 cell type marker
genes for each of theindicated cell types, detected by 1 vs. all differential
expression analysis for the snRNA-Seq data (panel a) and scRNA-Seq data
(panelb). c) Heat map depicting the number of cells of each cell type detected
ineach of the samples. The color scale corresponds to the indicated respective
number of cells. d) Dot plots depicting the expression level (mean expression)
and frequency (fraction of expressing cells) of the indicated previously

published cell subtype signatures' across cells of the annotated broader cell types.
e) Stacked barplot showing the cell type composition for biopsies of bone and
brain metastasis. f) Dot plots depicting the expression of genes reported to be
implicated in bone metastasis (Che.: Chen2017%, Kang2003%*, Jo.:Jones2006%,
G.:Guise1996%, W.:Westbrook2018%, Joh.:Johnson2016) across cell types and
metastatic sites covered in the snRNA-Seq (left) and scRNA-Seq (right) dataset,
respectively.
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Extended DataFig. 4| Copy number aberration (CNA) detected in the sc/ same time but processed with snRNA-Seq and scRNA-Seq respectively.

snRNA-Seq data. a,b) CNA heatmaps across malignant cells, grouped by sample,  e) CNA heatmaps for both samples from patient 862. Samples were taken from
for snRNA-Seq data (panel a) and scRNA-Seqdata (panel b) ¢) CNA heatmaps for the same breast lesion but 220 days apart, and processed with snRNA-Seq. f) CNA
both samples from patient 223. Samples were taken from different liver lesions, heatmaps for both samples from patient 887. Samples were taken from the same
300 days apart and processed with snRNA-Seq. d) CNA heatmaps for both axillalesion but 200 days apart, and processed with snRNA-Seq.

samples from patient 262. Samples were taken from the same liver lesion at the
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Extended Data Fig. 6 | Malignant expression programs as identified by iNMF. a) Clustered heatmap of pairwise correlations across all 20 malignant expression
programs, represented by relative gene importance, detected by iNMF in the snRNA-Seq data (frozen) and scRNA-Seq data (fresh), each.
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Extended Data Fig. 8 | Correspondence of cell type composition across
profiling methods and annotations. a) Boxplots depicting the correlation

of cell type composition between sc/snRNA-Seq and spatial methods, for each
biopsy, stratified by annotation method (TACCO-OT or RCTD). The individual
datapoints are overlaid. Nindicates number of sample-pairs. b) Spatial scatter
plots displaying the correlation between cell type compositions within 100x100
pm bins as measured by the indicated pairs of methods in the 514-6760 biopsy.

c) Boxplots depicting the correlation of cell type composition between sc/snRNA-
Seq and spatial methods, for each biopsy, stratified by single-cell profiling

method (snRNA-Seq or sc RNAseq). The individual data points are overlaid.

d) Heatmap depicting for the segmented MERFISH data, the congruence of

cell type annotations based on manual cluster analysis/marker expression
(de-novo) and automated sn/scRNA-Seq-based annotation by TACCO-OT or
RCTD, respectively. Numbers indicate the number of cells with the respective
annotation combination. e) UMAPs of all cell-segmented MERFISH data based
on their expression profiles, with observations colored by cell type as annotated
based on cluster analysis/marker expression (de-novo), or annotation transfer
from sc/snRNA-Seq using TACCO-OT or RCTD respectively.
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Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 000F%

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  sc/snRNA-Seq: cellRanger 3.0.2
Slide-Seq: https://github.com/Macoskolab/slideseg-tools
CODEX: https://github.com/nolanlab/CODEX, CellVisionSegmenter, Image)
MERFISH: https://github.com/ZhuanglLab/MERIin 0.0.2.8, cellpose 0.1.7
ExSeq: https://github.com/dgoodwin208/ExSeqProcessing, VASTLite 1.3.0

Data analysis R packages: SingleR 1.0.1, 1.0.3, inferCNV 1.2.0, LiblineaR 2.10-8, randomForest 4.6-14, variancePartition 1.14.0, CountClust 1.12.0, Enrichr
1.0, LIGER 0.5.0.9000, Seurat 2.3.4 (gene-panel design for MERSIFH and ExSeq), Seurat 3.1.1 (all other), RCTD 1.2.0, sva v3.34.0, genefu
v2.20.0
Python packages: Scanpy 1.7.2, TACCO 0.0.1, 0.2.2, CellBender 0.1.0, scrublet 0.2.1, Harmony-pytorch v0.1.4, bbknn v1.5.1,scikit-learn
v0.24.1, pandas v1.1.3
Custom code: https://github.com/klarman-cell-observatory/HTAPP-Pipelines/tree/master/HTAPP_MBC

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data presented in this work can be browsed and downloaded through cellxgene:
https://cellxgene.cziscience.com/collections/a96133de-e951-4e2d-ace6-59db8b3bfb1d
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Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender While both male and female patients were eligible to participate, the sex of all participants in the study was female, as
expected based on the epidemiology of breast cancer. Gender was not considered during patient recruitment, sample
selection or analysis.

Reporting on race, ethnicity, or | Race, ethnicity and other social groupings were not considered during patient recruitment, sample selection or analysis.
other socially relevant
groupings

Population characteristics All patients on this study were adults ages 28-75 with metastatic breast cancer. Relevant clinical annotations including, for
example, biopsy site, receptor status, time since metastatic diagnosis, and most recent treatment class can be found in Table
S2.

Recruitment All patients seen at Dana-Farber Cancer Institute for metastatic breast cancer who were scheduled to undergo a clinical
tumor biopsy at the discretion of their treating physician at DFCI were eligible for this study, including all receptor subtypes
and prior treatment histories in order to span the clinical and phenotypic heterogeneity of the disease. Eligible patients were
approached regarding participation based on DF/HCC protocol 05-246. There were no additional systematic biases in
recruitment/selection.

Ethics oversight All samples included in this study were voluntarily donated by patients who provided informed consent under an IRB-
approved protocol (DF/HCC #05-246) which includes permission for sample acquisition, clinical data abstraction, sample
analysis, and data sharing. Analysis of biospecimens at the Broad Institute was performed under Broad Institute protocol
#15-3708B.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size All high-quality samples available in the data collection period from 2018-2019 were included. This study is intended as pilot study to cover
the clinical and histophathological diversity of MBC. Representations of some specific characteristics were therefor small. Analyses were
chosen accordingly.

Data exclusions  During quality filtering, low quality cells (insufficient number of genes, inconclusive expression signals) were removed as described in the
methods section.
sc/snRNAseq: Samples with extremely low numbers of cells or genes were excluded.
Slide-seq: The quality of all samples was evaluated and samples with an average read count per bead lower than 150 as well as those with an
unrecognizable shape (which prevented spatial alignment) were excluded from further analysis.
CODEX:Finally, all samples were checked for unexpected signal appearance and distribution, but all samples were deemed inconspicuous and
thus included in further analysis.
MERFISH:The QC criteria for each slice consisted of: 1) the average number of RNA counts per cell (>= 50 to pass) and 2) the Pearson
correlation of the average gene expression between the MERFISH dataset and a scRNAseq dataset derived from the same tumor (Pearson
correlation coefficient >= 0.60 to pass). Both criteria had to be met to pass QC.




ExSeq:The quality of all samples was evaluated and samples with an average read count per cell lower than 50 were excluded from further
analysis.

Replication For sc/snRNAseq, replicates from each tumor biopsy were not feasible given the limited amount of tissue. For spatial expression profiling,
multiple tissue sections were profiled by the same assay when possible (n=1-3 sections). All technically successful replicates are included in
the dataset; some replicates were excluded due to insufficient data quality (see above and Supplementary Figures 1-5).

Randomization  No experimental groups were assigned in this study.

Blinding No experimental groups were assigned in this study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies g |:| ChlP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology g |:| MRI-based neuroimaging
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Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atithentication-procedtres foreach seed stock- tised-ornovel- genotype generated—Describe-any-experiments-tused-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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