
Nature Medicine | Volume 30 | November 2024 | 3236–3249 3236

nature medicine

Article https://doi.org/10.1038/s41591-024-03215-z

A multi-modal single-cell and spatial 
expression map of metastatic breast cancer 
biopsies across clinicopathological features

Although metastatic disease is the leading cause of cancer-related deaths, 
its tumor microenvironment remains poorly characterized due to technical 
and biospecimen limitations. In this study, we assembled a multi-modal 
spatial and cellular map of 67 tumor biopsies from 60 patients with 
metastatic breast cancer across diverse clinicopathological features and nine 
anatomic sites with detailed clinical annotations. We combined single-cell 
or single-nucleus RNA sequencing for all biopsies with a panel of four spatial 
expression assays (Slide-seq, MERFISH, ExSeq and CODEX) and H&E staining 
of consecutive serial sections from up to 15 of these biopsies. We leveraged 
the coupled measurements to provide reference points for the utility and 
integration of different experimental techniques and used them to assess 
variability in cell type composition and expression as well as emerging spatial 
expression characteristics across clinicopathological and methodological 
diversity. Finally, we assessed spatial expression and co-localization features 
of macrophage populations, characterized three distinct spatial phenotypes 
of epithelial-to-mesenchymal transition and identified expression programs 
associated with local T cell infiltration versus exclusion, showcasing the 
potential of clinically relevant discovery in such maps.

Although malignant cells are the defining feature of cancers, tumors 
comprise malignant and non-malignant cells interacting in complex 
ecosystems that shape disease progression1. Understanding these 
interactions has potential for clinical translation. For example, 
although tumor-infiltrating lymphocytes (TILs) are generally associ-
ated with favorable prognosis, there is substantial heterogeneity2.  
In primary breast cancer (BC), TILs are predictive of response to  
neoadjuvant chemotherapy and improved survival in triple-negative 
breast cancer (TNBC) and human epidermal growth factor receptor 
2-positive (HER2+) BC, but their impact in hormone receptor-positive 
(HR+) BC remains unclear and may depend on distinct states of malig-
nant cells or TILs3.

Recent advances in single-cell and spatial profiling enable inter-
rogation of tissue ecosystems at unprecedented resolution. However, 
few studies have focused on metastatic disease, likely due to sample 

limitations, including availability, size and diversity. Moreover, the 
panoply of available methods with distinct design parameters poses 
challenges for users in choosing methods4,5. As part of the Human 
Tumor Atlas Network (HTAN)6, we used single-cell and single-nucleus 
RNA sequencing (sc/snRNA-seq) and four distinct spatial expression 
methods (CODEX7,8, targeted ExSeq9, MERFISH10–12 and Slide-seq13) to 
profile tumor biopsies from a cohort of patients with metastatic breast 
cancer (MBC), the leading cause of cancer-related death among women 
worldwide14, toward informing practical application of these methods 
and refining understanding of MBC.

Results
Single-cell and spatial expression profiling of clinical variables
To compare profiling methods and characterize cellular expression 
profiles of MBC biopsies, we created a comprehensive dataset covering 
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entire tissue section, CODEX yielded more observations per section 
than the segmented version of MERFISH but fewer than the binned  
version (Fig. 1c and Extended Data Fig. 2b). ExSeq, which captured 
only a small field of view (FOV) (<1 mm2), yielded the lowest number of 
observations per section in its segmented version, and this only slightly 
increased with binning (Fig. 1c and Extended Data Fig. 2b). Pseudobulk 
sample-wise expression profiles were correlated between all methods 
except ExSeq (Spearman ρ = 0.41 (CODEX versus scRNA-seq) to 0.75 
(Slide-seq versus scRNA-seq), ρ = −0.1 to 0.086 (ExSeq)) (Fig. 1d). As 
expected, segmented and binned versions of MERFISH and ExSeq 
showed near-perfect correlations of 0.97 and 1, respectively (Fig. 1d).

Clinical features are associated with cell type composition
We annotated cell types in sc/snRNA-seq using a semi-automated 
approach (Methods and Fig. 2a), combined with examination of the 
top five marker genes for each cell type (Extended Data Fig. 3a,b). 
Although most cell types were identified in snRNA-seq and scRNA-seq, 
some were detected only in snRNA-seq (adipocytes, neurons, some 
endothelial subsets, stellate cells and smooth and skeletal muscle cells) 
or scRNA-seq (neutrophils, mast cells, erythrocytes and keratinocytes) 
(Fig. 2a and Extended Data Fig. 3a,c), largely consistent with previous 
reports15,16. Several cell subtype signatures from scRNA-seq of primary 
BC17 scored highly in the expected cell types (Extended Data Fig. 3d). 
As expected, most of the scRNA-seq-derived signatures scored higher 
in scRNA-seq than in snRNA-seq.

Although most malignant cells displayed epithelial-like expression 
profiles, in a few samples we observed chondroid (sample 586-8599),  
stem-like (sample 917-4531) or neuronal (samples 944-7479 and  
890-7299) expression profiles (Extended Data Fig. 3a–c). Interest-
ingly, these were associated with unique clinicopathologic character-
istics. The sample with stem-like expression profiles came from the 
patient with the cohort’s shortest overall survival from initial diagnosis 
(<2 years), despite presenting with stage I disease and receiving appro-
priate treatment. The sample with a chondroid expression profile was 
the only biopsy with metaplastic histology, and the clinical pathology 
independently described chondroid differentiation. Metaplastic BC 
is a rare and heterogenous subtype associated with poor prognosis 
overall18 and poor response to cytotoxic chemotherapy19,20 but in which 
preliminary data suggest the possibility of responsiveness to immu-
notherapy with frequent PD-L1 expression21 and a subset of patients 
with exceptional responses to combined checkpoint blockade on a 
phase 2 trial22. Although anecdotal, these vignettes demonstrate that 
expression features recovered by sc/snRNA-seq can be consistent with 
rare clinicopathologic features and may warrant further investigation.

Biopsy composition by four major compartments (malignant, 
stromal, myeloid and lymphoid) varied across samples but, overall, 
scRNA-seq captured a higher fraction of immune cells, and snRNA-seq 
had greater representation of malignant and stromal cells (Fig. 2b), 
which are prone to death during dissociation15. To investigate sources 
of composition differences, we analyzed the biopsies from seven 
patients with two biopsies each. In one, two cores from the same pro-
cedure were profiled with snRNA-seq and scRNA-seq. These showed 
the expected bias toward enriched immune cells in scRNA-seq and 
malignant and stromal cells in snRNA-seq (Fig. 2c). In three patients, 

relevant clinical variables and diverse profiling methods (Fig. 1a), along 
with an analysis framework to integrate the resulting data, by harmo-
nizing features, data formats, positional resolution, coordinates and 
spatial registration (Fig. 1b and Methods), and we analyzed key fea-
tures, including cell composition, gene expression programs, immune 
phenotypes and co-localization (Fig. 1b). We profiled 67 biopsies from 
60 patients with MBC (30: scRNA-seq, 37: snRNA-seq) across receptor 
subtypes (44: HR+/HER2−, 3: HR+/HER2+, 3: HR−/HER2+, 16: HR−/HER2−) 
and frequent sites of disease (37: liver, 9: axilla, 7: breast, 5: bone, 3: 
chest wall, 3: neck, 1: brain, 1: lung, 1: skin; breast biopsies were collected 
from the primary site after MBC diagnosis) (Fig. 1a,c and Extended Data 
Fig. 1a). For 15 biopsies, we collected matching spatial data from serial 
sections of a second biopsy core from the same lesion/procedure, using 
up to four spatial methods and hematoxylin and eosin (H&E) staining 
(Fig. 1c, Extended Data Fig. 1a,b and Supplementary Tables 1 and 2).

The spatial techniques represent a range of design parameters 
(Extended Data Fig. 1b). Slide-seq profiles the whole transcriptome 
with near-cellular capture resolution using 10-μm beads (located inde-
pendently of sample structure). CODEX, MERFISH and ExSeq target 
selected panels of proteins (CODEX) or RNAs (MERFISH and ExSeq) 
using imaging at single-cell, subcellular or super-resolution, respec-
tively. Although ExSeq can be targeted or untargeted and MERFISH can 
potentially target up to thousands of RNAs, we designed a dedicated 
panel of 297 genes for MERFISH and ExSeq based on sc/snRNA-seq data 
and prior knowledge (Supplementary Table 3 and Methods).

We selected biopsies for tumor content and tissue quality and to 
cover a range of combinations of site and receptor status. We obtained 
high-quality Slide-seq and CODEX data from 15 of 15 and 13 of 13 biop-
sies, respectively, and MERFISH and ExSeq data from nine of 14 each 
(Fig. 1c and Extended Data Fig. 1b). The expert laboratories set sam-
ple quality control (QC) criteria individually (Methods). The com-
paratively low success rate of MERFISH is explained by its stringent 
inclusion criterion (Pearson’s r > 0.6 between MERFISH and matched 
sc/snRNA-seq pseudobulk profiles); for ExSeq, it was attributed to 
technical challenges (including tissue preservation, RNA quality and 
autofluorescence).

We analyzed single-molecule-resolution MERFISH and ExSeq 
data in two ways: aggregating signal per cell after cell segmentation or  
aggregating signal in 10 × 10-μm spatial bins. We analyzed Slide-seq by  
its native 10-μm beads and CODEX at the level of segmented cells 
(Fig. 1b,c). Analyzing single-molecule data by 10 × 10-μm bins gener-
ated coarser data in silico but avoided segmentation biases and allowed 
comparison to Slide-seq data while maintaining other method-specific 
properties (for example, detection sensitivity).

As expected, the methods varied in the captured number of 
observations (cells/nuclei/beads/bins) and molecular features (genes/
proteins) per observation (Fig. 1c, Extended Data Fig. 2a,b and Sup-
plementary Tables 1 and 2). There was a higher number of observa-
tions and features per observation using snRNA-seq than scRNA-seq, 
whereas Slide-seq had a similar number of observations but many 
fewer features per observation. By definition, the number of features 
detected by approaches with predefined panels (MERFISH, ExSeq 
and CODEX) was lower per observation (Fig. 1c and Extended Data 
Fig. 2b). Between CODEX and MERFISH, which both captured the 

Fig. 1 | Profiling of MBC biopsies using scRNA-seq, snRNA-seq and four 
spatial expression methods. a, Schematic illustrating sample acquisition and 
data generation. Core biopsies dedicated to research were embedded in OCT 
or subjected to scRNA-seq. Per biopsy, one fresh or frozen core was used for 
scRNA-seq or snRNA-seq, respectively. For matching spatial profiling, a second, 
OCT-embedded core from the same biopsy procedure was cut in two sets of  
five 10-μm serial sections for processing with four spatial expression methods 
(Slide-seq, CODEX, MERFISH and ExSeq) and H&E staining. b, Schematic 
illustrating the properties of the different produced data types, the data 
processing framework and the performed analysis. c, Overview statistics of the 

produced scRNA-seq, snRNA-seq and spatial expression data as well as exemplary 
H&E images for the core biopsies used in spatial profiling. Biopsy site and 
receptor status for each of the profiled cores is indicated as well as the number of 
profiled observations (cells, beads or bins) and the number of detected features 
(RNA species or proteins). The number of replicates for each spatial expression 
method and biopsy is indicated in the respective blobs. HR, hormone receptor 
(ESR1 and PGR). Biopsies from the same patient are indicated with bold font 
and connected through lines. d, Clustered heatmap depicting the pair-wise 
Spearman correlation of methods based on sample-wise pseudobulk expression.
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the paired biopsies were obtained from the same lesion at different 
timepoints (70–220 days apart), and each pair showed relatively simi-
lar compositions overall but with changes in T cell and macrophage 

frequencies (two decrease, one increase). In contrast, in each of the 
three patients in whom the paired biopsies were from different lesions 
or sites, we observed more substantial differences, largely driven by 
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hepatocytes and fibroblasts. Irrespective of method, biological factors, 
such as individual, time, lesion and site, can have substantial effects 
on composition.

We examined the impact of scRNA-seq (four biopsies) versus 
snRNA-seq (one biopsy) in bone biopsies, a clinically relevant meta-
static site that yields lower content biopsies (Extended Data Fig. 3e,f). 
Although scRNA-seq captured malignant cells in only two of four, 
snRNA-seq captured the malignant compartment well but yielded 
fewer immune cells (Extended Data Fig. 3e), suggesting that snRNA-seq 
might be more suitable when prioritizing malignant cell profiling, 
and scRNA-seq might be more suitable when prioritizing associated 
immune cells. Notably, expression of genes previously reported to  
be implicated in bone metastasis23–28 was detected across all biopsy 
sites (not bone specific) and was rather cell type specific (Extended 
Data Fig. 3f), with two exceptions (SPP1 and CCN2), which were more 
highly expressed in axilla, bone and breast macrophages and fibro-
blasts, respectively (Extended Data Fig. 3f). We also examined the 
ability of snRNA-seq to profile brain metastases, a clinically relevant 
site underrepresented in genomic datasets. snRNA-seq captured  
both malignant cells and tumor microenvironment well, anecdotally 
supporting this approach (Extended Data Fig. 3e).

Next, we systematically quantified the contributions of biological,  
clinical and technical variables to variability in cell type composi-
tion (Methods). Patient ID, profiling method and site explained the  
most variability overall (Fig. 2d), but other variables had considerable 
effects on variation in particular cell types (Fig. 2e). Approximately  
20% of the variability in chondrocytes was explained by histology, 
whereas variability in macrophages was explained by treatment class 
(~50%) and receptor status (~10%) (Fig. 2e). Higher macrophage abun-
dance was associated with recent immunotherapy and with HR−/HER2− 
disease (Fig. 2f).

Clinical features explain variation in expression profiles
Although non-malignant cells clearly grouped by cell type across  
biopsies, malignant cells grouped first by patient (Fig. 2a) as previously 
described in scRNA-seq of solid tumors17,29, consistent with diverse  
patterns of inferred copy number aberrations (CNAs) between  
patients (Extended Data Fig. 4a,b). Conversely, biopsies from the same 

patient had congruent inferred CNAs across lesions (Extended Data 
Fig. 4c), profiling method (Extended Data Fig. 4d) and time (Extended 
Data Fig. 4e,f). Two biopsies taken 220 days apart (patient 862), with 
intervening therapy, retained the same subclonal structure, albeit with 
varying proportions (Extended Data Fig. 4e).

As expected, inter-patient variability in the expression of ESR1, 
PGR and ERBB2 aligned well with clinical receptor status. Nevertheless, 
among estrogen receptor–positive (ER+) samples, ESR1 expression was 
captured more robustly in snRNA-seq (Fig. 2g). Inter-patient variability 
in established epithelial BC marker genes (EPCAM, KRT8, KRT18, KRT19 
and TRPS1) was minimally impacted by receptor status but notably by 
profiling method (Fig. 2g).

At the level of expression programs, clustering malignant profiles 
by mean gene set enrichment analysis (GSEA) hallmark signature scores 
in malignant cells yielded clear grouping in snRNA-seq (for example, 
interferon response, estrogen response and MYC/G2M checkpoint 
groups) but less so in scRNA-seq, with few exceptions (for example, 414 
and 586 scoring highly for epithelial-to-mesenchymal transition (EMT) 
and angiogenesis, respectively) (Extended Data Fig. 5). Clustering of 40 
cross-sample malignant expression programs learned with integrative 
non-negative matrix factorization (iNMF)30 separately from snRNA-seq 
and scRNA-seq (Methods) revealed six clusters, five of which included 
programs derived from both methods. Three of these had highly cor-
related programs and congruent biological processes: two associated 
with cell cycle and the third with EMT (Extended Data Fig. 6). To further 
compare malignant cell states, we clustered pseudobulk profiles gener-
ated from the malignant cells of each biopsy. This revealed two major 
clusters: one predominantly comprised HR+ and LumA/B tumors and 
was enriched in liver biopsies (P = 0.0185, two-sided Fisher’s exact 
test), and the other predominantly comprised HR−/HER2− biopsies, 
which further separated into basal-like and HER2-like subsets and was 
enriched in axilla biopsies (P = 4.92 × 10−4, two-sided Fisher’s exact 
test) (Fig. 2h). Basal-like biopsies formed a highly correlated exclu-
sive subcluster (Fig. 2h), suggesting higher expression stability of the 
basal subtype, consistent with previous reports31–33. Notably, biopsies 
from the same patient grouped together, even in two cases where they 
changed from HR+ or HER2+ to HR−/HER2−, confirming the relative 
stability and patient specificity of malignant cell-intrinsic expression 

Fig. 2 | Cell type composition and expression variance in snRNA-seq and 
scRNA-seq data. a, UMAP representation of snRNA-seq and scRNA-seq data, 
colored by cell type. b, Stacked bar plots showing the cellular compartment 
composition for each sample in the snRNA-seq and scRNA-seq data. Samples 
that come from the same patient are highlighted in bold. c, Stacked bar plots 
showing the cell type composition for pairs of samples from the same patient. 
sc, scRNA-seq; sn, snRNA-seq. d, Violin and box plots representing the percent 
variance in cell type frequency explained by the indicated variable for each of 
the 26 annotated cell types (e). n = 26 cell types; tx, treatment. e, Stacked bar 
plots showing the percent variance in cell type frequency explained by the 
indicated variables for each of the 26 annotated cell types. f, Box plots with 
overlaid data points (=samples), representing the normalized macrophage 
frequency (Pearson’s contingency ratio) stratified by different properties 
of the two variables that explain variance in macrophage frequency (e). The 
significance of differences in ‘one against all others’ comparisons (two-sided 
Wilcoxon test, Benjamini–Hochberg correction) is indicated. n indicates the 
number of biopsy samples. g, Dot plots depicting the expression level (mean 

expression) and frequency (fraction of expressing cells) of malignant marker 
genes as well as disease-relevant BC biomarkers across malignant cells, grouped 
by =profiling method and receptor status. h, Clustered heatmap of pair-wise 
correlations between pairs of pseudobulk expression profiles representing 
each sample’s malignant cell population, corrected for profiling method using 
ComBat (Methods). Inset: box plots overlaid with individual data points (=sample 
combinations as in the heatmap) showing the pair-wise Pearson correlation 
across samples within PAM50 groups. The significance of differences between 
the basal and all other groups (two-sided Wilcoxon test) is indicated. i, Violin 
and box plots representing for all genes the percent variance in normalized 
expression levels across sample-wise and compartment-wise pseudobulk 
profiles, explained by the indicated variable. The top 3–5 genes are indicated. 
n = 26,539 genes. j, Stacked bar plots showing the percent variance in normalized 
expression levels across sample- and compartment-wise pseudobulk profiles, 
explained by the indicated variables from i for the three receptor status defining 
genes, ESR1, PGR and ERBB2.

Fig. 3 | Spatial expression profiling of MBC biopsies. a, Overview of all spatial 
expression datasets covering all samples and methods included in this study. 
For each successful sample–method combination, a spatial scatter plot is shown 
where each observation (cell, bead and bin) is displayed and colored by its OT 
annotated cell type. Data for the same biopsy are spatially aligned and depicted 
at the same scale. A more detailed view of individual samples for which data are 
available from all spatial profiling methods is provided in Supplementary Figs. 1–5.  
b, Schematic illustrating the comparison by Pearson correlation of high-resolution  

cell type composition within spatially corresponding 100 × 100-μm bins across 
methods, within biopsies. An example for one bin (white star) within one biopsy 
is shown. c, Box plots displaying the correlations between cell type compositions 
within spatially corresponding 100 × 100-μm bins as measured by the indicated 
pairs of methods, displayed individually per biopsy. Correlations within the same 
method were calculated when technical replicates were available. The mean 
Pearson correlation for each pair of methods is indicated by the color-scaled 
inset. n indicates the number of 100 × 100-μm bins.
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profiles through MBC disease progression, possibly due to the strong 
effect of CNAs on expression34,35.

To dissect inter-patient expression variance in each compart-
ment, we estimated, for each gene, the variability explained by clinical/
technical covariates (Methods and Fig. 2i). These variables explained 
a large fraction of the inter-patient variance in intrinsic expression in 
the stromal (median, ~65%) and malignant (median, ~85%) compart-
ments but much less in the immune compartments (median, ~30%). 
Consistent with our other observations, patient ID explained the most 
variance in the malignant compartment but played a negligible role in 
the immune compartments. Conversely, histology explained approxi-
mately 10% variance in the myeloid compartment but was negligible 
for all others. Across all compartments, profiling method explained a 
median of approximately 20–25% variance, consistent with previous 
reports15,16 (Fig. 2i and Extended Data Fig. 5). ComBat36 adequately 
corrected such ‘platform effects’ at the pseudobulk level, revealing 
relevant biology across methods (Fig. 2h), and Harmony37 (but not 
BBKNN38) produced an aligned embedding at the single-cell level that 
appropriately grouped non-malignant cells across patients/methods 
while maintaining biological variability in the malignant compartment 
(Extended Data Fig. 7).

Although receptor status explained a sizeable fraction of the 
expression variation of PGR (~56%), ESR1 (~44%) and ERBB2 (~68%) 
in the malignant compartment (Fig. 2j), it only explained substantial 
variance (>44%) in 34 other genes (Supplementary Table 4), some of 
which were reassuringly associated with one of the receptors. These 
included STARD3, GRB7, MIEN1 and LASP1, which are adjacent to  
ERBB2 on 17q12 and subject to co-amplification, and MTA2, whose 
expression is associated with ERα expression39. Others, including 
TMSB4X and BECN1, were previously associated with metastatic pro-
gression but not with BC receptor expression40–42, suggesting the 
potential to uncover novel associations.

These results show strong inter-patient variability of malignant 
expression profiles, with patient-specific profiles maintained during 
MBC progression through time, site and even changes in receptor status.  
In contrast, the expression profiles in the immune compartments 

showed only low levels of explainable variance by these characteris-
tics. Additionally, although profiling methods have non-negligible 
effects on all compartments, these can be mostly addressed by data 
integration methods before comparing cell or gene profiles.

Comparison of spatial expression profiling methods
Our experimental design enabled profiling serial sections of the same 
biopsy with up to four different methods (Fig. 1a). We used a common 
observation × features format for analysis, where observations cor-
responded to segmented cells (MERFISH, ExSeq and CODEX), beads 
(Slide-seq) or 10 × 10-μm bins (MERFISH (bin) and ExSeq (bin)), and  
features corresponded to RNA or protein sets denoted as the official  
gene alias for all methods (Fig. 1b and Methods). We scaled to a 1-μm-per- 
pixel positional resolution (Methods), registered to a common  
coordinate system, and applied quality filtering in a method-specific 
manner (Fig. 1b and Methods). We annotated cell types by label trans-
fer from the matching sc/snRNA-seq using RCTD43 and TACCO-OT44 
(Methods). TACCO-OT was selected for downstream analyses as it  
was better able to handle both count and non-count data (Extended 
Data Fig. 8a and Supplementary Figs. 1–5a,b).

Spatial cell type maps appeared broadly congruent across serial 
sections profiled by different methods (Fig. 3a and Supplementary 
Figs. 1–5) but ranged in their FOV from the whole biopsy (MERFISH 
and CODEX) to a circular area with an approximately 3-mm diameter  
(Slide-seq) to approximately 1 mm2 (ExSeq). Binned MERFISH 
and ExSeq patterns matched the segmented ones but were more  
pronounced and less sparse, likely due to a combination of signal 
included in binning but lost due to non-assignment in segmentation 
as well as signal filling of cell-proximal extracellular space in binning. 
To assess the agreement between methods in local cell type organiza-
tion, we calculated pair-wise correlations between methods based 
on cell type composition in aligned 100 × 100-μm bins (Fig. 3b,c  
and Extended Data Fig. 8b). Correlations were high across method 
combinations and samples (median Pearson’s r ≈ 0.9), except for  
three samples (330, 364 and 783) with no correlation (median, r ≈ 0) 
among any of the three methods (CODEX, ExSeq and Slide-seq) (Fig. 3c). 

Fig. 4 | Recovering spatial and molecular signals across spatial expression 
profiling methods. a, UMAPs of all data across biopsies based on their 
expression profiles, generated with the indicated methods, with observations 
colored by TACCO-OT annotated cell type, patient/sample and Leiden clusters 
(resolution, 0.8). b, Error bar plot with mean ± s.d. showing the ARI quantifying 
cluster cohesion between Leiden clusters and patient/sample or cell type 
annotation across 10 bootstrapping iterations for each indicated method, as in 
a. ARI ranges between −1 and 1, where 1 indicates perfect agreement, 0 indicates 
a random agreement and −1 indicates completely different groupings. n = 10 
bootstrapping iterations. c, Line plots depicting co-localization strength (y axis) 
of macrophages with all other measured cell types in dependence of distance 
(x axis), derived from the indicated data types in the indicated three biopsies, 

selected to represent three spatial co-localization phenotypes (short-range 
accumulation, long-range accumulations and intermixing). The distance is 
measured in μm. d, Dot plot displaying aggregated (mean across samples) 
co-localization range (size) and strength (color) of macrophages with all other 
cell types per method. Co-localization strength values lower than 0 indicate 
exclusion/repulsion. e, Dot plot displaying co-localization range (size) and 
strength (color) of macrophages with other macrophages or malignant cells for 
all samples and methods. Co-localization strength values lower than 0 indicate 
exclusion/repulsion. f, Spatial scatter plot of macrophages overlaid onto H&E 
images showing the expression levels of CD163 in the depicted macrophages, for 
the three example biopsies representing the three co-occurrence cases as in c, 
based on cell-segmented MERFISH data.

Fig. 5 | Characterizing macrophage and malignant expression phenotypes 
across spatial expression profiling methods. a, UMAPs of all observations 
confidently annotated as macrophages across biopsies based on their 
expression profiles, colored by log-normalized expression of CD163, log-
normalized expression of HLA-DRA or Leiden clusters. b, Dot plot depicting 
the scaled expression (by gene, across clusters) and fraction of expressing cells 
of macrophage marker and function genes as well as marker genes for other 
cell types and differentially expressed genes between clusters as in a for cell-
segmented MERFISH data. Side bar plots indicate the number of cells in each 
cluster. c, Clustered heatmap depicting the pair-wise Spearman correlation of 
methods based on sample-wise pseudobulk expression of macrophage marker 
and function genes as in b. d, UMAPs of all observations annotated as malignant 
cells across biopsies based on their expression profiles, colored by their EMT 
score expression (capped at −1 and 1 for comparability) or patient/sample.  
e, Spatial scatter plots of the cell-segmented MERFISH data where each cell 

is colored by its EMT score expression (capped at −1 and 1 for comparability). 
Samples are grouped into three spatial EMT phenotypes—EMT-high, EMT-low 
and EMT-patched—based on the distribution of the EMT signal across space.  
f, Dot plot depicting the differential expression significance (two-sided Welch’s  
t-test, Benjamini–Hochberg correction) of genes overexpressed in one of the  
three spatial EMT phenotypes (EMT-high, EMT-low and EMT-patched), as 
detected in the cell-segmented MERFISH data (e). g, Scatter plot relating the log 
fold changes of gene expression between EMT-high and EMT-patched samples 
as detected in cell-segmented MERFISH to the corresponding expression 
changes detected in the other indicated methods. The significance of differential 
expression was calculated by a two-sided Welch’s t-test and Benjamini–Hochberg 
correction. The Spearman correlation is indicated. Error bands indicate standard 
error. h, Clustered heatmap depicting the pair-wise Spearman correlation of 
methods based on gene-wise log fold changes between EMT-high and EMT-
patched samples, defined as in e and related to g. FC, fold change; man, manual.
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These three samples did not pass MERFISH QCs, suggesting that more 
stringent pass/fail QC may be appropriate for other methods. Notably,  
cell type composition from spatial data also correlated well with  
sc/snRNA-seq across all methods (Pearson’s r ≈ 0.9) and slightly more 
highly with snRNA-seq than scRNA-seq (Extended Data Fig. 8c). This 
weakly supports snRNA-seq’s capacity to more faithfully represent 
cell type composition.

To assess each method’s cell or bin/bead-level profiles across sam-
ples, for each method (separately), we clustered all profiles, created a 
low-dimensional embedding for visualization and quantified the asso-
ciation of clusters with patient or cell type using the adjusted Rand 
index (ARI) (Fig. 4a,b and Supplementary Figs. 1d, 2d, 3d, 4d and 5d).  
sc/snRNA-seq and cell-segmented MERFISH grouped primarily by cell 
type and patient for normal and malignant cells, respectively (Fig. 4a,b). 
Conversely, binned or bead-based methods, where profiles are a compos-
ite across cells, reflected mostly a malignant cell, patient-specific signal, 
with less separation between clusters, and lower cell-type-driven separa-
tion of non-malignant cells, suggesting a dominating signal from preva-
lent malignant cells. CODEX clusters were also indistinct and mostly 
driven by patient, not cell type, possibly related to the antibody panel.

To assess each method’s capacity to capture local organization, we 
quantified, for each method, the co-localization of each cell type (as an 
‘anchor cell’) versus all other cell types within 50 μm, showing consist-
ency across methods (Supplementary Figs. 1c, 2c, 3c, 4c and 5c). To 
assess a broader distance range of 0–500 μm and systematically com-
pare methods, we focused on macrophages, as they are present in most 
samples and are captured well by all methods. In general, Slide-seq, 
MERFISH and CODEX all captured short-range and long-range accumu-
lations and intermixing of macrophages and other cell types similarly 
(Fig. 4c–e). ExSeq was often the weakest at capturing accumulation pat-
terns (Fig. 4c). Notably, across all biopsies, macrophages preferentially 
co-localized with other macrophages and weakly avoided malignant 
cells (Fig. 4e). Visual inspection of macrophage distributions relative 
to the matching H&E images showed a distinct long-range pattern with 
macrophage islands and more homogenous short-range and intermix-
ing phenotypes (Fig. 4e).

Overall, there was relatively high congruence among meth-
ods, but MERFISH showed several benefits: a large profiling area, 
clear spatial patterns and clear, sc/snRNA-seq-like clustering of cell  
profiles. As our MERFISH experiments only measure the expression  
of ~300 genes, we further assessed its ability to detect cell subsets  
without matching sc/snRNA-seq data. We compared clustering-based 
cell annotations obtained from segmented MERFISH to those from 
RCTD and TACCO-OT (Extended Data Fig. 8d,e). Although most were in 
agreement, MERFISH-based assignments lacked some granularity (only 
one endothelial cell label, joint T/NK labels) but captured other distinc-
tions missing in sc/snRNA-seq, including a small cluster of B regulatory 
cells jointly expressing FOXP3 and FCRL5 (Extended Data Fig. 8e).

Spatial profiling of tumor-associated macrophages
Tumor-associated macrophages (TAMs) are implicated in multiple 
stages of tumor progression and have prognostic implications in solid 
tumors, including BC45–47. However, their role, diversity and therapeutic 
potential remain only partially understood48,49. For example, although 
CD68+ leukocyte density alone was not found to be a prognostic bio-
marker in primary treatment-naive BC, a CD68Hi, CD4Hi, CD8Lo immuno-
profile was associated with reduced overall survival and recurrence-free 
survival50, and the presence of TAMs expressing the CD163 scavenger 
receptor was associated with adverse prognostic features in BC51. In our 
data, macrophages were ubiquitous across samples and measurement 
methods; their variable frequency across samples in our sc/sn composi-
tion analysis was highly explained by the most recent treatment class 
(with immunotherapy being weakly associated with higher macrophage 
frequencies) (Fig. 2d–f), and their spatial organization varied between 
samples and measurement methods when chosen as the ‘anchor cell’ 
(Fig. 4c–f and Supplementary Figs. 1c, 2c, 3c, 4c and 5c).

Macrophage co-localization phenotypes (Fig. 4c,e) were neither 
specifically enriched nor depleted with expression of CD163, a key 
macrophage marker, with the three representative samples show-
ing predominantly CD163+ macrophages (Fig. 4f). Moreover, most 
(73–93%) macrophages in the other biopsies profiled by MERFISH  
were also CD163+, with few intermixing CD163− macrophages  
(Fig. 4f and Extended Data Fig. 9a). In the two notable exceptions  
(878 and 880), most macrophages were CD163− (Extended Data Fig. 9a). 
Due to methodological limitations, these observations were only  
possible with MERFISH.

To investigate broader macrophage expression states, we inte-
grated all observations identified as macrophages using Harmony37 
(within each method separately) and clustered them (Fig. 5a and 
Extended Data Fig. 9b). Using the same clustering resolution for all 
methods, we retrieved 4–15 clusters per method (Fig. 5a). Across 
all methods, there were two major clusters of highly correlated 
method-specific clusters: a CD163+ cluster with high expression of 
macrophage markers as well as HIF1A and APOE/APOC1 and a CD163− 
cluster associated with lower macrophage marker expression and 
expression of MKI67 (Extended Data Fig. 9c,d). ExSeq and Slide-seq 
had much lower signal for macrophage markers overall (Fig. 5a and 
Extended Data Fig. 10a), but Slide-seq still showed moderate corre-
lation to other methods. MERFISH was the most correlated with sc/
snRNA-seq (ρ = 0.64–0.84; Fig. 5c) and demonstrated a similar pat-
tern, with two large clusters along a single continuum (one CD163+, 
the other CD163−; Fig. 5a) as well as 13 small clusters of approximately 
100 cells each, expressing shared macrophage markers and distinct 
cluster-defining genes associated with different states or functions, 
such as ANLN or CDK6 (proliferation), MMP11 (tissue remodeling) or 
FCN1 (angiogenesis)52 (Fig. 5b and Extended Data Fig. 10b). Previous 
studies of primary BC described APOE-expressing macrophages as 

Fig. 6 | Characterizing the cellular neighborhoods of malignant expression 
phenotypes across spatial expression profiling methods. a, Dot plots 
depicting the log fold change (color) and significance (size) of differences in cell 
type frequencies between EMT-high and EMT-low neighborhoods (100 × 100-μm 
bins) within each section for MERFISH, Slide-seq and CODEX. ExSeq data did 
not yield any significant results. Replicates (serial sections) of the same biopsy 
are denoted with ‘_1–3’. P values were calculated using a two-sided Wilcoxon test 
and Benjamini–Hochberg multiple testing correction. b, Scatter plot relating 
the log fold changes of cell type frequency between EMT-high and EMT-low 
neighborhoods within samples as detected in cell-segmented MERFISH to the 
corresponding cell type frequency changes detected in the other indicated 
methods. The significance of differential cell type frequencies was calculated by 
a two-sided Wilcoxon test and Benjamini–Hochberg correction. The Spearman 
correlation is indicated; error bands indicate standard error. c, Clustered 
heatmap depicting the pair-wise Spearman correlation of methods based on cell 
type frequency log fold changes between EMT-high and EMT-low neighborhoods 

within samples, defined as in Fig. 5e, related to b. d, Spatial scatter plots of the 
malignant cells within the cell-segmented MERFISH data where each cell is 
colored as to whether or not it resides in the same 100 × 100-μm bin as at least one 
T/NK cell. e, Clustered binary heatmaps of whether or not a gene is among the 
top 10 differentially expressed genes between malignant cells residing close to a 
T/NK cell and those that do not within each biopsy, measured by cell-segmented 
MERFISH. Only genes that occur in at least two samples are shown. Genes are 
colored by their directionality in the common differential expression analysis. 
Genes with different directionality between patient-specific and combined 
analysis show discordant coloring. f, Volcano plot of differential gene expression 
analysis (two-sided Wilcoxon test, Benjamini–Hochberg correction) between 
malignant cells residing close to a T/NK cell and those that do not across all 
biopsies, measured by cell-segmented MERFISH data. Genes are colored by their 
directionality in the sample-specific differential expression analysis. Genes with 
different directionality between patient-specific and combined analysis show 
discordant coloring. FC, fold change; man, manual.
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lipid-associated macrophages (LAMs), comprising up to 30–40% of all 
myeloid cells17. In our MERFISH data, the fraction of APOE-expressing 
macrophages varied from 24% to 85% of all macrophages (mean, 48%).

Spatial interaction and expression phenotypes
We examined the spatial organization of malignant cells considering 
their expression of the EMT program initially identified with scRNA-seq 
(Extended Data Fig. 6a). We observed intra-patient and inter-patient 
variability in EMT signals among the malignant cells across all methods 
(Fig. 5d). Although cells from samples with low and high EMT scores 
showed little variation of EMT scores across space, intermediate scor-
ing samples showed patches of high-scoring cells (Fig. 5e, segmented 
MERFISH data), suggesting a spatially determined component.

We partitioned the samples across three spatial EMT phenotypes—
EMT-low, EMT-patched and EMT-high—and identified genes that were dif-
ferentially expressed between malignant cells in tumors from the three 
spatial EMT phenotypes (Fig. 5f). EMT-patched and EMT-high pheno-
types were each characterized by distinct cell cycle genes (EMT-patched: 
CCND1, RB1 and NF1; EMT-high: CDC20); EMT-low samples were further 
characterized by AGR2, a potential biomarker of poor prognosis53,54.  
The differential expression changes between EMT-patched and  
EMT-high phenotypes were largely congruent across MERFISH,  
Slide-seq and sc/snRNA-seq but not CODEX or ExSeq (Fig. 5g,h).

EMT-high (> sample median) and EMT-low (< sample median) 
local neighborhoods (100 × 100-μm bins) showed differences in cell 
type composition (Fig. 6a). Across all samples and methods (except 
ExSeq—no significant enrichments), malignant cells were depleted and 
fibroblasts were enriched in EMT-high neighborhoods (Fig. 6a). Interest-
ingly, in EMT-high neighborhoods of sample 917 (the one sample with 
stem-like and non-stem-like malignant cells), stem-like malignant cells 
were depleted and non-stem-like malignant cells were slightly enriched 
(Fig. 6a; MERFISH and CODEX but not Slide-seq). Myeloid and lymphoid 
cell types showed mostly sample-specific enrichments (Fig. 6a). Overall, 
replicate sections (Fig. 6a) and all methods except ExSeq showed rela-
tively good agreement (0.32 < ρ < 0.68) in terms of cell type composition 
differences between EMT-low and EMT-high neighborhoods (Fig. 6b,c).

To recover spatial patterns related to interactions between malig-
nant and lymphoid cells, we tested if differences in malignant cell 
expression profiles are associated with differences in their proximity 
to T/NK cells (Methods). T/NK+ 100 × 100-μm bins generally formed 
patches, regardless of the overall level of T/NK infiltration (Fig. 6d). 
Malignant cells in T/NK+ bins showed higher expression of MHC-I and 
MHC-II genes (HLA-E, CD74, B2M, HLA-DRA and HLA-B), as expected, 
but also luminal epithelial genes (KRT8, KRT18 and MUC1) and ISG15 
(Fig. 6e). On the other hand, genes upregulated in malignant cells in 
the T/NK− bins included SOX4 (in six of nine biopsies), consistent with 
the association of SOX4 expression with lower CD8+ T cell infiltra-
tion in primary TNBC55. Thus, SOX4-expressing malignant cells that 
seemingly avoid T/NK contact coexist in the same biopsies with malig-
nant cells that engage in T/NK cell interactions. These patterns were 
also observed when analyzing malignant cells across all metastases  
jointly (Fig. 6f), as were additional key genes (for example, GATA3 and 
FOXA1 in T/NK+ regions; TMSB10 and AZGP1 in T/NK− regions) that were 
recovered in different categories compared to the patient-specific 
analysis. Thus, although combining different biopsies can increase 
the power to detect common signals, patient-specific signals might 
be lost or even interpreted inversely.

Discussion
We generated an integrated atlas of MBC based on single-cell and spatial 
expression profiling of 67 core needle biopsies from 60 patients. Span-
ning the clinical and molecular heterogeneity of MBC and incorporating 
a careful experimental design that enables comparison across methods  
provide opportunities for advances across BC research as well as 
method and algorithm development. This breadth-centered approach 

limits the statistical power for analyses of clinicopathologic subsets, 
and unique aspects of individual methods could not always be rep-
resented, including ExSeq’s nanometer resolution and Slide-seq’s  
potential for decomposed analysis. Nevertheless, in addition to  
providing insight into the architecture of MBC—including cell  
types, expression programs and their spatial relationships—and  
practical comparison across methods, we also leveraged the dataset to 
explore sources of heterogeneity and spatial expression phenotypes.

On a technical level, profiling method contributed to observed 
expression variability, including in key genes such as ESR1 and TRPS1, 
a finding with implications for marker gene-based approaches. Among 
single-cell methods, snRNA-seq not only captured epithelial and stro-
mal cells more efficiently but also more closely matched spatial data. 
ComBat performed well for platform correction on a pseudobulk level, 
and Harmony integrated the data well at the single-cell level.

Spatial profiling methods generally showed high agreement, 
and all recovered co-localization patterns within their profiling areas. 
ExSeq diverged the most from other methods, although local cell type 
frequencies were still similar. MERFISH performed particularly favora-
bly in terms of separable, single-cell molecular profiles and faithfully 
recovered patient-specific expression signals as the primary driver of 
malignant, but not non-malignant, cell-intrinsic variability.

The malignant compartment was characterized by substantial 
inter-patient heterogeneity but still revealed intriguing patterns: 
basal-like biopsies formed a highly correlated exclusive subcluster; 
EMT programs were robust among single-cell methods and demon-
strated inter-patient and intra-patient heterogeneity in three spatial 
phenotypes, complementing prior studies of EMT marker expression 
heterogeneity both within primary BC56 and between matched primary 
and metastatic biopsies57; and patient-specific CNA profiles and expres-
sion programs were maintained across time, site and even changes in 
receptor subtypes, in contrast to prior orthogonal studies of genomic 
evolution and diversity through disease progression and metastasis58–60.

In the immune compartment, macrophages were the most fre-
quent cell type, although their frequency was influenced by the most 
recent treatment class and specifically increased with prior immu-
notherapy. Across methods, we identified two macrophage states 
characterized by CD163/CD68/APOE/HIF1A and MKI67, respectively. 
Although APOE expression was reported to promote T cell effector 
functions61, we did not find a significant spatial correlation between 
expression of APOE in macrophages and PDCD1 or CTLA4 in T/NK cells. 
While macrophages were ubiquitous, they weakly avoided malignant 
cells; T/NK cells showed more variable infiltration levels. Notably,  
T/NK localization relative to malignant cells was associated with  
expression patterns in malignant cells— co-localization with higher 
expression of MHC components; exclusion with increased SOX4—
expanding on previous studies linking SOX4 expression to immune 
evasion in primary TNBC55. Future work will further investigate the 
molecular underpinnings of these cell states and spatial interactions 
and their translational significance.
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Methods
Ethics statement
All samples included in this study were voluntarily donated by patients 
who provided informed consent under an institutional review board 
(IRB)-approved protocol (DF/HCC no. 05-246), which includes permis-
sion for sample acquisition, clinical data abstraction, sample analysis 
and data sharing. Analysis of biospecimens at the Broad Institute was 
performed under Broad Institute protocol number 15-370B.

Sample acquisition, handling and annotation
Tissues were collected as described in detail previously15. Clinical anno-
tations were generated from the electronic medical record under the 
supervision of a board-certified medical oncologist and a cancer regis-
trar following HTAN clinical data standards (https://humantumoratlas.
org/standard/clinical), which are based on the National Cancer Institute 
Genomic Data Commons model (https://gdc.cancer.gov/about-data/
gdc-data-processing/clinical-data-standardization).

For snRNA-seq and spatial expression assays, core needle biop-
sies were either snap frozen or frozen in optimal cutting temperature  
(OCT) compound (Tissue-Tek, Sakura) to preserve. Cores were pre- 
coated with OCT by putting a thin layer of OCT down in the cryo-
mold before placing an individual core in the center of the OCT mold  
in a straight line and adding additional OCT to fill the cryomold.  
The cryomold was then placed on dry ice for 5–15 min until the 
block was opaque before storing it at −80 °C. For scRNA-seq, core  
needle biopsies were transferred from interventional radiology into 
DMEM medium and processed upon arrival at the Broad Institute.

Generation of snRNA-seq data
snRNA-seq was performed as described previously15. Specifically, 
frozen tissue was placed on ice and in one well of a plate (STEMCELL 
Technologies, 38015), and 1 ml of TST buffer was added to the well. Tis-
sue was kept on ice and cut into pieces with Noyes spring scissors (Fine 
Science Tools, 15514-12) for 10 min. Tissue mixture was filtered through 
a 40-μm Falcon cell strainer (Thermo Fisher Scientific, 08-771-1). The 
well was washed and filtered with 1 ml of detergent buffer solution, 
and 3 ml of 1× ST buffer was added to a total well volume of 5 ml. The 
solution was centrifuged in a 15-ml Eppendorf tube for 5 min at 500g 
and 4 °C in a swinging bucket centrifuge. Pellet was resuspended in 1× 
ST buffer with a resuspension volume of 100–200 μl based on pellet 
size. The single-nucleus suspension was filtered through a 35-μm Fal-
con cell strainer (Corning, 352235). In total, 8,000 (V3) or 10,000 (V2) 
nuclei were selected with a C-chip disposable hemocytometer (VWR, 
82030-468) and transferred to Chromium chips for the Chromium 
Single Cell 3′ Library (V2 or V3) per the manufacturer’s instructions 
(10x Genomics).

Generation of scRNA-seq data
scRNA-seq was performed as described previously15. Specifically, sam-
ples were washed in cold PBS and transferred into a 2-ml Eppendorf 
tube containing dissociation mixture (950-µl volume of RPMI 1640 
(Thermo Fisher Scientific, 11875093) + 10 µl of 10 mg ml−1 DNAse I 
(Sigma Aldrich, 11284932001) + 40 µl of 2.5 mg ml−1 Liberase (Sigma 
Aldrich, 5401127001)). Next, the sample was minced in the Eppendorf 
tube using spring scissors (Fine Science Tools, 15514-12) into fragments 
less than approximately 0.4 mm and incubated at 37 °C while rotating 
horizontally at approximately 14 r.p.m. for 10 min, followed by pipet-
ting the sample 20 times with a 1-ml pipette tip at room temperature. 
The incubation and pipetting were repeated a second time before 
transfer to a 1.7-ml Eppendorf tube and centrifugation at 300–580g 
for 4–7 min at 4 °C. The pellet was then resuspended in 200–500 µl 
of ammonium–chloride–potassium (ACK) RBC lysis buffer (Thermo 
Fisher Scientific, A1049201) and incubated for 1 min on ice, followed 
by the addition of cold PBS at twice the volume of the ACK. The cells 
were pelleted by a short centrifugation for 8 s at 4 °C using the short 

spin setting with centrifugal force ramping up to, but not exceeding, 
11,000g. This procedure was repeated up to three times until the pellet  
was no longer red or pink. To remove cell clumps, the pellet was 
resuspended in 100 µl of TrypLE (Life Technologies, 12604013) and 
incubated while constantly pipetting at room temperature for 1 min  
with a 200-µl pipette tip. TrypLE was inactivated by adding 200 µl 
of cold RPMI 1640 with 10% FBS. The cells were pelleted using short 
centrifugation as described above. The pellet was resuspended in 
50 µl of 0.4% BSA (Ambion, AM2616) in PBS. To assess the single-cell 
suspension, viability and cell count, 5 µl of Trypan blue (Thermo Fisher 
Scientific, T10282) was mixed with 5 µl of the sample and loaded onto 
an INCYTO C-Chip Disposable Hemocytometer, Neubauer Improved 
(VWR, 82030-468). The cell concentration was adjusted if necessary 
to a range of 200–2,000 cells per microliter. A total of 8,000 cells were 
loaded into each channel of the 10x Genomics Single Cell Chromium 
Controller for the Chromium Single Cell 3′ Library (V2 or V3) per the 
manufacturer’s instructions (10x Genomics).

10x library generation and sequencing
Single cells and nuclei were partitioned into droplets with gel beads 
in the Chromium Controller. After emulsions were formed, barcoded 
reverse transcription of RNA took place. This was followed by cDNA 
amplification, fragmentation and adapter and sample index attach-
ment, all according to the manufacturer’s recommendations. Librar-
ies from four 10x channels were pooled together and sequenced on 
one lane of an Illumina HiSeq X, or on one flow cell of a NextSeq, with 
paired-end reads as follows: read 1, 26 nt; read 2, 55 nt; index 1, 8 nt; 
index 2, 0 nt.

Processing and quality assurance of the sc/snRNA-seq data
Raw sequencing reads were processed using the cellranger_cellbender_
workflow snapshot 6 on TERRA (https://app.terra.bio/), using the 
human genome GRCh38 as reference and retaining intronic reads for 
snRNA-seq but not for scRNA-seq. This workflow featured Cell Ranger 
version 3.0.2 and Cell Bender version 0.1.0. An initial processing of the 
resulting count matrices, including quality assessment and automated 
cell type annotation (see below), and doublet detection with scrublet 
version 0.2.1 was performed individually for each sample using Seurat 
version 3.1.162).

Quality filtering was performed simultaneously on all sam-
ples, once all samples had been obtained and processed, to obtain 
data-driven quality filtering thresholds to account for biological and 
technical differences between samples. For example, immune cells 
that tend to contain less RNA than malignant cells were filtered with 
more lenient thresholds.

Following this rationale, low-quality cells were filtered out based 
on low or extremely high unique molecular identifier (UMI) counts, low 
gene counts and high mitochondrial read contributions in a manner 
dependent on cell type, protocol and chemistry (V2/V3).

The following algorithm was used to determine the thresholds 
for each filter group:

High threshold filter: mitochondrial genes <50%, number of genes 
<8,000, number of UMIs <20,000.

Low threshold filter for genes per cell: If the median number of 
genes per cell in the filter group of a given cell is >1,300, then cells with 
>700 genes are retained; if the group median is <1,300 and >600, then 
cells with >300 genes are retained; if the group median is <600, then 
cells with >100 genes are retained.

Low threshold filter for UMIs per cell: If the median number of 
UMIs per cell in the filter group of a given cell is >1,800, then cells with 
>1,100 UMIs are retained; if the group median is <1,800 and >900, then 
cells with >600 UMIs are retained; if the group median is <900, then 
cells with >300 UMIs are retained.

Samples with extremely low numbers of recovered cells were 
excluded as failed.

http://www.nature.com/naturemedicine
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Cell type annotation in sc/snRNA-seq
In an initial automated and sample-wise annotation, cells were anno-
tated using the R package SingleR version 1.0.3 (https://bioconductor. 
org/packages/release/bioc/html/SingleR.html) with both its built-in 
reference datasets (HPCA and Blueprint) in a cell-wise and cluster-wise 
annotation scheme, and annotations were then refined by harmonizing 
labels across the reference dataset and within clusters.

After combining all snRNA-seq or scRNA-seq samples into one 
anndata object each, as well as joint processing using the SCANPY 
version 1.7.2 workflow, including normalization, log1p transformation, 
scaling, highly variable gene selection, regression of total counts and 
mitochondrial counts, principal component analysis (PCA), nearest 
neighbor finding, Leiden clustering and two-dimensional (2D) projec-
tion using uniform manifold approximation and projection (UMAP), 
the initial automated annotation was further refined using the context 
of all sc/snRNA-seq samples, respectively.

Single cells that were annotated with a cell type label that was not 
compatible with their cluster’s annotation were removed as unreli-
able. Clearly distinct clusters that were annotated with the same cell 
type label were investigated in detail using marker genes and assigned 
more specific cell type labels. For a simplified annotation, all cells then 
received a second label based on their cell type label to be assigned 
to one of the four compartments: malignant, stromal, myeloid and 
lymphoid.

CNA in the sc/snRNA-seq data
CNAs in the sc/snRNA-seq were scored using InferCNV version 1.2.0 
(https://github.com/broadinstitute/inferCNV). Sample-wise analy-
sis was performed by assigning the following cell types as normal 
reference—T cells, NK cells, monocytes, macrophages, fibroblasts and 
endothelial cells—and calling CNAs in all other cell types. In particular, 
we did not include hepatocytes as reference cells because they are 
known to be polyploid and B/plasma cells because of disproportion-
ately high expression of certain genes related to antibody production.

The cross-sample combined analysis was performed by select-
ing normal (non-malignant) reference cells across all samples in an 
even manner and calling CNAs in all malignant cells across all samples 
separately for the snRNA-seq and scRNA-seq data. InferCNV’s built-in 
CNA heatmap was then assessed for interesting patterns and used for 
presentation.

Variance analysis in the sc/snRNA-seq data
Variance analysis in the sc/snRNA-seq data was performed using the 
R package variancePartition version 1.14.0 (ref. 63), which uses linear 
mixed models to quantify variation in gene expression that can be 
attributed to different biological or technical variables (patient ID (indi-
vidual), method (sc/sn), site, most recent treatment class, histology, 
metastatic presentation and receptor status). Apart from using this 
tool for the study of expression variability in pseudobulk data (average 
expression across all cells per sample and compartment), we also used 
it to assess variability in cell type composition. The rationale behind this 
approach is that both RNA-seq expression and cell type abundances are 
primarily count data that are normalized to represent the frequency 
or representation of one entity (gene or cell type) among all measure-
ments. However, to account for stronger expected interdependence 
between cell types due to their lower number compared to genes (~20 
versus ~20,000), we used Pearon’s contingency ratios64 instead of nor-
malization by total counts as used for the expression variance analysis.

De novo characterization of malignant expression programs 
using iNMF
To find de novo malignant expression programs in our sc/snRNA-seq 
across all samples, we used iNMF as implemented in the R package 
LIGER version 0.5.0.9000 (ref. 30), which identifies and separates 
common and sample-specific factors in high-dimensional single-cell 

data. We ran this analysis separately for snRNA-seq and scRNA-seq data, 
setting the k parameter to 20 to receive 20 expression programs and the 
lambda parameter to 40 to ensure sufficient integration and separation 
of sample-specific signals. These parameters were found empirically. 
The thus-obtained 40 expression programs were then correlated by 
pair-wise Pearson correlation based on the gene importance for the 
respective programs as represented in the feature matrix W. This way, 
we were able to identify corresponding programs in the sc/snRNA-seq 
data as highly correlated programs.

Scoring of expression programs in sc/snRNA-seq and spatial 
data
Expression programs defined by specific sets of genes were performed 
using either Seurat’s version 3.1.1 or SCANPY’s version 1.7.2 built-in 
functions AddModuleScore or score_genes, respectively, with default 
parameters. Seurat was used to score the subcell-type marker genes17 
as well as the hallmark gene sets in the Molecular Signatures Data-
base (MSigDB)65,66, and SCANPY version 1.7.2 was used to score the 
scRNA-seq-derived iNMF EMT program genes (IGFBP7, SPARC, COL1A2, 
COL4A1, COL3A1, BGN, ACTA2, FN1, COL4A2, TAGLN, DCN, COL1A1, LUM, 
COL6A3, POSTN, AEBP1, COL6A2, VIM, TIMP1, TPM2, COL5A1, CALD1, 
COL6A1, A2M, SPARCL1, THY1, VCAN, CCN2, GNG11, PDGFRB, RGS5, 
ITGA1, MYL9, COL5A2, COL18A1, THBS2, IGHA1, CAVIN1, ELN, NID1, 
LHFPL6, APOE, IGLC3, HSPG2, CAV1, TCF4, NNMT, ASPN, FSTL1 and 
MGP), of which 20 genes are represented in MERFISH and ExSeq (TCF4, 
COL4A1, BGN, COL1A2, FN1, COL1A1, ACTA2, MYL9, HSPG2, TIMP1, VIM, 
THY1, APOE, COL3A1, DCN, LUM, TAGLN, TPM2, GNG11 and COL4A2) 
and three in CODEX (VIM, THY1 and COL4A2). Scoring was performed 
on all samples profiled with a given method. The choice of which tool  
to use was based purely on the environment (R versus Python) that  
the respective analysis branches were performed in.

Integration of sc/snRNA-seq data or spatial data on a 
pseudobulk or single-cell/bead/bin level
To compare malignant pseudobulk expression profiles, the pseudobulk 
expression matrix was corrected for profiling method effects using 
the ComBat function from the R package sva version 3.34.0 (ref. 67), 
with profiling method as batch variable and receptor status as well as 
biopsy site as covariates.

To integrate snRNA-seq and scRNA-seq data at the single-cell level, 
the function ‘harmonize’ from the Python package Harmony-pytorch 
version 0.1.4 (ref. 37) and SCANPY’s BBKN wrapper (external.pp.bbknn) 
based on the Python package BBKNN version 1.5.1 (ref. 38) were used. 
Each function was run with profiling method as batch variable and 
default parameters otherwise. After integration, Leiden clustering 
was performed using the SCANPY function ‘leiden’ with a resolution 
of 0.4. The integrated dataset was only used to demonstrate data inte-
gration but not for other analyses. (These methods do not correct the  
expression matrix but align the observations in a lower-dimensional 
space (Harmony: PCA; BBKNN: k-nearest neighbor graph)).

To analyze macrophage subsets in sc/snRNA-seq and spatial data, 
annotated macrophages were integrated separately for each measure-
ment method using the function ‘harmonize’ from the Python package 
Harmony-pytorch version 0.1.4 with patient as batch variable and 
default parameters otherwise. After integration, Leiden clustering 
was performed using the SCANPY function ‘leiden’ with a resolution 
of 0.6. Small clusters expressing non-macrophage marker genes were 
detected in all methods and removed from further analysis, followed 
by re-intergation and re-clustering.

PAM50 molecular subtype assignment
To assign research-based PAM50 subtypes, log2 + 1-transformed counts 
from the full (including all cell types) pseudobulk data were rescaled 
relative to those of a receptor status-balanced version of this cohort, 
in which samples were resampled to achieve the ER+ to ER− receptor 
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status ratio in the UNC training set, from which the PAM50 subtype 
centroids were derived68,69. The R package genefu version 2.20.0  
(ref. 70) was used to call research-based PAM50 subtypes using the 
rescaled expression values and Spearman correlation to the PAM50 
subtype centroids. Samples with a PAM50 centroid correlation less 
than 0.10 for each centroid were not assigned a PAM50 subtype.

Sectioning for spatial expression profiling and H&E staining
The tissue OCT blocks were acclimated to −20 °C inside the cryostat 
(Leica, CM1950) for 30 min before sectioning at 10-μm thickness.  
Serial sections were placed on the required glass slides for each of 
the methods used. Sections were placed such that the same region of 
interest could be assessed across all methods.

H&E staining and histopathological annotation
A slide adjacent to the experimental slides was stained for H&E with 
standard histology techniques. H&E slides were scanned on an Aperio 
Pathology AT2 Slide Scanner (Leica) using ×20 magnification. Each 
H&E slide was reviewed by a board-certified pathologist (S.J.R.) for QC 
assessment and annotated to indicate the location of tumor regions 
using standard pathological criteria. This review was conducted with 
a traditional bright-field microscope and included assessment of pres-
ervation of tissue integrity and morphology after freezing and OCT 
embedding, evaluation of tissue viability, assessment of tumor content 
and fibrotic tissue content and scoring for inflammation on a 0–3 scale. 
Samples that failed this QC step (9/25 samples) exhibited either very 
low sample viability (<2% viable cells) or extensive tissue damage or 
had less than 5% tumor content.

Slide-seq data generation
To generate Slide-seq data, the Slide-seq puck was placed on a micro-
scope glass slide with the beads facing upwards and held in place with a 
drop of water between the glass slide and the puck coverslip. By turning 
the microscope glass slide upside down, the puck surface was aimed 
at the region of interest in the tissue section by lowering the puck over 
the tissue section and allowing a quick melting of tissue and puck to 
occur before removing the puck:tissue sandwich outside the cryostat. 
The puck was moved with forceps to an Eppendorf tube pre-filled with 
200 μl of hybridization buffer (6× SSC with 2 U μl−1 RNase inhibitor 
(Lucigen, 30281)) and incubated for 15 min at room temperature. A 
wash followed hybridization by dipping the puck once into 1× Maxima 
RT buffer. First-strand cDNA synthesis was performed by placing the 
puck in 200 μl of first-strand synthesis mixture (1× Maxima RT buffer, 
1 mM of each dNTP, 0.05 U μl−1 RNase inhibitor (Lucigen, 30281), 2.5 μM 
template switch oligonucleotide (Integrated DNA Technologies (IDT), 
5′-AAGCAGTGGTATCAACGCAGAGTGAATrG+GrG-3′) and 10 U μl−1 
Maxima H Minus Reverse Transcriptase (Thermo Fisher Scientific, 
EP0742)) and incubated at room temperature for 30 min followed by 
52 °C for 90 min.

Tissue digestion was thereafter performed by the addition of 
200 μl of 2× tissue digestion mix (200 mM Tris-Cl pH 7.5, 400 mM NaCl, 
4% SDS, 10 mM EDTA) with 1:50 proteinase K (New England BioLabs 
(NEB), P8107S) to the first-strand reaction mixture with gentle pipette 
mixing and incubation at 37 °C for 30 min.

After the addition of 200 μl of wash buffer (10 mM Tris pH 8.0, 
1 mM EDTA, 0.01% Tween 20) to the tissue digestion mixture, the puck 
beads were removed from the coverslip surface and released into sus-
pension by vigorously pipetting, and the glass was discarded. The beads 
were pelleted by centrifugation at 3,000g for 2 min, and the superna-
tant was removed. The bead pellet was washed in 200 μl of wash buffer 
and centrifuged as before for a total of three washes, followed by a final 
wash in 10 mM Tris-HCl, pH 7. Subsequent exonuclease treatment was 
performed by resuspension of the bead pellet in 200 μl of Exonuclease 
I reaction mixture (1× ExoI buffer with 10 U μl−1 Exonuclease I (NEB, 
M0293L)) and incubated at 37 °C for 50 min, followed by one wash 

with 200 μl of wash buffer added directly to the exonuclease mixture. 
After supernatant removal, the wash step was repeated twice for a total 
of three washes. The bead pellet was resuspended in 200 μl of freshly 
prepared 0.1 N NaOH and incubated for 5 min at room temperature. 
After the addition of 200 μl of wash buffer, the beads were centrifuged 
for 2 min at 3,000g, and the wash was repeated a total of three times.

Second-strand synthesis was performed by the addition of 200 μl 
(1× Maxima RT buffer, 1 mM of each dNTP, 10 μM dN-SMRT oligonucleo-
tide (IDT, 5′-AAGCAGTGGTATCAACGCAGAGTGANNNGGNNNB-3′) and 
0.125 U μl−1 Klenow enzyme (NEB, M0210)) to the bead pellet and incu-
bation at 37 °C for 1 h. Thereafter, 200 μl of wash buffer was added to the 
mixture and centrifuged for 2 min at 3,000g. The wash was repeated a 
total of three times, followed by a final wash in RNase/DNase-free water. 
The bead pellet was resuspended in 50 μl of PCR mix (1× Terra Direct 
PCR mix buffer, 2 µl Terra polymerase (Takara, 639270), 2 μM TruSeq 
PCR handle primer (IDT, 5′-CTACACGACGCTCTTCCGATCT-3′) and 2 μM 
SMART PCR primer (IDT, 5′-AAGCAGTGGTATCAACGCAGAGT-3′)). PCR 
was performed with the following program: 98 °C for 2 min; four cycles 
of 98 °C for 20 s, 65 °C for 45 s and 72 °C for 3 min; 11 cycles of 98 °C 
for 20 s, 67 °C for 20 s and 72 °C for 3 min; 72 °C for 5 min; hold at 4 °C.

The cDNA was incubated with 0.6× volumes of AMPure XP beads 
for 10 min at room temperature. The AMPure XP beads were then pel-
leted using a magnetic separator for 5 min, followed by two washes 
with 80% ethanol for 30 s each, and the cDNA was eluted with 50 μl of 
EB solution. The bead purification was repeated at a 0.6× volume of 
AMPure XP beads:cDNA with two washes with 80% ethanol and final 
elution with 12 μl of EB. The size and concentration of the final cDNA 
were assessed on a Bioanalyzer high-sensitivity DNA chip (Agilent, 
5067-4626) and on a Qubit high-sensitivity dsDNA kit (Invitrogen, 
Q32851), respectively. Thereafter, 600 pg of cDNA was tagmented 
with a Nextera XT kit (Illumina, FC-131-1096) according to the manufac-
turer’s instructions. The libraries were indexed with PCR amplification 
with TruSeq5 (IDT, 5′- AATGATACGGCGACCACCGAGATCTACACTCTTT 
CCCTACACGACGCTCTTCCGATCT-3′) and the N700 series barcoded 
index primers and the following PCR program: 72 °C for 3 min; 95 °C 
for 30 s; 12 cycles of 95 °C for 10 s, 55 °C for 30 s, 72 °C for 30 s and 72 °C 
for 5 min; hold at 4 °C.

Final purification of the DNA with AMPure XP beads at a 0.6:1 
volume ratio of beads:DNA and elution with 12 μl of EB yielded 
sequencing-ready libraries. The library concentrations were diluted 
to 4 nM each, and three Slide-seq samples were pooled together. The 
samples were sequenced at a 1.8 pM concentration on an Illumina 
NextSeq high-output flow cell with the following settings: read1, 44 
bases; read2, 39 bases; and index1, 8 bases.

Raw data were processed using the Slide-seq pipeline (https://
github.com/MacoskoLab/slideseq-tools).

The quality of all samples was evaluated, and samples with an aver-
age read count per bead lower than 150 as well as those with an unrec-
ognizable shape (which prevented spatial alignment) were excluded 
from further analysis.

CODEX data generation
CODEX data generation was performed as described previously with-
out major adjustment for the MBC tissue7,8. The detailed protocol 
is available on https://www.protocols.io/ (ref. 71). Specifically, anti-
body panels for CODEX imaging were chosen to include targets that 
would be anticipated to identify MBC as well as cells of the innate and 
adaptive immune system. Each antibody was conjugated to a unique 
oligonucleotide barcode. Detailed panel information can be found in 
Supplementary Table 5. For panel validation, antibody–oligonucleotide 
conjugates were tested in low-plex fluorescence assays. Staining pat-
terns were compared against the expected patterns already established 
for immunohistochemistry within positive control tissues of the human 
tonsil. Staining patterns were also compared against H&E morphology 
staining to confirm the location of the markers. Signal-to-noise ratio 

http://www.nature.com/naturemedicine
https://github.com/MacoskoLab/slideseq-tools
https://github.com/MacoskoLab/slideseq-tools
https://www.protocols.io/


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03215-z

was also evaluated at this step. Antibody–oligonucleotide conjugates 
were then tested altogether in a single CODEX multicycle.

CODEX multiplexed imaging was executed according to the pre-
viously described protocols and imaging setup and instructions for 
CODEX staining of frozen specimens from Akoya Biosciences. In brief, 
after the sample acquisition and OCT embedding, 7-µm sections were 
cut in a cryostat after OCT blocks were equilibrated to the cryostat 
temperature for at least 30–40 min. Tissue sections were dragged over 
the surface of cold poly-l-lysine-coated coverslips and spread inside the 
cryostat by transiently warming up the bottom surface of the coverslip 
with a finger. Before staining, the sections removed from the freezer 
were dried for 5 min on the surface of Drierite. Dried coverslips with sec-
tions on them were dipped for 10 min into room temperature acetone 
and then fully dried for 10 min at room temperature. Sections were then 
rehydrated for 5 min in S1 (5 mM EDTA (Sigma-Aldrich)), 0.5% w/v BSA 
(Sigma-Aldrich and 0.02% w/v NaN3 (Sigma-Aldrich) in PBS (Thermo 
Fisher Scientific)) and further re-fixed for 20 min at room temperature 
in S1 with 1.6% formaldehyde. Formaldehyde was washed off twice 
with S1, and sections were equilibrated in S2 (61 mM NaH2PO4 ∙ 7 H2O 
(Sigma-Aldrich), 39 mM NaH2PO4 (Sigma-Aldrich) and 250 mM NaCl 
(Sigma-Aldrich) in a 1:0.7 v/v solution of S1 and double-distilled water 
(ddH2O); final pH 6.8–7.0) for 10 min and blocked in blocking buffer 
(ref. 2) for 30 min. All steps to follow were exactly as in Black et al.8 or 
the Akoya CODEX instructions—this entails cyclic stripping, annealing 
and imaging of fluorescently labeled oligonucleotides complementary 
to the oligonucleotide on the conjugate.

Automated image acquisition and fluidics exchange were per-
formed using an Akoya CODEX instrument driven by CODEX driver 
software (Akoya Biosciences) and a Keyence BZ-X710 fluorescence 
microscope configured with four fluorescent channels (DAPI, FITC, Cy3 
and Cy5) and equipped with a CFI Plan Apo λ ×20/0.75 objective (Nikon). 
Hoechst nuclear stain (1:3,000 final concentration) was imaged in 
each cycle at an exposure time of 1/175 s. Biotinylated CD39 (clone 
A1, Biolegend) was used at a dilution of 1:500 and visualized in the 
last imaging cycle using DNA streptavidin-PE (1:2,500 final concen-
tration). DRAQ5 nuclear stain (1:500 final concentration) was added 
and visualized in the last imaging cycle. Each tissue was imaged with a 
×20 objective in a 7 × 9 tiled acquisition at 1,386 × 1,008 pixels per tile 
and 396-nm-per-pixel resolution and 13 z-planes per tile (axial resolu-
tion, 1,500 nm). Images were subjected to deconvolution to remove 
out-of-focus light.

Raw imaging data were processed using the CODEX Uploader 
(https://github.com/nolanlab/CODEX) for image stitching, drift com-
pensation, deconvolution and cycle concatenation. Processed data 
were then segmented using CellVisionSegmenter, an open-source, 
pre-trained nucleus segmentation and signal quantification software 
based on the Mask region-convolutional neural network (R-CNN) archi-
tecture. CellVisionSegmenter was trained on manually annotated 
CODEX multiplexed imaging data and can successfully segment both 
dense and diffuse cellular tissues (https://github.com/bmyury/CellVi-
sionSegmenter; https://github.com/michaellee1/CellSeg)68. As such, 
only one parameter was altered for the segmentation of the HTAPP 
dataset: the growth pixels of the nuclear mask. This was experimentally 
determined to be optimal at a value of 3. After the upload, the images 
were visualized in ImageJ (https://imagej.net/) and re-evaluated for 
specific signal. Any markers that produced a low signal-to-noise ratio or 
an untenable pattern were excluded from the ensuing analysis. Finally, 
all samples were manually checked for presence of obvious signs of 
unexpected signal appearance or distribution indicative of device or 
protocol error. None was detected, and all samples were considered 
fit for downstream image analysis.

Gene panel design for MERFISH and ExSeq
To select a set of genes for spatial profiling of MBC biopsies with MER-
FISH and targeted ExSEQ assays, we developed a ‘collect-and-filter’ 

approach to allow flexibility in the final number of selected genes. First, 
a preliminary list of 510 potentially relevant genes was assembled (col-
lected) based on prior knowledge and literature as well as on our MBC 
sc/snRNA-seq data. Genes were chosen to represent various aspects 
of BC biology, metastasis and the tumor immune microenvironment 
as well as cell types and programs discovered from sc/snRNA-seq. The 
preliminary list was then filtered down to 300 genes (the experimental 
size of the panel) based on expression statistics as measured in the MBC 
scRNA-seq dataset and manual priority (0–1) assignment. During probe 
design, three of the selected 300 genes were excluded as they did not 
meet technical criteria (all three transcripts were too short), reducing 
the final gene set to 297 genes. Below, we describe in more detail the 
initial selection of 510 genes and their filtering down to 300.

Gene collection. To generate a preliminary list of genes likely to be 
broadly relevant for characterization of cell types and programs in 
MBC lesions, we pursued three broad criteria: (1) prior knowledge based 
on expertise and relevant scientific publications; (2) genes coding for 
proteins targeted in CODEX proteomic assays also applied to the same 
MBC HTAPP tumor samples; and (3) genes representing cell types and 
programs from preliminary sc/snRNA-seq data from 21 MBC biopsies.

The prior knowledge-driven gene selection (1) started by identify-
ing categories of genes known to be important in MBC and in cancer 
in general and reviewing available literature to select representative 
genes of each category:

•	 Canonical cell-type-specific markers (for example, EPCAM for 
epithelial cells, CD19 for B cells, CD4 for T helper cells, CD8 
for cytotoxic T lymphocytes, CD56 for NK cells and CD14 for 
macrophages)

•	 Clinical breast cancer biomarkers (for example, ESR1, PGR and 
ERBB2)

•	 Breast cancer intrinsic subtypes72,73

•	 Hallmarks of cancer: evasion of apoptosis, for example, BCL2; 
EMT, for example, VIM; immune evasion, for example, CD274; 
senescence, for example, TP53; proliferation, for example, 
MKI67, etc.71,72

•	 Epithelial hierarchy in the normal breast74–77

•	 ER signaling78

•	 Genomic landscape of MBC and therapeutic resistance59,79–83

The pre-defined CODEX target genes were included in the panel  
to ensure congruence and subsequent integration with matching 
CODEX data. To this end, we translated protein identifiers to gene 
identifiers and assigned the resulting genes priority 1 to be included 
in the panel (see the ‘Gene filtering’ subsection).

The data-driven gene selection was performed on the sc/snRNA-seq  
data available at that time using Seurat version 2.3.4. The data used  
for gene selection consisted of 21 MBC samples (six snRNA-seq,  
15 scRNA-seq) and represent only a subset of the final dataset of 37 
snRNA-seq and 30 scRNA-seq. Single-cell profiles with fewer than 
500 genes and single-nucleus profiles with fewer than 200 genes were 
removed. Preliminary cell types were annotated using the R package 
SingleR version 1.0.1 (https://bioconductor.org/packages/release/
bioc/html/SingleR.html) in single-cell mode with the built-in HPCA 
reference and standard parameters. To identify cell-type-specific 
genes—that is, genes with high cell type predictive power—we trained 
a support vector machine (SVM) classifier (R package liblineaR version 
2.10-8) and used the assigned feature weights to select highly predic-
tive genes for each cell type. Data were downsampled to 200 randomly 
selected cells per cell type to ensure class balance, and predictive power 
of the classifier was assessed through five-fold cross-validation and 
prediction accuracy. In a first pass, baseline accuracy was determined 
by training and testing a classifier on all variable genes. In a second 
pass, per cell type, only genes with a ranked cumulative relative weight 
below 0.4 (single-nucleus data) and 0.45 (single-cell data) (that is,  
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all top weighted genes that together account for 40% or 45% of relative 
weight, respectively) were used to train a second classifier on a second 
independently downsampled dataset with the same specifications. 
Again, accuracy was assessed in five-fold cross-validation and com-
pared to baseline accuracy to ensure that, by reducing the number of 
genes and using a different subset of the data, accuracy was not sig-
nificantly reduced. Additionally, we also determined the classification 
error rate using a random forest classifier (R package randomForest 
version 4.6-14) to confirm that the observed good performance was 
not classifier dependent. Of the thus-selected genes, all genes with a 
ranked cumulative relative weight below 0.3 (single-nucleus data) or 
0.35 (single-cell data) were assigned priority 1, whereas the remaining 
genes were assigned priorities lower than 1 based on their relative total 
weights across all cell types (see the ‘Gene filtering’ subsection).

To represent the BC-intrinsic subtypes, the PAM50 subtype- 
defining genes64 were refined using a similar approach as the one 
described above based on the single-cell and single-nucleus data. In 
a first pass, all 50 PAM50 genes were used to detect baseline accuracy 
of discriminating the PAM50 subtypes, and, in a second pass, all genes 
with a ranked cumulative relative weight lower than 0.8 (single-cell and 
single-nucleus data) were used to determine classification accuracy 
and assigned priority 1, whereas the remaining genes were assigned 
priorities lower than 1 based on their relative total weights across all 
cell types (see the ‘Gene filtering’ subsection).

To select genes that represent cellular programs within cell types, 
we applied topic modeling separately on the major cell types present 
in the single-cell dataset (malignant cells, T cells, NK cells, fibroblasts, 
endothelial cells, monocytes/macrophages/dendritic cells, B cells 
and plasma cells). We used the FitGoM() function of the R package 
CountClust version 1.12.0 to fit a grade of membership (GoM) model 
to the raw count data of up to 4,000 randomly sampled cells per cell 
type. The tolerance value of the GoM model was set to 0.01 for all cell 
types. The number of topics (K) to be fitted was empirically determined 
for each cell type by fitting models with a range of sensible values for 
K and comparing the Bayesian information criterion (BIC) of the dif-
ferent models. For each cell type, K was selected to be greater than or 
equal to 3 and to represent a local minimum in BIC. Finally, separate 
models were fit for each of the following cell types with the indicated 
parameters after excluding ribosomal and mitochondrial genes: malig-
nant cells (K = 13), T cells (K = 3), NK cells (K = 3), fibroblasts (K = 4), 
endothelial cells (K = 5), monocytes/macrophages/dendritic cells 
(K = 7), B cells (K = 3) and plasma cells (K = 10). For each topic, the top 
30 genes were identified using the function ExtractTopFeatures()  
and subjected to GSEA using enrichR version 1.083 querying the  
GO_Biological_Process_2018 database. Topic loadings across cells  
as well as Gene Ontology (GO) terms enriched with an adjusted  
P value false discovery rate (FDR) < 0.05 were manually inspected 
for interesting patterns. Of the genes defining topics and GO terms 
deemed interesting, the gene with the highest loading for each topic 
was assigned priority 1, whereas the other genes were assigned priority 
0 (see the ‘Gene filtering’ subsection).

Gene filtering. To select 300 genes from the list of 510 assembled 
through the different approaches described above, we devised a filter-
ing strategy to make sure that genes are expressed in, and are variable 
across, the single-cell expression dataset while preserving the diver-
sity of cellular and biomedical aspects represented by the 510 genes 
and summarized as nine categories and 83 selection types of genes. A 
gene was included under the following conditions: (mean normalized 
expression > 0.15 OR variability > 0.025 OR number of categories > 1) 
AND (mean normalized expression > 1.5 and < 4 OR variability > 0.25 OR 
priority = 1 OR number of categories > 1) with variability defined as the 
fraction of cells with an absolute scaled expression value greater than 
1 across all cells and mean normalized expression calculated across all 
cells of the highest expressing cell type or epithelial (malignant) cells in 

the case of genes selected due to their known relevance in MBC. Three 
genes were identified as being too short during the probe generation 
step, because they did not have sufficient length to accommodate the 
placement of a sufficient number of unique probes. The total number 
of genes assessed was, thus, 297, representing all nine categories and 
82 of the 83 original gene types (Supplementary Table 3). This high 
retention rate of represented gene types confirmed that we were still 
covering all major cell types, subtypes and programs of interest with the 
reduced gene set and allowed us to confidently move forward with it.

MERFISH data generation
The detailed protocol for MERFISH data generation is available  
on https://www.protocols.io/ (ref. 84). The MERFISH protocol was 
divided into three parts: probe design/generation, tissue processing 
and imaging and analysis/segmentation.

In addition to the 297 genes selected for MERFISH as described 
above, two additional genes, ALB and LIPE, were added to the gene panel 
for ready identification of the common host tissue cell types found in 
liver (hepatocytes) and adipose (adipocytes) tissues, respectively. For 
design and construction of encoding probes, each of the 291 genes 
imaged in the combinatorial imaging rounds was assigned to a unique 
binary barcode drawn from a 22-bit, Hamming distance 4, Hamming 
weight 4 encoding scheme. Ninety-four extra ‘blank’ barcodes that 
were not assigned to any genes were included to provide a measure of 
the false-positive rate. Each bit of the 22-bit code was associated with 
a unique readout sequence, and, for each gene, the readouts corre-
sponded to the four ‘on-bit’ (bits that read ‘1’) of the gene’s assigned bar-
code. For each gene, 60 encoding probes were generated, comprising 
a 30-mer target sequence, three readout sequences corresponding to 
the gene and PCR primer sequences for library amplification. Template 
DNA for the encoding probes used for the 291 multiplexed genes was 
synthesized as a complex oligo pool and used to construct the final 
MERFISH probe set, as described previously85. Encoding probes for 
the eight genes measured as sequential single-molecule FISH (smFISH) 
rounds were designed in a similar fashion as described above, except: 
(1) 48 probes were generated for each gene; (2) one unique readout 
sequence was used for each gene; and (3) PCR primers were omitted. 
Encoding probes were then synthesized in a 96-well plate format and 
mixed to suitable final concentration.

Sliced samples were placed on poly-d-lysine-coated coverslips, 
fixed with 4% formaldehyde, permeabilized in 70% ethanol, pho-
tobleached with white light and then hybridized with the MERFISH 
probe library and a poly(A) anchor probe. After hybridization, sam-
ples were embedded in a 4% polyacrylamide gel, optically cleared in 
a digestion buffer containing protease and mild detergent and stored 
at 4 °C until imaged.

MERFISH imaging of samples was performed on a homemade 
imaging platform. Before imaging, samples were stained with two 
segmentation markers, DAPI and an Alexa Fluor 488–conjugated 
readout probe complementary to the poly(A) anchor probe. For imag-
ing, samples were held inside a flow chamber to accommodate buffer 
exchanges over the many rounds of MERFISH imaging. Each imaging 
round consisted of readout probe hybridization, imaging each FOV 
(220 µm × 220 µm per FOV) and readout probe fluorophore cleavage. 
Imaging consisted of 17 rounds. After imaging the segmentation 
markers in round 1, the barcode-encoded RNA species were imaged 
in rounds 2–12 (combinatorial smFISH rounds), and the individually 
labeled RNA species were imaged in rounds 13–16 (sequential smFISH 
rounds). In rounds 1–12, images of each FOV were acquired at seven 
focal planes separated by 1.5 µm in z. In rounds 13–16, images of each 
FOV were acquired at one focal plane 3.5 µm above the glass surface. 
In addition, every imaging round included a single z-plane image of 
the fiducial beads on the glass surface for image registration. The 
number of FOVs imaged for each sample varied based on the size of 
the sample.
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Subsequently, all MERFISH image analysis was performed using 
the MERlin Python package (https://github.com/ZhuangLab/MERlin). 
First, for each FOV, the images from each imaging round were aligned 
to correct for x–y drift in the stage position. For the combinatorial 
rounds, image stacks for each FOV were high-pass filtered, decon-
volved using Lucy–Richardson deconvolution and, finally, low-pass 
filtered. Individual RNA molecules were then identified by a pixel-based 
decoding method as previously described11. All cell segmentation was 
performed using the cellpose Python package (https://github.com/ 
MouseLand/cellpose) using the ‘nuclei’ model applied to the DAPI 
image for each FOV. Identified individual RNA molecules were then 
assigned to individual cells based on if they were located within  
the segmented boundaries. For the sequential smFISH rounds, images 
were high-pass filtered and background subtracted, and the expres-
sion of each gene in each cell was calculated as the sum of the fluores-
cence intensity of all pixels within the segmentation boundary of the  
central z-plane of each cell. The signals from the eight sequential  
genes were merged with the RNA counts matrix from the 291 genes 
measured in the combinatorial smFISH rounds to generate a final 
expression matrix for each tissue slice. Each slice was then evaluated 
against QC criteria to determine if it would be included in further  
analysis. The QC criteria for each slice consisted of (1) the average  
number of RNA counts per cell (≥50 to pass) and (2) the Pearson cor-
relation of the average gene expression between the MERFISH dataset  
and an scRNA-seq dataset derived from the same tumor (Pearson  
correlation coefficient ≥ 0.60 to pass). Both criteria had to be met  
to pass QC.

Targeted ExSeq data generation
The detailed protocols for targeted ExSeq data generation are available 
as a protocols collection on https://www.protocols.io/ (ref. 86). The 
overall structure of the work is in three parts: experimental design, 
experimental execution and analysis. In the experimental design step, 
padlock probes were designed that targeted the genes identified above. 
In the experimental execution steps, tissue sections were fixed and 
expanded, followed by targeted in situ sequencing library prepara-
tion and in situ sequencing of the prepared library. Finally, in situ 
sequencing data were decoded to identify specific RNA transcripts 
in the specimen.

Padlock probes were designed that targeted the genes identified 
above, following the ‘Targeted ExSeq–Probe Generation’ protocol. In 
brief, logical barcode sequences of length 7, with each position in the 
barcode being a number between 0 and 3, were generated and ran-
domly assigned to the genes of interest. These barcodes were designed 
to have a minimum Hamming distance of 3, enabling error detection 
and correction. These logical barcodes were then implemented as 
nucleic acid sequences on the backbone of the padlock probe, with 
one sequence for readout with the Illumina sequencing-by-synthesis 
chemistry (used in this work) and another sequence for readout with 
the SOLiD sequencing-by-ligation chemistry (not used here). Both 
sequences are included in the backbone of the probe adjacent to the 
sequencing primer site. Probe homology sequences were then gener-
ated by performing a sliding window search along each transcript. 
Candidate regions were excluded for sequence complexity (more than 
five consecutive repeated bases, containing three or fewer unique 
nucleotides, GC content outside of 40–65%), physical considerations 
(melting temperature (Tm) of either arm of the padlock probe below a 
gene-specific Tm threshold, Tm difference between the two arms exceed-
ing 8 °C, presence of hairpins or dimers in the homology region) or 
significant homology to a different transcript that spans the ligation 
junction. For each gene, the first 16 homology regions starting from 
the 5′ end of the transcript were selected. If fewer than 16 homology 
regions were identified, all were selected for use. Probes for each gene 
were assembled by combining the homology regions with a back-
bone sequence shared across all probes for that gene (containing 

the barcodes). Designed padlock probes were then purchased in 
plate-based format from IDT and pooled together.

The first experimental step was tissue preparation following the 
‘Targeted ExSeq–Tissue Preparation’ protocol, following path C in the 
flowchart in the protocol abstract. In this step, tissue sections were 
fixed, expanded and prepared for targeted ExSeq library preparation. In 
brief, after cryosectioning onto Superfrost Plus glass slides (described 
above), tissue sections were fixed with ice-cold 10% formalin for 12 min 
and then washed three times for 5 min each wash with ice-cold 1× PBS. 
Slides were then stored in 70% ethanol and stored at 4 °C for up to 
1 week. To begin gel embedding, slides were briefly dried with a labo-
ratory wipe, and a Bio-Rad Frame-Seal sticker was placed around the 
tissue section, forming a chamber for washes. The tissue was rehy-
drated by washing with 1× PBS and then treated with 0.1 mg ml−1 LabelX 
overnight at 37 °C to enable nucleic acid anchoring into the expansion 
hydrogel. The tissue was then embedded into the expansion micros-
copy hydrogel and digested following the Robust Digestion Conditions 
described in the protocol. After digestion, the sample was expanded 
and re-embedded into a non-expanding polyacrylamide gel to lock 
in the expansion factor. The fixed charge of the carboxylates in the 
original expansion gel was then chemically passivated using EDC-NHS 
activation of carboxylate groups, followed by amide bond formation 
with ethanolamine. Gels were then trimmed to size.

The second experimental step was library preparation following 
the ‘Targeted ExSeq–Sequencing Library Preparation’ protocol. In 
brief, padlock probes bearing barcode sequences are hybridized to RNA 
transcripts. Padlock probes are then enzymatically circularized using 
SplintR Ligase and then enzymatically amplified using rolling circle 
amplification using Phi29 DNA Polymerase, forming amplicons (also 
called RCA colonies, or rolonies). The amplicons are then cross-linked 
to each other and the sample and are ready for in situ sequencing. For 
these samples, the universal amplicon detection hybridization step was 
skipped here and performed after in situ sequencing was completed.

The third experimental step was in situ sequencing following the 
‘Targeted ExSeq–In Situ Sequencing (Illumina Chemistry)’ protocol. In 
brief, samples (gel-embedded tissues with in situ sequencing libraries)  
were covalently anchored to glass-bottom plates for imaging by func-
tionalizing the plate surface with acryloyl groups, placing the speci-
men gel inside the well and casting a second re-embedding gel that 
anchored the specimen gel to the glass-bottom plate. The sample 
was then prepared for sequencing by capping free 3′ ends of DNA in 
the sample with dideoxy nucleotides using TdT tailing. The Illumina 
sequencing primer was hybridized to amplicons within the specimen, 
and seven rounds of Illumina sequencing-by-synthesis were performed 
in situ using reagents collected from MiSeq version 3 sequencing kits. 
Each round of sequencing consisted of base incorporation (addition 
of the next base), four-color imaging of the amplicons on a spinning 
disk confocal microscope and cleavage of the reversible terminator, 
enabling the next round of sequencing to be performed. After the 
final round of sequencing, the universal amplicon detection probe 
was hybridized to the sample (see library preparation protocol), and 
a final round of imaging was performed.

Data analysis to convert in situ sequencing images to localized 
reads in space was performed using the established ExSeqProcess-
ing pipeline (https://github.com/dgoodwin208/ExSeqProcessing) 
using the Big Experiment (BigEXP) approach for image registration 
after color correction and normalization. After image registration 
is puncta extraction and base calling, using the probe barcodes as 
the reference library. Manual cell segmentation was performed in 2D 
by using VASTLite version 1.3.0 (ref. 87) to manually annotate nuclei 
boundaries of a 2D maximum intensity projection image of the DAPI 
channel. Reads localized within nuclei were assigned to that cell; reads 
outside of segmented nuclei were discarded. The quality of each sample 
was evaluated, and samples with an average read count per cell lower 
than 50 were excluded from further analysis.
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Processing and quality assurance of the spatial expression 
data
All spatial expression data were received in their respective typical 
formats. In a first step, all data types were transferred into a common 
observation × feature matrix format following the format of scRNA-seq 
data. For single-molecule data (MERFISH and ExSeq), two matrices 
were created, one cell × feature matrix using the accompanying cell 
segmentation information and one bin × feature matrix where expres-
sion was represented per 10 μm × 10-μm bin, resembling Slide-seq data. 
Additionally, spatial coordinates were adjusted to all start at [0 | 0] and 
scaled to represent a positional resolution of 1 pixel per μm, which was 
the lowest original resolution of the data. Note that, in spatial expres-
sion data, we distinguish between ‘positional resolution’ and ‘capture 
resolution’: positional resolution is the resolution at which the posi-
tion in space of an observation or molecule is reported, whereas the 
capture resolution is the resolution at which molecules are distinctly 
captured. For example, in Slide-seq, the positional resolution (that 
is, the resolution at which the position of the beads is reported) is 
0.65 μm per pixel, and the capture resolution is 10 μm (=diameter of 
a bead) because molecules that get captured by the same bead have 
a maximum distance of 10 μm from each other. For single-molecule 
resolved methods, positional and capture resolution are identical.

Having brought all data into the same format allowed their 
efficient processing together with the matching sc/snRNA-seq data  
as an anndata object using SCANPY88. This way, for each patient  
and method, one anndata object was created and processed indivi
dually. The same measures were applied on all data types as reasonable  
given the differences in design parameters between the different 
methods.

Quality filtering was applied using the SCANPY version 1.7.2 func-
tions filter_cells with method-specific parameters and filter_genes 
with the min_cells parameter set to 3. The following filter_cells param-
eters were used: min_counts = 20 and min_genes = 1 (MERFISH and 
ExSeq), min_counts = 30 and min_genes = 30 (initial Slide-seq and sc/
snRNA-seq). For Slide-seq and sc/snRNA-seq, an additional iterative 
process of step-wise min_counts parameter increase was performed 
to ensure that the fraction of low-quality beads with fewer than 100 
counts retained in the data did not surpass 35%. This adaptive proce-
dure ensured sufficient quality while retaining the maximum num-
ber of observations possible. This procedure was also performed on  
sc/snRNA-seq data that had already been quality filtered as described 
above to ensure equivalent filtering in the extremely unlikely case 
that this procedure might prove to be more stringent in specific cases. 
For CODEX, the parameter settings min_counts = 1 and min_genes = 1 
were used, translating into a requirement of a value of greater than 1 
in at least one gene, essentially disabling this filtering step for these 
intensity-based data, because cell quality filtering had already taken 
place during the segmentation process.

After filtering, the SCANPY workflow, including normalization, 
log1p transformation, scaling, highly variable gene selection, regres-
sion of total counts and mitochondrial counts (where possible), PCA, 
nearest neighbor finding, Leiden clustering and 2D projection using 
UMAP, was applied. For CODEX, normalization and regression were 
not performed given the intensity-based (not count-based) nature of 
the data and the within-sample scope of this analysis.

Finally, the spatial expression data and H&E images were aligned 
in a semi-manual process to honor their serial nature and allow effi-
cient comparison as well as transfer of histopathological annotations 
from the H&E images. To this end, we devised custom functions that 
allow for all necessary transformations (rotation, translocation, flip-
ping and scaling) and, using Jupyter notebooks, manually found and 
recorded the respective parameters for each sample until all data 
from one biopsy were adequately registered to a common coordinate 
system in a reproducible manner. To filter out spurious measurements, 
all observations that resided outside of the area covered by the H&E 

section were removed, and observations were annotated according 
to the histopathological annotation that they overlapped.

Cell type annotation of the spatial expression data by 
annotation transfer from the sc/snRNA-seq data
For all spatial expression data, cell types were annotated using the 
TACCO framework version 0.0.1 (ref. 44) together with the matching 
sc/snRNA-seq data as reference. Specifically, we used two conceptu-
ally different annotation methods wrapped in the TACCO framework 
that are both able to deconvolve cell type mixtures. We used RCTD 
version 1.2.0 (ref. 43) as a previously published, well-accepted tool that 
was designed for the annotation of Slide-seq data and that explicitly 
models cell-type-specific read count distributions to determine the 
cell type composition of observations. We also used TACCOʼs own 
annotation method, which is based on unbalanced optimal transport 
(OT), which makes fewer assumptions about the properties of the input 
data and, in particular, is not, per design, limited to count data, which is 
necessary for a coherent annotation, including the CODEX data. RCTD  
was run with default parameters except for min_ct = 2. OT was run  
with lamb = 0.001 and ‘boosted’ by using TACCO’s platform normaliza-
tion, multicenter (multi_center=4 ) and bisectioning (bisections = 4, 
bisection_divisor = 3) functionalities. Per observation, compositional 
as well as categorical (maximum cell type) annotations were stored 
for further use.

Cell type frequency correlation analysis
To assess the agreement of local cell type frequencies across the serial 
sections of the same biopsies profiled with different methods, we 
defined, for each biopsy, a universal grid of 100 × 100-μm bins, and, 
within each bin and section, the cell type composition was calculated 
based on the previously assigned categorical cell type annotations, 
yielding, for each bin and section, a vector of cell type frequencies with 
the length of the cell types seen in any of the sections of a given biopsy. 
Pair-wise Pearson correlations were then calculated per bin between 
the cell type composition vectors derived from each of the sections, 
representing different profiling methods and/or replicates.

Analysis of cluster congruence using the ARI
To assess congruence of expression-based Leiden clusters and cell 
type or patient/sample annotations, respectively, with the assessed 
communities (Leiden clusters, patients/samples and cell types) con-
sisting of individual observations (single cells/beads/bins), the ARI was 
calculated using the function adjusted_rand_score from the Python 
package scikit-learn version 0.24.1. Bootstrapping across 10 iterations 
was used for statistical robustness, and results are reported as mean 
and standard deviation.

Cell type co-localization analysis
Cell type co-localization analysis was performed using TACCO’s  
version 0.2.2 co_occurrence function based on the compositional 
OT annotations for a distance of up to 500 μm and using the ‘log_occ’ 
score. In brief, at each distance from a selected central cell type (here, 
macrophages), the function calculates the probability of finding the 
other annotated cell types relative to the case where a central cell type 
is not selected. Two scores were then derived from the co-localization 
score: co-localization strength, defined as the score of the first distance 
interval, and co-localization range, defined as the score at the distance 
interval where the score has decayed to 25% of the score in the first 
distance interval.

De novo cell type annotation of the cell-segmented  
MERFISH data
Leveraging the single-cell-like behavior of the cell-segmented MERFISH 
data, in addition to the annotation transfer as described above, we 
performed manual cluster-wise and marker gene-based annotation as 
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is frequently done in scRNA-seq data. To this end, all cell-segmented 
MERFISH data were combined into one anndata object and processed 
using SCANPY version 1.7.2 functions as described above. For con-
sistency, we used a similar level of resolution for the annotated cell 
types as was used in the sc/snRNA-seq annotation and assigned new 
cell type labels only when clusters clearly displayed features that did  
not match to any previously annotated cell types, which was the case  
for a small population of potentially regulatory B cells expressing 
FOXP3 in addition to the typical B cell marker FCRL5.

Characterization of macrophage subclusters
To characterize macrophage subclusters in each profiling method, 
Leiden clusters were called on Harmony-aligned data (as described 
in the subsection ‘Integration of sc/snRNA-seq data or spatial data on 
a pseudobulk or single-cell/bead/bin level’). Differentially expressed 
genes were called using the function rank_genes_groups of the Python 
package SCANPY version 1.7.2 with the method parameter set to  
‘wilcoxon’ and default parameters otherwise. One or two of the top  
five differentially expressed genes were selected for display.

Differential expression analysis between EMT phenotypes
To detect differentially expressed genes among the three spatial 
phenotypes (EMT-high, EMT-low and EMT-patched), the function 
‘enrichments’ of the Python package TACCO version 0.2.2 was used in a 
one-against-all-others or EMT-high versus EMT-patched setup with the 
following relevant parameters: p_corr = ‘fdr_bh’ (multiple testing cor-
rection using Benjamini–Hochberg correction), position_split = (1,2) 
(split sample in two parts along the y axis to capture within-sample 
variability), method = ‘welch’ (Welch’s t-test for statistical significance 
testing), direction = ‘both’ (test for increased/enriched or decreased/
depleted expression), reduction = ‘mean’ (measure to calculate pseu-
dobulk values across sample splits) and normalization = ‘clr’ (use center 
log-ratio normalization).

Differential cell type composition analysis between EMT 
defined neighborhoods
To detect differences in cell type composition between EMT-high and 
EMT-low neighborhoods, a two-sided Wilcoxon test and Benjamini–
Hochberg multiple testing correction were applied on center log-ratio 
normalized, cell type compositions in 100 × 100-μm bins. EMT-high 
and EMT-low neighborhoods were defined as 100 × 100-μm bins with 
a mean EMT score greater (high) or smaller (low) than the median EMT 
score for a given sample.

MERFISH-based differential expression analysis between T/NK 
proximal and distal malignant cells
To investigate differences in expression profiles of malignant cells that 
are located in proximity of T or NK cells and those that are not, we used 
the cell-segmented and manually annotated MERFISH data and defined 
T/NK high-malignant cells as those that reside in a 100 × 100-μm bin 
together with at least one T or NK cell and the T/NK low-malignant cells 
as those that reside in a 100 × 100-μm bin that does not contain a T or 
NK cells. We then ran the SCANPY version 1.7.2 function rank_genes_
groups using the Wilcoxon test and Benjamini–Hochberg correction 
to compare both groups of malignant cells and rank the genes by their 
expression difference. This analysis was performed in a sample-specific 
setup as well as a combined setup across all samples.

Statistical analysis
Box plots follow the standard format (center line corresponds to 
the median; box limits correspond to the upper and lower quartiles; 
whiskers represent the 1.5× interquartile range; points represent out-
liers). Where there were too many data points to show individually, 
width-scaled violin plots were used to represent the distribution of data 
points, where graphically possible (otherwise only box plots are shown).

Pearson correlation and Spearman correlation coefficients were 
calculated using the cor or cor.test function from the R package ‘stats’ 
or the corr function of the Python package ‘pandas’ version 1.1.3.

All UMAPs were created using SCANPY’s version 1.7.2 umap func-
tion with default parameters.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data can be retrieved from Synapse or the database of Genotypes 
and Phenotypes (dbGaP) (accession number: phs002371) through 
the HTAN Portal at https://humantumoratlas.org and the associated 
HTAN Publication Page https://humantumoratlas.org/publications/
htapp_mbc_klughammer_2024. For convenience, processed data are 
additionally available from the Single-Cell Portal (https://singlecell.
broadinstitute.org/single_cell/study/SCP2702) and interactively 
browsable through CELLxGENE (https://cellxgene.cziscience.com/
collections/a96133de-e951-4e2d-ace6-59db8b3bfb1d). The pre-built 
Cell Ranger reference GRCh38 version 3.0.0 (November 2016) in its 
spliced (scRNA-seq) and pre-mRNA (snRNA-seq) version was provided 
by 10x Genomics (https://www.10xgenomics.com/support/software/
cell-ranger/latest/release-notes/cr-reference-release-notes).

Code availability
Code used to perform the presented analysis is available on GitHub: 
https://github.com/klarman-cell-observatory/HTAPP-Pipelines/tree/
master/HTAPP_MBC.
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Extended Data Fig. 1 | Overview of biopsy sample handling and profiling methods. a) Flow diagram outlining biopsy enrollment and allocation. b) Table outlining 
the key characteristics and design parameters of the profiling methods employed in this study.
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Extended Data Fig. 2 | Quality statistics overview for sc/snRNA-Seq and 
spatial methods. a) Box- and violin plots depicting the distribution of the 
indicated quality measures for snRNA-Seq and scRNA-Seq data, stratified by cell 
type compartment (malignant, stromal, lymphoid, myeloid). N indicates cells or 
biopsy samples according to the axis labels. b) Box- and violin plots depicting the 

distribution of the indicated quality measures for the indicated spatial methods, 
stratified by cell type compartment (malignant, stromal, lymphoid, myeloid).  
N indicates observations (cells, beads, or bins) or tissue sections according to  
the axis labels.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Cell type characterization of the sc/snRNA-Seq data. 
a, b) Stacked violin plots depicting the expression of the top 5 cell type marker 
genes for each of the indicated cell types, detected by 1 vs. all differential 
expression analysis for the snRNA-Seq data (panel a) and scRNA-Seq data  
(panel b). c) Heat map depicting the number of cells of each cell type detected 
in each of the samples. The color scale corresponds to the indicated respective 
number of cells. d) Dot plots depicting the expression level (mean expression) 
and frequency (fraction of expressing cells) of the indicated previously  

published cell subtype signatures17 across cells of the annotated broader cell types.  
e) Stacked barplot showing the cell type composition for biopsies of bone and 
brain metastasis. f) Dot plots depicting the expression of genes reported to be 
implicated in bone metastasis (Che.: Chen201727, Kang200324, Jo.:Jones200625, 
G.:Guise199623, W.:Westbrook201828, Joh.:Johnson201626) across cell types and 
metastatic sites covered in the snRNA-Seq (left) and scRNA-Seq (right) dataset, 
respectively.
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Extended Data Fig. 4 | Copy number aberration (CNA) detected in the sc/
snRNA-Seq data. a,b) CNA heatmaps across malignant cells, grouped by sample, 
for snRNA-Seq data (panel a) and scRNA-Seqdata (panel b) c) CNA heatmaps for 
both samples from patient 223. Samples were taken from different liver lesions, 
300 days apart and processed with snRNA-Seq. d) CNA heatmaps for both 
samples from patient 262. Samples were taken from the same liver lesion at the 

same time but processed with snRNA-Seq and scRNA-Seq respectively.  
e) CNA heatmaps for both samples from patient 862. Samples were taken from 
the same breast lesion but 220 days apart, and processed with snRNA-Seq. f) CNA 
heatmaps for both samples from patient 887. Samples were taken from the same 
axilla lesion but 200 days apart, and processed with snRNA-Seq.
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Extended Data Fig. 5 | Expression of malignant hallmark signatures in the malignant sc/snRNA-Seq data. a, b) Dot plots depicting the expression level  
(mean expression) and variability (standard deviation) of the indicated hallmark gene sets in MSigDB65,66 across the malignant cells in each of the indicated samples, 
separately for snRNA-Seq (panel a) and scRNA-Seq data (panel b).
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Extended Data Fig. 6 | Malignant expression programs as identified by iNMF. a) Clustered heatmap of pairwise correlations across all 20 malignant expression 
programs, represented by relative gene importance, detected by iNMF in the snRNA-Seq data (frozen) and scRNA-Seq data (fresh), each.
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Extended Data Fig. 7 | Integration of snRNA-Seq and scRNA-Seq data in low-dimensional space. a) UMAPs depicting all observations from the sc/snRNA-Seq data 
based on their unaligned, BBKNN integrated, or Harmony integrated, dimensionality-reduced transcriptomes. Colored by method, Leiden clusters (resolution: 0.4), 
samples, and cell types. Samples from the same patient are marked.
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Extended Data Fig. 8 | Correspondence of cell type composition across 
profiling methods and annotations. a) Boxplots depicting the correlation 
of cell type composition between sc/snRNA-Seq and spatial methods, for each 
biopsy, stratified by annotation method (TACCO-OT or RCTD). The individual 
data points are overlaid. N indicates number of sample-pairs. b) Spatial scatter 
plots displaying the correlation between cell type compositions within 100×100 
μm bins as measured by the indicated pairs of methods in the 514-6760 biopsy.  
c) Boxplots depicting the correlation of cell type composition between sc/snRNA- 
Seq and spatial methods, for each biopsy, stratified by single-cell profiling 

method (snRNA-Seq or sc RNAseq). The individual data points are overlaid. 
d) Heatmap depicting for the segmented MERFISH data, the congruence of 
cell type annotations based on manual cluster analysis/marker expression 
(de-novo) and automated sn/scRNA-Seq-based annotation by TACCO-OT or 
RCTD, respectively. Numbers indicate the number of cells with the respective 
annotation combination. e) UMAPs of all cell-segmented MERFISH data based 
on their expression profiles, with observations colored by cell type as annotated 
based on cluster analysis/marker expression (de-novo), or annotation transfer 
from sc/snRNA-Seq using TACCO-OT or RCTD respectively.
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Extended Data Fig. 9 | Characterization of macrophage subsets based 
on expression states across methods. a) Spatial scatter plot overlaid onto 
H&E images depicting the expression levels of CD163 in macrophages for all 
biopsies, based on cell-segmented MERFISH data. b) UMAPs of all observations 
confidently annotated as macrophages across biopsies based on their unaligned 
or harmony sample-integrated expression profiles, colored by sample/patient 
or Leiden clusters (resolution: 0.6). c) Clustered heatmap depicting the pairwise 

Pearson correlation of scaled Leiden cluster-wise expression profiles across 
methods. Method and cluster ID (as in panel b) are indicated. d) Boxplots 
depicting the expression of macrophage marker and function genes in the 
method-specific macrophage clusters grouped in cross-method cluster 1 (N = 15) 
and 2 (N = 20) according to panel c). Genes are ordered by the median difference 
between cross-method cluster 1 and 2. N = method-specific clusters.
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Extended Data Fig. 10 | Macrophage subset marker gene expression. a) Dot 
plots depicting the scaled expression (by gene, across clusters) and fraction of 
expressing cells of macrophage marker and function genes as well as marker 
genes for other cell types and differentially expressed genes between clusters 

as in Extended Data Fig. 9b for all methods as indicated. Side-barplots indicate 
the number of cells in each cluster. b) Heatmap of scaled (across clusters) gene 
expression showing the top up to five differentially expressed genes (FDR < 0.05, 
log-fold change > 1.5) between the indicated cell-segmented MERFISH clusters.
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