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SUMMARY

A signal mixer facilitates rich computation, which has been the building block of modern telecommunication.
This frequency mixing produces new signals at the sum and difference frequencies of input signals, enabling
powerful operations such as heterodyning and multiplexing. Here, we report that a neuron is a signal mixer.
We found through ex vivo and in vivowhole-cell measurements that neurons mix exogenous (controlled) and
endogenous (spontaneous) subthreshold membrane potential oscillations, producing new oscillation fre-
quencies, and that neural mixing originates in voltage-gated ion channels. Furthermore, we demonstrate
that mixing is evident in human brain activity and is associated with cognitive functions. We found that the
human electroencephalogram displays distinct clusters of local and inter-region mixing and that conversion
of the salient posterior alpha-beta oscillations into gamma-band oscillations regulates visual attention. Signal
mixing may enable individual neurons to sculpt the spectrum of neural circuit oscillations and utilize them for
computational operations.

INTRODUCTION

A mixer is a nonlinear device capable of multiplying signals to

produce new frequencies, such as the difference and sum of

the original input frequencies. A signal mixer made of a tran-

sistor, or a diode, has been the building block of modern tele-

communication, facilitating the critical conversion to/from

higher-frequency bands where transmission efficiency is high

(also known as [aka] heterodyning), decoding phase information,

and combining multiple signals into one data stream (aka

multiplexing).1,2

Various neuroscientific studies have reported evidence of a

multiplication operation in individual neurons, attributed to their

need to implement coincidence detection, i.e., the joint probabil-

ity of two statistically independent events is the product of prob-

abilities of the individual events.3 Neural coincidence detection

has been observed in diverse tasks, such as the transformation

of eye-centric into head-centric coordinates,4 localization of

sound,5 combination of multisensory signals,6,7 and detection

of visual motion.8,9 The biophysical underpinning of the multipli-

cation operation has been linked to the nonlinear transfer func-

tion of synaptic currents, including log-exp transformation of

coincident synaptic excitatory and inhibitory events10 and con-

current synaptic excitation and release from shunting inhibition

events,11 as well as to the voltage-dependent inactivation of

the NMDA receptors.12,13

Recent studies have demonstrated the frequency mixing of

neural oscillations in rodents’ brains (aka signal mixing or spec-

tral mixing but distinct from cross-frequency coupling). Ahrens

et al.14 used local field potential (LFP) recordings in rodents, to

show that mechanically evoked neural oscillations in the

vibrissae can mix internally, and with spontaneous oscillations

induced by anesthesia. Haufler et al.15 deployed a statistical

phase analysis to demonstrate phase dependency between fre-

quency mixing quadruplets (i.e., roots: f1, f2; products: Df,
P

f) in

the spontaneous LFP activity of rodents in a state- and region-

dependent manner. Using a computational model, it was

proposed that the signal mixing could emerge from individual

neurons’ nonlinear threshold depolarization characteristics14,16

(a linear response cannot lead to mixing).

To date, there has not been experimental evidence that an in-

dividual neuron can mix transmembrane potentials, and the

contribution of this phenomenon to human brain activity has

not been explored. Here, we use whole-cell patch clamp

Cell Reports 43, 114274, June 25, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ll
OPEN ACCESS

mailto:nirg@imperial.ac.uk
https://doi.org/10.1016/j.celrep.2024.114274
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2024.114274&domain=pdf
http://creativecommons.org/licenses/by/4.0/


recording in mice to experimentally demonstrate that individual

neurons mix exogenous and endogenous transmembrane

potential signals and that the signal mixing originates in the

nonlinear voltage-gated ion channel currents. Then, we apply

phase computation statistics to electroencephalogram (EEG) re-

cordings in human subjects to demonstrate cognitively relevant

frequency mixing in the human brain.

RESULTS

Mixing of exogenous membrane potentials in individual
neurons
We first examined whether neurons could mix exogenous

(controlled) subthreshold membrane oscillations. We applied

extracellular sinusoidal electric currents containing two different

frequencies (f1 and f2), with a difference frequency (Df ) within the

normal range of neural activity, and recorded the induced trans-

membrane potentials in individual neurons ex vivo using whole-

cell patch clamp recording (Figure 1A). We focused on the sub-

threshold response of the neurons because suprathreshold

spikes at the difference frequency could also be induced by a

summation of the applied fields rather than by mixing, i.e., neu-

rons are firing due to polarization at the applied frequencies peri-

odically reaching the action potential threshold. We found that

electrical stimulation with two sinusoids at frequencies within

the normal range of neural activity (i.e., f1 = 47 Hz and f2 =

57 Hz), induced subthreshold membrane potential oscillations

at their difference frequency (Df = 10 Hz) (Figure 1B; note that

the stimulation voltages mask the induced subthreshold oscilla-

tions at the input frequencies f1 and f2).

The induction of a subthreshold membrane oscillation at the

difference frequency was consistent across a wide range of

stimulation frequencies, spanning three orders of magnitude.

Figures 1C and 1D show the subthreshold membrane oscillation

induced by electrical stimulation with two sinusoids at fre-

quencies in the upper boundary of neural activity (i.e., f1 =

497 Hz and f2 = 507 Hz, Df = 10 Hz) and far beyond the range

of neural activity (i.e., f1 = 4.997 kHz and f2 = 5.007 kHz, Df =

10 Hz) as in temporal interference stimulations,17,18 respectively.

Figure 1E summarizes the induced oscillation amplitude at Df

across this range of applied frequencies (tested against themea-

surement system’s intermodulation distortion [IMD] at Df19 i.e.,

mixing products due to hardware nonlinearity measured in the

same way but without brain slices). See Figure S1 for represen-

tative unfiltered membrane potential recordings, and Figure S2

for additional membrane potential traces. The amplitude of the

induced Df oscillation was smaller when the stimulation was

applied at kHz frequencies. Increasing the amplitude of the

applied currents evoked action potential trains at Df, with a

higher current density threshold at kHz frequencies (repeated-

measures ANOVA F(5,135) = 22.3, p = 5e�17, Figure 1F). The

evocation of frequency mixing products was not exclusive to

Df = 10 Hz. See Figure S3 and Table S3 for subthreshold

membrane oscillation induction at Df = 5 Hz (i.e., f1 = 47 Hz

and f2 = 52 Hz, f1 = 4.997 kHz and f2 = 5.002 kHz) and Df =

40 Hz (f1 = 4.997 kHz and f2 = 5.037 kHz).

The membrane potential power spectra also showed peaks at

the sum (
P

f ) and second harmonics (2 f1, 2 f2) of the applied fre-

quencies (Figures 1Bii, 1Cii, and 1Dii), as predicted by frequency

mixing. However, the low membrane oscillation amplitudes at

those high frequencies were within the range of the measure-

ment’s IMD, rendering these measurements inconclusive,

except in the lowest stimulation frequency condition (i.e., f1 =

7 Hz and f2 = 17 Hz)—when the induced frequencies were within

the range of normal neural activity (i.e.,
P

f = 24 Hz, 2 f1 = 14 Hz,

2 f2 = 34Hz). See Figure S2 for allDf and
P

f membrane potential

traces, Figure S4 for statistical comparisons of the sum and har-

monic frequencies, Table S1 for a summary of all investigated

frequencies, and Tables S2 and S4 for all values and statistics

for Figure 1. These results suggest that in addition to the differ-

ence frequency, neurons are capable of producing the sum fre-

quency and harmonics of their membrane oscillations. Interest-

ingly, we also found some significant subthreshold membrane

oscillations at higher frequency mixing orders, including the sec-

ond harmonic of the difference frequency (i.e., 2Df = 20 Hz; Fig-

ure S4D), but not at even higher-order mixings (i.e., 2 f2 � f1 andP
f � 2Df; Figures S4E and S4F), suggesting that the neurons

are capable of further mixing the mixing products but that the

mixing products at higher orders are potentially harder to distin-

guish from themeasurement IMD (see Table S5 for all values and

statistics for Figure S4).

Origin of neuronal frequency mixing characterized via
pharmacological manipulation
We next explored the cellular origin of the subthreshold signal

mixing. We repeated the patch clamp experiment with a subset

of the stimulation frequencies and a pharmacological blockade

of synaptic input (see STAR Methods for details). We found

that blocking the synaptic ion channel currents attenuated, but

did not abolish, the Df oscillation produced by the mixing of fre-

quencies in the normal range of neural activity (i.e., f1 = 47Hz and

f2 = 57 Hz) (Figure 2A). Synaptic blockade did not affect the

mixing of frequencies beyond the normal neural range (i.e., f1 =

4.997 kHz and f2 = 5.007 kHz) (Figure 2B). To exclude the possi-

bility of a confounding contribution from presynaptic neurons

driven above threshold at Df, we repeated the experiment with

the same frequencies in the normal range of neural activity but

now with the stimulation currents applied intracellularly via the

patch pipette to the recorded neurons. We found that the intra-

cellular currents induced subthreshold membrane potential os-

cillations at their difference frequencies (Figure 2C), confirming

the single-cell origin of the subthreshold frequency mixing

depolarization. To test whether the frequency mixing is linked

to the nonlinearity of the voltage-gated ion channel conduc-

tance, we repeated the experiment with a pharmacological

blockade of the voltage-gated sodium channels (using tetrodo-

toxin [TTX]). We found that blocking TTX-sensitive sodium chan-

nels suppressed the mixing of membrane oscillations across the

tested frequency range (Figures 2D and 2E), implying their

involvement in the subthreshold frequency mixing phenomenon

(see Table S6 for all values and statistics for Figure 2).

Mixing of endogenous membrane potentials in
individual neurons
After confirming that neurons mix exogenous signals, we next

examined whether they also mix endogenous (spontaneous)
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Figure 1. Mixing of exogenous membrane potentials in individual neurons ex vivo

(A) Neural mixing concept showing the subthreshold membrane transfer function of multifrequency input with a conventional linear superposition (
P

) and the

proposed nonlinear mixing via multiplication (X).

(B) (i) Top: neural membrane potential during sinusoidal electrical stimulation with frequencies f1 = 47 Hz + f2 = 57 Hz (shown aremean ±SEM). Restingmembrane

potential mean ± SD is displayed. Rawmembrane traces were filtered to remove stimulation artifacts; n = 21 cells. Bottom: applied stimulation current waveform

with applied current density mean ± SEM. (ii) Corresponding membrane potential’s power spectral density (PSD), mean ± SEM. Rawmembrane traces were first

filtered to remove offset. PSD values were normalized to endogenous PSD activity at 4 Hz; n = 21 cells. PSD at f1 and f2 is dominated by stimulation artifact.

***p < 0.0005, significant PSD peak, one-tailed Wilcoxon signed rank test for zero median.

(C) As in (B) but during stimulation with f1 = 497 Hz + f2 = 507 Hz; n = 27 cells. **p < 0.005, one-tailed Wilcoxon signed rank test for zero median.

(D) As in (B) but during stimulation with f1 = 4,997 Hz + f2 = 5,007 Hz; n = 29 cells.

(E) Boxplot showing root mean square (RMS) amplitude of the induced neural oscillation at Df (membrane potential) vs. the measurements’ IMD at Df (mea-

surement IMD) across the range of stimulation frequencies. Traces were first filtered at Df. RMS values were baseline subtracted. n (IMD/membrane potential) =

20/27 (10 Hz), 20/21 (50 Hz), 25/27 (100 Hz), 26/27 (500 Hz), 21/25 (1,000 Hz), 29/29 (2,500 Hz), 28/29 (5,000 Hz) recordings/cells. ***p < 0.0005, Wilcoxon rank-

sum test/two sample t test. Current densities: 0.41 ± 0.31 (10 Hz), 0.30 ± 0.24 (50 Hz), 0.34 ± 0.27 (100 Hz), 0.34 ± 0.22 (500 Hz), 0.33 ± 0.26 (1,000 Hz), 0.45 ± 0.34

(2,500 Hz), 0.69 ± 0.37 (5,000 Hz) mA/mm2.

(F) Normalized current threshold for action potential (AP) train at Df across the range of stimulation frequencies. Thresholds were normalized to threshold of a

stimulation with 10 Hz sine wave (horizontal red dashed line). * comparisons survived Bonferroni correction (p-value = 0.0071); **p < 0.005 and ***p < 0.0005;

repeated-measures ANOVA, post hoc paired t test. Boxplots: central mark, median; box edges, 25th and 75th percentiles; whiskers, extend up to 1.5 3 in-

terquartile range box edges; +, datapoints outside this range. n = 22 (10 Hz), 22 (50 Hz), 21 (100 Hz), 21 (500 Hz), 20 (1,000 Hz), 20 (2,500 Hz), and 19 (5,000 Hz)

cells.

Cell Reports 43, 114274, June 25, 2024 3

Article
ll

OPEN ACCESS



subthreshold membrane potential fluctuations. Subthreshold

rhythmic fluctuations are common in neural cells.20–23 If themem-

brane potential depolarizes at frequencies f1 and f2 (f2 >f1), and

those frequencies are mixed by the membrane, then the instanta-

neous phases of the frequencies f1, f2, and Df = f2 � f1, must be

dependent, i.e., the frequency triplet must show a three-way, but

not a pairwise, phase dependency.15 Similarly, the instantaneous

phases of the frequencies within the triplet f1, f2, and
P

f = f1 + f2,

the triplet f1, Df, and
P

f, and the triplet f2, Df, and
P

f must also

show three-way phase dependencies. Together, the four fre-

quencies comprise a frequency mixing quadruplet. We repeated

the ex vivo experiment, but now we recorded the transmembrane

potentials without electrical stimulation and then assessed the

joint phase interaction of all possible frequency mixing quadru-

plets (i.e., roots: f1, f2; products: Df,
P

f ) for frequencies within

the normal range of neural activity (i.e., up to 250 Hz) using a

nonparametric test based on the Lancaster interaction mea-

sure24–26 (Figure 3A; see Figure S5 for sensitivity analysis). The

statistical interaction test comprised a three-way interactionmea-

sure that was compared against a generated null distribution,

which, upon rejection, indicates that the joint probability distribu-

tion of the 3 frequency components cannot be factorized (either

into pairwise or marginal distributions). To examine the mixing

strength, we also defined a heuristic measure of the joint

higher-order interaction (JHOI) strength based on the ratio of

the interaction measure and the 95% quantile of the null distribu-

tion. See STAR Methods for details of the nonparametric test.

We found significant frequency mixing in the spontaneous

transmembrane fluctuations of individual neurons spreading

across a wide range of root frequency clusters (Figure 3Bi, clus-

ter permutation test computed for each cell individually, see

STARMethods for details). The mixings produced a broad range

of new frequencies peaking at the beta and low-gamma bands.

Figure 3Bii shows the number of significant mixing interactions

Figure 2. Origin of neuronal mixing characterized via pharmacological manipulation ex vivo

(A) (i) Membrane potential during extracellular electrical stimulation with f1 = 47 Hz + f2 = 57 Hz, before (color) and during (gray) pharmacological blockade of

synaptic NMDA, AMPA, and GABA-A ion channel currents (shown are mean ± SEM). Rawmembrane traces were filtered to remove stimulation artifacts. Resting

membrane potential mean ± SD is displayed. n = 8 cells. Bottom: applied stimulation current waveform. Zoom view of boxed region at the difference frequency

(Df ) is included. (ii) Boxplot of RMS amplitude of the induced neural oscillation at Df during the stimulation in (i) without drug and with drug. RMS values were

baseline-subtracted. (iii and iv) same as (i and ii) but with higher current density stimulation. The asterisk (*) above each box indicates significant oscillation at Df

relative to measurement’s IMD at Df . *p < 0.05 and **p < 0.005, two-sample t test. The asterisk (*) between boxes indicates difference between drug conditions,

paired t test. n.s, non-significant. N (IMD/membrane potential) = 8/8 recordings/cells.

(B) As in (Ai) and (Aii) but during stimulation with f1 = 4,997 Hz + f2 = 5,007 Hz. n = 9 cells. n (IMD/membrane potential) = 8/9 recordings/cells. *p < 0.05 and

**p < 0.005.

(C) As in (Ai) and (Aii) but with intracellular electrical stimulation with f1 = 47 Hz + f2 = 57 Hz.

(D) As in (Ai) and (Aii) but before (color) and during (gray) pharmacological blockade of TTX-sensitive conductance. n (IMD/membrane potential) = 7/7 recordings/

cells.

(E) As in (D) but during stimulation with f1 = 4,997 Hz + f2 = 5,007 Hz. n (IMD/membrane potential) = 11/11 recordings/cells. Boxplots: central mark, median; box

edges, 25th and 75th percentiles; whiskers, 1.53 interquartile range; +, datapoints outside this range.
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stacked by cell and normalized by the number of tested interac-

tions per frequency band. The mixing clusters within and be-

tween the beta and gamma bands were consistent across the

cells (Figure 3C, computed via a permutation cluster test at the

group level against surrogate data), suggesting that certain fre-

quencies are more commonly mixed. Moreover, by taking the

average mixing across all mixing interactions up to 250 Hz, we

found significantly stronger mixing in the neural membrane po-

tentials vs. surrogate data (p = 0.0027, paired t test, n = 10 cells).

Adding a pharmacological blockade of the synaptic ion channel

currents (as before) reduced the overall frequency mixing

strength in the neural membrane potentials by approximately

30% (Figure S6A), particularly in a subset of high frequency mix-

ing clusters (Figures S6B and S6C).

To explore whether endogenous membrane potential mixing

also occurs in the intact rodent brain, we recorded the mem-

brane potentials of individual neural cells in vivo using automated

whole-cell patch clamp recordings27 and deployed the same

computation strategy to assess the phase dependency in all

possible frequency mixing quadruplets. We found significantly

Figure 3. Endogenous membrane potential mixing in individual neurons ex vivo and in vivo

(A) Workflow to assess endogenous frequency mixing in cell membrane potential. For a given trace of endogenous membrane potential, the instantaneous

phases of four frequency mixing components (roots: f1, f2 > f1, products: Df = f2 � f1,
P

f = f1 + f2) are extracted. Each subset of three phases (triplet) are used

to construct a test matrix, which, when compared to a null distribution, defines the joint higher-order interaction (JHOI) strength heuristic.

(B and C) Ex vivo recordings.

(B) Frequency quadruplets with significant mixing in individual cells, assessed via permutation cluster test for each cell. Shown are (i) significant mixing root

frequencies overlaid and (ii) the corresponding number of significant mixing interactions stacked by cell and normalized by the number of tested interactions per

frequency band. n = 20 cells.

(C) Frequency quadruplets with significant mixing consistent across the cells, assessed via group-level permutation cluster test, showing (i) distribution of root

frequencies overlaid and (ii) root frequencies stratified by frequency bands (network ploty) and distribution of frequency mixing products (bar chart). n = 10 cells.

(D and E) In vivo recordings.

(D) As in (B) but in vivo.

(E) As in (C) but in vivo. yNetwork plots: node size proportional to normalized sumof t-values of significant quadruplets within band (t test vs. surrogate); edgewidth

as in node size for roots shared between bands.
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stronger frequencymixing in the spontaneousmembrane poten-

tials of the cells (mean JHOI amplitude across all mixing interac-

tions up to 250 Hz: 0.596 ± 0.168, mean ± SD; n = 8 cells from 8

animals; p = 0.009; compared to surrogate). The membrane po-

tentials of individual cells exhibited a variety of frequency mixing

clusters, as in brain slices. The mixings produced a narrower

range of frequencies in the beta and gamma bands (Figure 3D).

Across the cells, the frequency mixing clusters were consistent

in the gamma bands (Figure 3E), supporting an earlier report us-

ing LFP recording.15

Mixing of endogenous neural network oscillations in the
human brain
After establishing the cellular origin of the neural frequency mix-

ing phenomenon, we aimed to test whether the phenomenon ex-

ists in human brain oscillations, expanding on earlier evidence of

mixing of endogenous neural network oscillations in ro-

dents.14,15 Neural oscillations are ubiquitous in the human

brain.28 We focused on the most salient human brain oscillation,

i.e., the posterior alpha oscillation that can be readily observed in

EEG during an awake, eyes-closed state,29 and its established

role in visual attention modulation.30,31 We recorded awake,

eyes-closed EEG in healthy human subjects (n = 20, mean age

29.3 ± 12.2 SD, 6 females) and subsequently measured their vi-

sual attention control using a feature-matching task.32 We used

the same computation strategy to examine the phase interaction

in all possible frequency mixing quadruplets (up to 45 Hz) in EEG

electrodes at a subset of sites in the parieto-occipital, temporal,

and prefrontal regions (i.e., Pz, Oz, T7, T8, FP1, and FP2 of the

international 10-10 system) implicated in visual attention control

(Figure 4A).

We found a robust mixing of neural network oscillations be-

tween sites of the human brain (JHOI amplitude 0.4 ± 0.008,

mean ± SD, p = 1.6e�16, paired t test vs. surrogate data). The

spatial topology of the mixing is shown in Figure 4B, and the fre-

quency band topology is shown in Figure 4C. The intersite mix-

ings occurred between all brain regions and frequency bands

(Figures S7A‒S7C) yet were stronger between the delta and

theta bands. We also found mixing within brain sites, i.e., be-

tween local oscillations (JHOI amplitude 0.4 ± 0.02, mean ±

SD, p = 7.2e�12). The local mixings also occurred in all brain re-

gions and frequency bands (Figures S7D‒S7F), yet each brain

region displayed a unique frequency band mixing pattern

(Figures 4D–4F). The frontal region was dominated by theta-

alpha mixing, while parieto-occipital was dominated by alpha

mixing, and temporal regions by beta mixing. The strength of

oscillation mixing was not correlated with the oscillation power

(Figure S8A), implying that mixing is a distinct feature of brain

oscillation dynamics.

As expected, a strong alpha oscillation dominated the partic-

ipants’ awake, eyes-closed EEG (Figure S8B). We found that the

mixing strength of this alpha oscillation was correlated with the

participants’ visual attention capacity, indexed by the score in

the subsequential feature-matching task (Figure 5A, R2 =

0.363, p = 0.017, linear regression). A further investigation re-

vealed that the alpha oscillation mixings associated with visual

attention were specific to those with the beta oscillation (Fig-

ure 5B, R2 = 0.497, p = 0.003, linear regression with Bonferroni

correction for multiple comparisons). These alpha-beta mixings

were strongest within the occipital cortex and between the oc-

cipital (alpha oscillation) and parietal (beta oscillation) cortices

(Figure 5C, repeated-measures ANOVA F(2.48), p = 1.06e�5),

producing new oscillations that were strongest in the gamma

band (posteriorly) and weakest in the delta band (Figure 5D,

repeated-measures ANOVA Oz-Oz F(2.6), p = 1.18e�5; Oz-Pz

F(2.98), p = 8.5e�7). These results suggest that the visual atten-

tion capacity may be modulated by frequency mixing strength,

i.e., the efficiency by which the salient posterior alpha oscillation

is mixed to augment local synchronization in the gamma band.

DISCUSSION

The electrodynamics of the neural cell membrane underpins the

brain’s computational functions. Neurons sum minuscule elec-

trochemical synaptic inputs across their dendritic trees to yield

integrated transmembrane potentials that, above a threshold,

evoke action potentials and subsequent electrochemical axonal

outputs.33–35 Nonlinear processes in the synapses and dendritic

tree have been shown to enable complex signal processing36–38,

while subthreshold rhythms functionally coordinate the process-

ing across distributed neurons.20–23 In this paper, we report

that the electrodynamics of the neural cell membrane involves

mixing subthreshold rhythms, thereby actively producing new

frequencies.

Our report expands on previous reports of frequency mixing in

rodents14,15 by demonstrating the single-cell origin of the phe-

nomenon and its existence and functional relevance in humans.

Our report strengthens hitherto evidence of single-cell multipli-

cation based on the coincidence detection capacity (Gabbiani

et al.,10 Groschner et al.,11 Lavzin et al.,13and Poleg-Polsky

and Diamond12) by demonstrating the frequency mixing capac-

ity. Our results suggest that the mixing of subthreshold fre-

quencies occurs in the currents of the voltage-gated ion chan-

nels and that the mixing process is highly efficient. Specifically,

the threshold for inducing spike trains by mixing frequencies in

the normal neural range was similar to that by direct stimulation

at the target frequency. The mixing efficiency of kHz electrical

stimulation was 1.5–2 times weaker than with frequencies within

the normal range. These results help elucidate themechanism by

which temporal interference of kHz electric fields stimulates neu-

ral activity.18

Earlier studies have shown evidence of a resonance phenom-

enon in individual neurons due to the low-pass filtering by the

passive membrane conductance and the high-pass filtering by

the active membrane conductance.39 Could the observed gen-

eration of subthreshold rhythms have originated in a neural

resonance rather than mixing? First, a resonance phenomenon

predicts a large response to inputs near the resonant frequency

and a smaller response at other frequencies.40 In contrast,

we found that the efficiency of generating subthreshold oscilla-

tions at the difference frequency was consistent across a wide

range of average input frequencies spanning two orders of

magnitude away from the prospective ‘‘resonance frequency.’’

For example, the efficiency of generating a 10 Hz subthreshold

oscillation with a average input frequency of 10 Hz was similar

to generating it with a average input frequency of 1,000 Hz.
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Second, a resonance phenomenon predicts an oscillation at a

single frequency (i.e., the resonance frequency) and perhaps

its harmonics.39,41 In contrast, we found that when the average

input frequency is sufficiently low (i.e., 7 + 17 Hz), the generated

oscillations contained both the difference frequency (10 Hz) and

the sum frequency (24 Hz), in agreement with a frequency mixing

Figure 4. Mixing of endogenous neural network oscillations in the human brain EEG

(A) Illustration of workflow for assessing endogenous frequency mixing in the human brain EEG. Similar to Figure 3A but with instantaneous phases of the four

frequency mixing components extracted from one or multiple cortical locations (in this example, roots: Pz and T8; products: Fp2).

(B and C) Mixing of neural network oscillations between cortical sites.

(B) Spatial topology of frequency mixing (significant at group-level against surrogate) for rootsy (network plot) and products (bar chart).

(C) Bands topology of frequency mixing (significant at group-level against surrogate) for rootsy (network plot) and products (bar chart).

(D‒F) Mixing of neural network oscillations within cortical sites.

(D) Bands topology of frequency mixing (significant at group-level against surrogate) in the frontal brain region for rootsy and products (network plot).

(E) As in (D) but in the parieto-occipital brain region.

(F) As in (D) but in the temporal brain region. yNetwork plots: node size proportional to normalized sum of t-values of significant quadruplets within band/channel

(t test against surrogate); edge width is the same as node size but for roots shared between bands/channels. Boxplots: central line, median; circle, mean;

whiskers, interquartile range; gray dots, outliers.
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phenomenon but not a resonance phenomenon. Third, a reso-

nance phenomenon predicts an oscillation at a specific fre-

quency (i.e., the resonance frequency) independent of the input

frequencies. In contrast, we found that the frequency of the sub-

threshold oscillations was dependent on the input frequencies.

For example, when one input frequency was 4,997 Hz, the

evoked oscillations were 5, 10, and 40 Hz, when the second

input frequency was 5,002, 5,007, and 5,037 Hz, respectively,

in agreement with a frequency mixing phenomenon but not a

resonance phenomenon. Thus, the observed subthreshold

rhythms originated in a mixing, not a resonance, cellular

phenomenon.

Neural oscillations are ubiquitous in the human brain28 and are

implicated in regulating behavioral states,42 coordinating multi-

sensory processing,43 and cognitive processes, such asmemory

and consciousness.44 Aberrant oscillations have been associ-

ated with almost all neurological and psychiatric disorders.45–48

The frequencies of neural oscillations have been thought to

emerge from a competition between local oscillators since

different oscillations can naturally emerge in neural networks

with different cell-type compositions.22 Our findings, together

with the original studies in rodents,14,15 suggest that individual

neurons can control the frequencies of their network oscillations

via a membrane-mixing phenomenon.

The brain has traditionally been modeled as a complex system

composed of pairwise interactions among different elements.

There is a growing acknowledgment that such a theory offers a

limited description of brain function.49,50 High-order interactions,

which involve groups of three or more elements, are increasingly

recognized as foundational to the architecture of many complex

systems and appear to play a pivotal role in cognition.51,52 Here,

we posit that frequency mixing may be a fundamental mecha-

nism for integrating high-order information across spatiotem-

poral scales. Our results suggest that the topology and strength

of frequency mixing in the human brain have behavioral rele-

vance. We show that the mixing of the salient posterior alpha-

beta oscillations to produce gamma-band oscillations correlates

with the visual attention state. There is substantial evidence that

posterior alpha oscillation modulates visual cortex excitability

and, consequentially, visual perception and attention (see, for

example, Sadaghiani and Kleinschmidt53). The mixing of alpha

and beta oscillations to produce gamma oscillations, which

have been linked to spiking activity, may underpin the mecha-

nism of excitability modulation. Our data show that each brain

Figure 5. Human network oscillation mixing correlates with visual attention control

(A) Participants’ feature-matching score vs. strength of all alpha oscillation mixings (log JHOI averaged across all intersite and local mixings), R2 = 0.363,

p = 0.017, linear regression.

(B) Participants’ feature-matching score vs. strength of alpha oscillation mixing with specific bands, showing significance at alpha-beta mixing, R2 = 0.497,

p = 0.003, linear regression, Bonferroni corrected for multiple comparisons.

(C) Topology of attentional correlated alpha-beta mixing roots, showing strongest mixing within Oz and between Oz alpha and Pz beta. ***p < 0.001, post hoc

paired t test comparisons.

(D) Topology of alpha-beta mixing products originated in Oz alpha-Oz beta (left) and Oz alpha-Pz beta (right), showing strongest products in posterior alpha and

gamma bands and weakest products at delta band. *p < 0.05 and **p < 0.01; post hoc paired t test comparisons. rmANOVA, repeated measures ANOVA.
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region has a unique pattern of mixing oscillations modulated by

inter-regional mixing, suggesting a mechanism coupling local

and global oscillations (see also Doiron et al.’s42 image-reject

mixing in communication theory).

The functional role of neural oscillations has been linked to the

coordination of spiking activity between brain sites because

task-induced synchronization, i.e., phase alignment, aka func-

tional connectivity, has been observed.44 Our results imply that

individual neurons could directly utilize these oscillations to

perform advanced computational operations such as phase

detection and (de)multiplexing that, until now, have only been

seen in modern telecommunication.

Limitations of the study
In this study, we did not directly test the link between frequency

mixing in the EEG oscillations and the frequency mixing in the

subthreshold membrane potential of individual neurons. The

fact that extracellular signals such as LFP and EEG oscillations

originate predominantly from synchronous subthreshold activity

of individual neurons54 allows a conceptional link between the

human EEG and single-neuron patch clamp results. However,

future studies using concurrent single-cell and network-level re-

cordings should further elucidate this link and could shed light on

the precise mechanisms underpinning the integration of high-or-

der computations across different scales. Further studies are

also needed to pinpoint the contribution of different ion channels

not tested here and passive membrane properties to the fre-

quency mixing phenomenon.
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15. Haufler, D., and Paré, D. (2019). Detection of Multiway Gamma Coordina-

tion Reveals How Frequency Mixing Shapes Neural Dynamics. Neuron.

https://doi.org/10.1016/j.neuron.2018.12.028.

16. Kleinfeld, D., andMehta, S.B. (2006). Spectral Mixing in Nervous Systems:

Experimental Evidence and Biologically Plausible Circuits. Prog. Theor.

Phys. Suppl. 161, 86–98. https://doi.org/10.1143/PTPS.161.86.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Nir Gross-

man (nirg@imperial.ac.uk).

Materials availability
This study did not generate unique reagents.

Data and code availability
All mouse patch clamp data have been deposited at Zenodo and are publicly available as of the date of publication. The DOI is listed

in the Key resources table. The participants of this study did not give written consent for their data to be shared publicly, so raw EEG

data is not available.

All original code used in this study has been deposited at Zenodo, while updated versions of the JHOI frequency mixing software

are available at GitHub. Both are publicly available as of the date of publication. The DOI is listed in the Key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Single-cell investigation ex vivo

Animals

All mice were male C57BL/6, aged between 4 and 12 weeks. Mice were housed in standard cages in the Imperial College London

animal facility, with ad libitum food and water in a controlled light-dark cycle environment, with standard monitoring by veterinary

staff. The Imperial College London’s Animal Welfare and Ethical Review Board approved all animal procedures, and all experi-

ments were performed in accordance with relevant regulations/according to the United Kingdom Animals (Scientific Procedures)

Act 1986.

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

NBQX Merck Life Sciences, UK #N183

DAP-5 Merck Life Sciences, UK #A8054

Bicuculline Merck Life Sciences, UK #14340

TTX Abcam, UK #ab120054

Deposited data

Patch clamp data,

Zenodo (repository)

This study https://doi.org/10.5281/zenodo.10992758

Experimental models: Organisms/strains

Mouse: C57BL/6J Charles River, UK/The

Jackson Laboratory, USA

Strain: #027/#000664

Software and algorithms

JHOI frequency mixing toolbox (freqmix),

Zenodo (repository)

This study https://doi.org/10.5281/zenodo.10992758

JHOI frequency mixing toolbox (freqmix),

GitHub (repository)

This study https://github.com/ImperialCollegeLondon/freqmix

Other

Voltage waveform generator National Instruments, UK Model: USB-6216 BNC

Constant current source Soterix Medical Inc, NY, USA Model: LCI1107

Platinum wire VWR, UK Cat: 45093.BU
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Single-cell investigation in vivo

Animals

All mice were male C57BL/6, aged between 4 and 12 weeks. Mice were housed in standard cages in the Massachusetts Institute of

Technology (MIT) animal facility, with ad libitum food andwater in a controlled light-dark cycle environment, with standardmonitoring

by veterinary staff. All animal procedures were approved by the MIT Committee on Animal Care (CAC, Protocol Number: 1115-

111-18), and all experiments conformed to the relevant regulatory standards.

Human investigation
Participants

Twenty healthy adults (14 males, 6 females; mean age 29.29, range 18–70 years) were included. Written informed consent was ob-

tained for all participants judged to have capacity according to the declaration of Helsinki. Human data was collected under approval

by the West London Research Ethics Committee (09/HO707/82).

METHOD DETAILS

Single-cell investigation ex vivo

Brain slice preparation

Anesthesia of mice was achieved via intraperitoneal injection of 100mg/kg ketamine and 10mg/kg xylazine. Mice were transcardially

perfused with 0–5�C carbogenated dissection artificial cerebrospinal fluid (aCSF) containing (in mM): 108 C5H14ClNO, 3 KCl,

26 NaHCO3, 1.25 NaH2PO4, 25 Dextrose, 3 C3H3NaO, 1MgCl2, and 2 CaCl2. 350-mm-thick coronal slices around the somatosensory

cortex were prepared using a Vibratome (Campden Instruments LTD, Loughborough, UK). Following sectioning, slices recovered for

2–4 h at room temperature in carbogenated bath aCSF containing (inmM): 120NaCl, 3 KCl, 23NaHCO3, 1.25 NaH2PO4, 1MgCl2, and

2 CaCl2. Following recovery, slices were placed in the recording chamber of an upright microscope (Scientifica, Uckfield, UK), and

held down using a harp (Multi Channel Systems, Reutlingen, Germany). The recording chamber was continually perfused with room

temperature carbogenated bath aCSF throughout the experiment.

Whole-cell patch clamp recording

Patch electrodes were pulled from filamented thin-walled borosilicate glass capillaries (World Precision Instruments, Hitchin, UK) us-

ing a horizontal Flaming–Brown micropipette puller (P1000; Sutter Instruments, Novato, CA, USA). Electrode tip resistance immedi-

ately after pulling ranged from 5 to 8MU. Whole cell recordings were taken in a current clampmode (no holding current) using a patch

clamp amplifier (MultiClamp 700B; Molecular Devices Ltd). The recorded traces were digitalized using a digitiser (Digidata 1550b;

Molecular Devices Ltd) at 100 kS/s rate. Recordings were obtained from the soma of L2/3 cortical neurons in coronal brain slices.

Patch electrodes were filled with internal solution containing (in mM): 130 KMeSO4, 8 NaCl, 2 KH2PO4,2 Dextrose and 10 HEPES.

Following successful break-in and before each electrical stimulation, a protocol comprising of current steps increasing in amplitude

by 50pA was run, to determine viability of the cell, resting membrane potential, and threshold for AP firing.

Electrical stimulation

Stimulating current waveforms were generated using a custom-written MATLAB GUI via an arbitrary voltage waveform generator

(USB-6216 BNC; National Instruments, Newbury, UK) sampled at 250 kS/s and an isolated constant current source (LCI1107; Soterix

Medical Inc, New York, NY, USA). The current waveforms were applied to the tissue via a 0.25mm diameter platinum wire electrode

(VWR, Lutterworth, UK) positioned 50-100mm from the recorded neuron, touching the slice, on L2/3 cortex. The stimulating electrode

was pairedwith two remote 23 2mmAg/AgCl electrodes (VWR, Lutterworth, UK) in a y-shape configuration. The stimulation protocol

included a series of two symmetrical biphasic sinusoidal waveforms with the same amplitude and a difference frequency (typically 10

Hz). The two sinusoidal waveforms were summed before they were applied to the tissue resulting in a combined waveform that os-

cillates at the average frequency and has an envelope amplitude that changes periodically at the difference frequency. We tested

stimulation conditions with an average frequency between �10 Hz and�5,000 Hz and a range of current amplitudes (0.5mA current

steps). Each stimulation condition was applied for 5s with 0.5s ramp-up, 0.5s ramp-down, and a 5s stimulation-free period between

consecutive stimulations (baseline). The order of the stimulation conditions was randomized between recordings. Current density at

the electrodes was estimated by dividing the applied current amplitude by the cross-sectional area of the stimulation electrodes.

Pharmacological manipulation

Blockade of synaptic ligand-gated ion channels was achieved by application of an AMPA receptor antagonist (NBQX; Merck Life

Sciences Ltd, UK, #N183), an NMDA receptor antagonist (DAP-5; Merck Life Sciences, Ltd, UK, #A8054) and GABAA antagonist

(Bicuculline; Merck Life Sciences Ltd, UK, #14340) to the bath aCSF being perfused to the slice. The resulting bath aCSF solution

contained (in mM): 10 NBQX, 50 DAP-5, and 10 Bicuculline. One minute of spontaneous membrane potential activity was recorded

prior to drug application and 10 min following, to observe elimination of postsynaptic potentials. Elimination of postsynaptic poten-

tials was observed in 100% of cells included in analysis. Blockade of voltage-gated sodium channels was achieved by application of

Tetrodotoxin (TTX) (Abcam Ltd, UK, #ab120054) to the bath aCSF being perfused to the slice. The resulting aCSF solution contained

in mM): 1 TTX. Membrane potential response to current steps of 50pA was recorded prior to drug application and 10 min following, to

observe elimination of action potentials (APs). Disappearance of APs was observed in 100% of cells included in analysis. Post drug

stimulation and recordings commenced 10 min following drug application in all cases.
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Single-cell investigation in vivo

Surgery

On the day of the experiment, themicewere injected withMeloxicam (1mg/kg) and buprenorphine (0.1mg/kg) and anesthetized with

1%–2% (v/v) isoflurane in oxygen. Ophthalmic ointment (Puralube Vet Ointment, Dechra, KS; USA) was applied to the eyes. The scalp

and was shaved and sterilized with Betadine and 70% ethanol, a custom-made head-plate was attached using dental cement (C&B

Metabond, Parkell, NY; USA), and a craniotomy was performed.

Whole-cell patch clamp recording

In vivo whole cell patching in current clamp mode was conducted in the cortex (depth of �500 mm below the dura) of anesthetized

mice with an autopatcher.27 Whole cell recordings were taken in a current clamp mode (no holding current) using a patch clamp

amplifier (MultiClamp 700B; Molecular Devices Ltd, Wokingham, UK). The recorded traces were digitalized using a digitiser (Digidata

1550b; Molecular Devices Ltd, Wokingham, UK) at 25 kS/s rate. Patch electrodes were pulled from thin-walled borosilicate glass

capillary tubing using a pipette puller (P97; Sutter Instruments, Novato, CA, USA). Tip electrode resistance was 4.6–7.4MU in artificial

cerebrospinal fluid (ACSF), containing (in mM): 126 NaCl, 3 KCl, 1.25 NaH2PO4, 2 CaCl2, 2 MgSO4, 24 NaHCO3 and 10 glucose. The

patch electrode internal solution consisted of (in mM) 122.5 potassium gluconate, 12.5 KCl, 10 KOH-HEPES, 0.2 KOH-EGTA, 2 Mg-

ATP, 0.3 Na3-GTP, 8 NaCl (pH 7.35, mOsm 296. Following successful break-in and before each electrical stimulation, a membrane

test was run on the cell to gathermembrane statistics. Furthermore, a protocol comprising of current steps increasing in amplitude by

50pA was run, to determine viability of the cell.

Human investigation
EEG recording

A 32-channel active electrode standard actiCAP (Easycap) was used to acquire 5 min of eyes-closed resting state EEG data. Mea-

surements were taken from nasion to inion and from left to right tragus to position the cap in accordance with the international 10–20

system with the vertex electrode (Cz) in the center. The cap was secured with a chin strap to maintain positioning. A small amount of

conductive electrode gel was applied to each electrode using a blunt needle. Impedances for ground (Fpz) and reference (Fz) elec-

trodes were maintained at <5kU and aimed to be kept under 50kU across all other electrodes. Signals from the electrodes were

amplified using the actiCHamp system and data were recorded using the BrainVision Recorder software (Brain Products GmbH,

Gilching, Germany) at a sampling rate of 1 kHz. Six channels were exported for further analysis as representative of the frontal

(Fp1, Fp2), temporal (T7, T8) and parieto-occipital (Pz, Oz) regions. One minute of artifact-free resting-state EEG for each subject

was then analyzed using the methodology introduced below. For spectral analysis, the traditional EEG bands were defined as fol-

lows: delta (0-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and low-gamma (30-45 Hz).

Visual attentional control task

Visual attentional control was assessed using a feature-matching task delivered on a touchscreen tablet device using a custom-

programmed application. The task included two grids presented side by side each containing a series of shapes. The shapes

presented in each grid were identical for half of all trials and differed by one shape in the other half of trials. The participant was

requested to state whether the shapes match or mismatch. The first trial contained one shape in each grid. The number of

shapes increased with each correct response and decreased with each incorrect response. The task lasted for 90 s during which

the participants solved as many trials as possible. The main outcome measure was the total score. Population mean = 131.35,

SD = 32.79.32

QUANTIFICATION AND STATISTICAL ANALYSIS

All data were analyzed in MATLAB (MATLAB 2019a, The MathWorks Inc.).

Single-cell investigation ex vivo: Exogenous frequency mixing
Characterization of measurement’s intermodulation distortions (IMDs)

Nonlinearity in the stimulation hardware can result in frequency mixing that can confound the measured neural signals at the fre-

quency mixing products (i.e., Df,
P

f, 2f1, 2f2, 2Df, etc.), aka intermodulation distortions (IMDs). Additional IMDs can arise from

the recording hardware due to the large stimulation voltage at the amplifier input that risks shifting the dynamic range to a nonlinear

gain. In our case, IMDs from the recording hardware were neglected as the amplifier operated in its linear gain range (tested by

applying amplitude-modulated waveforms at different voltages directly to the amplifier). Whereas a high-pass filter could mitigate

artifacts in the difference frequencies at the output of the current sources, artifacts in the sum frequencies were more challenging

to mitigate in our experiment due to the spectral proximity to the applied frequencies and the smaller signal-to-noise-ratio (the ampli-

tude of the transmembrane potential drops with frequency55). We characterized the measurement IMDs by repeating the experi-

ments without brain slices and computing the root mean square (RMS) amplitude of the frequency mixing product of interest

as in ‘Subthreshold depolarization analysis’ (see below). The artifactual stimulation potentials recorded at the applied frequencies

(f1, f2) were amplitude matched and had the same stimulation artifact amplitude as those measured in the ex vivo condition

(p > 0.05, Wilcoxon rank-sum test or two-sample t test).
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Subthreshold depolarization analysis

Induced subthreshold membrane oscillation amplitude at the frequency mixing products (i.e., Df,
P

f, 2f1, 2f2, 2Df, 2f1-f2,
P

f- 2Df )

was computed. The membrane potential trace in response to the maximum stimulation amplitude that had no APs was taken. The

signals were filtered using a high-pass filter (Butterworth; 1 Hz, order 3) and a low-pass filter (Butterworth; 50 Hz, order 5) to remove

DC shift and stimulation artifact. Traces were then bandpass filtered around the frequency of interest (±1 Hz) (Butterworth; bandwidth

2 Hz, order: 5). The average stimulation-induced subthreshold oscillation amplitude for each neuron was computed by computing

RMS of the middle 1s of the filtered signal. For all analysis of subthreshold neural activity in the frequency and time domains, only

recordings during stimulation where the neuron did not exhibit a suprathreshold response were included, to ensure that the values

being obtained were representative of purely subthreshold neural polarization for that neuron. The RMS amplitudes at the fre-

quencies of interest were tested against artifactual amplitude from the measurement’s IMDs, and baseline amplitude at those fre-

quencies (i.e., prior to the stimulation onset). Specifically, the baseline RMS amplitude was subtracted from the stimulation RMS

amplitude and then statistically compared to the computed IMD RMS amplitude (also baseline subtracted) using the Wilcoxon

rank-sum test or two-sample t test. See ‘Characterization of measurement’s intermodulation distortions (IMDs)’ for details about

the IMD measurement.

Threshold of inducing action potential (AP) train at Df

To remove the stimulation voltage artifact at the applied frequencies, the traces were low pass filtered if the applied mean frequency

was R 100 Hz (Butterworth: cut-off frequency: 25 Hz; order: 5), or high pass filtered if < 100 Hz (Butterworth: cut-off frequency:

100 Hz; order: 3). Threshold was defined as the lowest applied current density required to evoke an action potential (AP) train

with at least three spikes significantly phase locked to the stimulation (tested using the Rayleigh test). APs were detected via a

custom-made script using a peak finding algorithm. Thresholds were normalized to the threshold for direct stimulation with the dif-

ference frequency (10 Hz) for each neuron.

Plotted traces

For plotting of mean membrane potential, individual membrane potential traces were high-pass filtered to remove offset (Butter-

worth: cut-off frequency: 1 Hz; order: 3), and low pass filtered to remove stimulation artifact (Butterworth: cut-off frequency: 25

Hz; order: 5). The baseline membrane potential prior to each stimulation was computed as the mean membrane potential during

the 0.5s preceding the stimulation (i.e., during the inter-stimulation interval).

Single-cell investigation in vivo/human investigation: endogenous frequency mixing
All data were analyzed in MATLAB (MATLAB 2021a, The MathWorks Inc.).

Overview

Frequency mixing, at the most basic level, involves the non-linear interaction of two root frequencies generating two product fre-

quencies (the sum and difference of the root frequencies). The four frequencies form a frequency mixing quadruplet and any subset

of three frequencies within the quadruplet form a frequency mixing triplet. The frequency mixing triplets display a 3-way phase rela-

tionship between the frequencies within the triplet, where there exist no underlying pairwise phase relationships,15 i.e., the joint dis-

tribution of three instantaneous phase signals cannot be factorised. However, given that a 3-way phase relationship can exist, a

4-way phase relationship cannot be directly detected since it would be confounded by any potential underlying 3-way phase relation-

ships (the joint distribution of four instantaneous phase signals can be factorised). Thus, to detect frequency mixing, we (1) detected

frequency mixing triplets using the Lancaster interaction measure and Wild Bootstrap, (2) computed a heuristic measure of joint

higher order interaction (JHOI) and (3) inferred the presence of frequencymixing quadruplets using the 4 subset triplets that constitute

a quadruplet. Note, quadruplets, but not triplets alone, can reveal the underlying root frequencies.

Procedure

We computed the test statistic of the joint interaction for each frequency triplet by first computing the Gram matrices of the three

instantaneous phase traces (computed via a Morlet wavelet decomposition with a width of 15 as in15) by embedding them into a re-

producing kernel Hilbert space (RKHS) with a Gaussian kernel.56 We empirically centered the Gram matrices by subtracting the row

and column averages and adding the mean of the matrix elements. We then computed the test matrix by an element-wise multipli-

cation of the threematrices (i.e., a Hadamard product) and averaging thematrix elements. To heuristically estimate the strength of the

test statistic of the joint interaction, we normalized the test statistic value by the 95% confidence interval of the null distribution (i.e.,

the distribution of the test statistic values under the null hypothesis), computed using aWild bootstrap permutation57 to preserve the

temporal dependency in the instantaneous phase data (we used at least 10,000 permutations, which we found to be stable in robust-

ness tests). The resulting test statistic value approximates the joint high-order interaction (JHOI) between the three instantaneous

phase traces, i.e., a higher JHOI corresponds to a stronger interaction between the phase traces.

To identify frequency quadruplet clusters with a group-level significance, we used a cluster permutation t test. We computed the

t-value of each frequency quadruplet’s JHOI (taking themedian JHOI of each quadruplet’s four frequency triplets) across the record-

ings using a pairwise t test against a null distribution generated from surrogate data. The surrogate data was generated from the

recording time series by resetting the phase delay of its frequency components in the Fourier space. We then clustered frequency

quadruplets with a p-value threshold of 0.01 against a null distribution of cluster t-value sum, generated by permuting the condition’s

label. See Figure S5 for a characterization of the JHOI computation strategy using synthetic data.
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Synthetic data

To generate oscillatory signals, we followed the methodology described by Haufler et al.15 Briefly, an interval was defined for the fre-

quency and amplitude of each signal (normally +/� 1 Hz for a given frequency and 0.5–1 amplitude for a given signal). Using these

intervals, a frequency vector and amplitude vector was generated using cubic spline interpolation at 0.8ms steps (negative values of

frequency or amplitude were set to zero). Next, a phase variable was integrated over the signal, advanced at a rate proportional to the

instantaneous frequency. The resulting phasewas parsed to a cosine function to generate an oscillatory signal which is then scaled at

each point in time by the instantaneous amplitude vector. Two oscillatory signals components were combined by their simple addi-

tion and via a non-linear activation function (here we used a quadratic function), FðsÞ = B+Cs+Ds2; where s = S1+S2 is comprised

of two oscillatory signals and expansion of this result gives, FðS1+S2Þ = B+CS1 +CS2 +DS2
1 +DS2

2 + 2DS1S2: Finally, white noise s is

added to the resulting signal.

Surrogate data

To generate surrogate data, we used the original time-series signal and shuffled the phase components.58 We first performed a fast

Fourier transform (MATLAB, fft function), take the absolute magnitude of the spectral density (MATLAB, abs function), and finally

perform an inverse fast Fourier transform (MATLAB, ifft function). The surrogates retained (i) the spectral power distribution of

each respective time-series but removed the phase relationships between frequency components and (ii) retained the temporal

dependence necessary for comparative time-series. Note that this should not be confused with the generation of null distributions

for the non-parametric test for Lancaster interaction.

Cluster permutation t test

The cluster-based permutation t test was used to identify significant frequencymixing quadruplets at the group-level using their JHOI

values. We computed an uncorrected t test (paired or two-sample t-tests depending on data) for each quadruplet. We retained qua-

druples with p-value <0.01 and clustered them according to their similarity in terms of both their frequency difference and spatial

distance. The similarity in frequency was defined such that for two quadruplets a and b; ðfa1 ; fa2 ;Dfa;
P

faÞ and ðfb1 ;fb2 ;Dfb;
P

fbÞ, if their
distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfa1 � fb1 Þ

2
+ðfa2 � fb2 Þ

2
+ðDfa � DfbÞ2+ðP fa � P

fbÞ22

q
%2 the quadruplets were considered neighbors. The similarity in

space was defined by the EEG electrode locations, such that two quadruplets were considered neighbors if at least three frequencies

from one quadruplet were recorded from the same electrodes as the corresponding frequencies in the second quadruplet. For

example, fa1 and fb1 recorded from the same electrode, fa2 and fb2 recorded from the same electrode, and
P

fa and
P

fb recorded

from the same electrode. For each cluster, the t-values are summed and then compared against a null distribution. The null distri-

bution was generated by permuting the condition label 50,000 times and then re-clustering and calculating the maximum cluster

t-value sum for each permutation. The t-sum of each cluster in the original data was then contrasted with the null distribution and

significant (p < 0.05) clusters are identified.

Statistical analysis
Values in text and supplementary tables aremean ± standard deviation (SD). Statistical tests are specified in text/figure legends/sup-

plementary tables. All t-tests are two tailed unless stated. In all plots, the * notation represents a statistical significance that survived

Bonferroni correction if required.
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