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Abstract—In voltage imaging, where the membrane potentials
of individual neurons are recorded at from hundreds to thousand
frames per second using fluorescence microscopy, data processing
presents a challenge. Even a fraction of a minute of recording
with a limited image size yields gigabytes of video data consisting
of tens of thousands of frames, which can be time-consuming
to process. Moreover, millisecond-level short exposures lead to
noisy video frames, obscuring neuron footprints especially in
deep-brain samples where noisy signals are buried in background
fluorescence. To address this challenge, we propose a fast neuron
segmentation method able to detect multiple, potentially overlap-
ping, spiking neurons from noisy video frames, and implement a
data processing pipeline incorporating the proposed segmentation
method along with GPU-accelerated motion correction. By testing
on existing datasets as well as on new datasets we introduce,
we show that our pipeline extracts neuron footprints that agree
well with human annotation even from cluttered datasets, and
demonstrate real-time processing of voltage imaging data on a
single desktop computer for the first time.

Index Terms—voltage imaging, real time, neuron segmentation,
motion correction

I. INTRODUCTION

Voltage imaging uses fluorescence microscopy to monitor
neural activities of animals [1]. It uses fluorophores called
voltage indicators that change their fluorescence depending
on membrane potentials of neurons, providing signals that
are close to neural voltage measured using more invasive,
physically contacting devices such as patch clamps and elec-
trodes. By capturing images at from hundreds to thousand
frames per second (fps), voltage imaging enables temporally
high-resolution detection of spikes as well as extraction of
subthreshold activities, which is an advantage over more estab-
lished Calcium imaging that uses Calcium ion concentration
as a slow proxy for rapidly changing membrane potential [2].

However, voltage imaging presents a challenge in data
processing. Even a fraction of a minute of recording with a
limited image size yields gigabytes of video data consisting
of tens of thousands of frames, and processing it to extract
voltage traces from captured neurons can be time-consuming.
Existing methods either require manual annotation [3]–[6] or
spend significantly more time on image processing than the
image recording time [7], [8], both of which can slow down it-
erative experiments by neuroscientists. Moreover, video frames
captured with millisecond-level short exposures have a low
signal-to-noise (SNR) ratio despite significant improvements

in brightness and sensitivity of voltage indicators in recent
years. Although the SNR of a voltage trace can be improved by
combining observations from multiple pixels belonging to the
same neuron, it can be challenging to identify (either manually
or automatically) where neurons are in the video in the first
place, if noisy signals are buried in background fluorescence
especially in deep-brain samples. While background fluores-
cence may be reduced by two-photon microscopy [5], [6], [9]
or optical techniques that steer light onto neurons of interest
[10], [11], it is desirable to be able to use more prevalent,
unmodified one-photon microscopes.

This paper presents a data processing pipeline that can
segment footprints of spiking neurons from noisy voltage
imaging data in real time, meaning that the runtime is equal to
or shorter than the video recording time, on a single desktop
computer. We build on the idea from previous work [8] that
summarizes a video into a few still images. However, since
we find there are cases where it is challenging to identify
neurons given a few still images alone, our proposal is to
split a video into time segments, and apply a summary image
approach to them individually. We use the U-Net convolutional
neural network (CNN) [12] to identify spiking neurons from
summary images for each time segment, and aggregate them
into a single set of ROI masks. This better exploits temporal
information while still benefiting from reduced computation by
summarization. In combination with GPU-accelerated motion
correction we develop as a step before the segmentation, our
pipeline as a whole runs in real time while still leaving some
room for voltage trace extraction from ROIs.

We run our pipeline on existing datasets as well as on new
datasets we introduce, and show that the processing times
for all of the datasets are shorter than the respective video
recording times. We also show that the ROI masks produced
by our method have around 80% agreement (more precisely,
an F1 score of 0.8) with manual annotation on average.

In summary, the contributions of this paper are as follows.

• We propose a fast neuron segmentation method able to
detect multiple, potentially overlapping, spiking neurons
whose extracted footprints agree well with human anno-
tation even for cluttered one-photon datasets.

• We implement a data processing pipeline incorporating
the proposed segmentation method along with GPU-
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Fig. 1. Voltage imaging data processing pipeline. Our pipeline processes an input video in real time, meaning that the processing time is shorter than the
recording time. As an example, given a video recorded in 13.5 sec capturing 10,000 frames at 741 fps, the three stages of the pipeline spend 5.5 sec, 6.9 sec,
and 0.1 sec, respectively, totaling 12.5 sec, which is shorter than the recording time of 13.5 sec.

accelerated motion correction, and demonstrate real-time
processing of voltage imaging data on a single desktop
computer for the first time.

II. PIPELINE OVERVIEW

Our pipeline consists of three stages as shown in Figure 1.
1) Motion correction for canceling motion so that the cor-

rected video shows stationary neurons whose intensity
variation comes from their changes in fluorescence.

2) Neuron segmentation for detecting neurons and delin-
eating their contours from the background.

3) Voltage trace extraction to estimate the time-varying
membrane potential of each segmented neuron.

The primary focus of this paper is the second stage of the
pipeline: we propose a fast method for segmenting spiking
neurons, which will be explained in Section III.

Here we briefly describe the other two stages. Our motion
correction consists of carefully engineered implementations of
well-known techniques. It calculates the zero-mean normalized
cross-correlation (ZNCC) between images to measure their
similarity. We tile 21x21-pixel patches to cover the image,
and compute ZNCC for all the patches and candidate motion
vectors in parallel on the GPU, while employing optimizations
via table-based area sums [13]. Once patch-wise ZNCC values
are computed, the GPU threads are synchronized and the
values are aggregated to identify the most likely motion vector.
Our voltage trace extraction takes the mean pixel intensity
within each detected neuron ROI for each frame of the motion-
corrected video. This is a rudimentary method for reference:
more sophisticated alternatives may be used [3], [7], [8], [10].

III. NEURON SEGMENTATION

This section presents details of the segmentation stage.

A. Motivation and Design

The previous methods for segmenting neurons from voltage
imaging data take quite different approaches from each other.
SGPMD-NMF [7] applies local nonnegative matrix factor-
ization (NMF) to a video to decompose it into components
each having spatially contiguous, temporally correlated pixels.

(a) Temporal average (b) Temporal correlation

Fig. 2. Summary images used in VolPy [8] for the input video in Figure 1.

Those components are considered neuron footprints. While
this method has been shown to extract voltage signals includ-
ing subthreshold dynamics with high fidelity, it takes time:
using our desktop computer, it takes 33 min to analyze a
450x138-pixel video of 10,000 frames including the denoising
time necessary before the local NMF (a similar runtime is
reported in [7] on a computing cluster). Since the recording
time of this video is 13.5 sec, the processing time is 148 times
longer. SGPMD-NMF also requires some human intervention
to identify blood vessels and initialize background regions.

In contrast, VolPy [8] is relatively fast and fully automatic.
It summarizes an entire video into a few still images, which
are input to the Mask R-CNN [14] in order to obtain neuron
ROI masks. On top of the fact that it has to deal with only a
few images, a CNN-based method is fast once trained, which
makes a summary image method an appealing approach in
terms of speed. While there are usually trade-offs between
accuracy and speed, in this paper we are more interested in
a speed-oriented solution that allows neuroscientists to iterate
experiments quickly. Once good initial results are obtained,
more elaborate analysis like SGPMD-NMF may be used later.

That being said, in order to deal with noisy one-photon
voltage imaging data, we find summary image methods can
be challenging. As an example, Figure 2 shows the temporal
average and correlation images used by VolPy computed for
the input video shown in Figure 1, which will be subsequently
input to the Mask R-CNN. As can be seen, although the tem-
poral average image provides much less noisy clues to neuron
boundaries, the cluttered background makes it hard to delineate
them. The temporal correlation image unfortunately provides
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Fig. 3. Proposed segmentation subpipeline. The depth direction represents the time axis.

little information on where neurons are either, because the
correlation between nearby pixels is buried in noise.

Thus, building on these previous works, we take a middle-
ground approach where a video is split into time segments
which are individually summarized and processed by a CNN
as shown in Figure 3. This gives us a sequence of probability
maps representing where neurons are likely to be spiking dur-
ing each time segment, which is subsequently aggregated into
ROI masks via NMF. This better exploits temporal information
than immediately reducing the entire video into a few images,
while still reducing computation by summarization.

B. Time Segment Summarization

We use two summary filters that each project a time segment
along the time axis to produce a single summary image. In
what follows, we denote the i-th time segment of the motion-
corrected input video by Vi(x, t), where x represents 2D
spatial coordinates and t ∈ [1, L] represents a frame number
within the segment. We use a time segment length of L = 50
frames throughout this paper, which consistently produced
good results for different datasets with varying frame rates.

The first filter is temporal average as

Si(x) =
1

L

L∑
t=1

Vi(x, t), (1)

which produces a similar image to Figure 2(a), albeit with
slightly increased noise due to a smaller number of frames to
average. As it reveals spatial image features (i.e., boundaries)
of neurons more clearly, we call it a spatial summary image.

The second filter is temporal maximum-minus-median
(max-median for short) to enhance spiking neurons as

Ti(x) = max
t∈[1,L]

{V̄i(x, t)} −median
t∈[1,L]

{V̄i(x, t)}, (2)

where V̄i is a spatially smoothed version of Vi using a
Gaussian filter (we use a standard deviation of 3 pixels). If
there is a spiking neuron at pixel x during this time segment,
the temporal max operator identifies the peak of the spike
while the temporal median extracts the baseline potential as

Time

Pixel intensity

Time segment

Max

Median

Fig. 4. Max-median filter.

Fig. 5. Examples of temporal summary images using max-median filter.

shown in Figure 4, and therefore the difference gives a positive
response. We find that pre-smoothing V̄i is necessary to have
a clear response. Figure 5 shows examples of the filtering
results from two time segments of the input video shown in
Figure 1, each showing two bright blobs (pointed to by the
arrows) likely coming from spiking neurons. They additionally
show some linear structures (the most visible one is indicated
by the line next to it) from blood vessels as well as small blobs
everywhere due to noise. Since these images reveal locations
of temporal activities, we call them temporal summary images.

C. Spiking Pixel Identification

Based on the two summary images Si(x) and Ti(x), we
estimate where spiking neurons are likely to be during this
(i-th) time segment. To this end, we employ the U-Net, a
widely-used CNN for biomedical image segmentation [12]. As
shown in Figure 6, we configure the U-Net in such a way that
it takes as input 64x64-pixel patches from the two summary
images, and outputs a 64x64-pixel image where each pixel
represents the probability that there are spiking neurons at this
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Fig. 6. Our lightweight U-Net configuration with a small input size of 64x64.
The diagram convention follows the original U-Net work [12].

Fig. 7. Synthetic training data. An example video frame (left) and the
corresponding binary mask indicating the footprints of spiking neurons (right).

Fig. 8. U-Net outputs representing the probability of each pixel belonging to
spiking neurons. The input temporal summary images are shown in Figure 5.

pixel during this time segment. The patch-based approach is
because we should be able to segment spatially distant neurons
independently, and having a smaller input reduces the overall
model size and makes the model easier to train.

To train the U-Net, we synthesize training datasets by
voltage imaging simulation in order to be able to generate
a larger number and variety of datasets than the real voltage
imaging datasets we have, without having to annotate them.
Figure 7 shows an example frame from a synthesized video
and a binary mask indicating the locations of spiking neurons.

We synthesize 1,000 videos with varying configurations of
neurons, blood vessels, illumination, and noise. Each video has
1,000 frames of 128x128 pixels, and after motion correction
and summarization, we have 20 summary image pairs. For
each summary image pair, we randomly pick 10 of 64x64-
pixel patches (overlaps are allowed), resulting in 200 patches.
Hence, in total we feed 200,000 patches to the U-Net for
training, where 20% of them are used for validation. We use
the binary cross-entropy loss and RMSProp optimizer.

We apply the trained U-Net to test data by taking sliding
patches as shown in Figure 3, and merge U-Net outputs
to reconstruct a single probability map for each summary
image pair via weighted average. Output probability maps
corresponding to the temporal summary inputs in Figure 5 are
shown in Figure 8. Although some small blobs are incorrectly
extracted, most noise and blood vessels are suppressed, and
the locations of spiking neurons are delineated.

P ≈M

K N K

N

fj

ajM F
A

Fig. 9. NMF decomposition of a sequence of probability maps, represented
as a matrix P , into neuron footprints F and their temporal activities A.

(a) Individual mask bi(x) (b) Aggregated mask b(x)

Fig. 10. Binary masks showing areas that potentially contain neuron foot-
prints. (a) Mask from one time segment, corresponding to the left image of
Figure 8. (b) Mask aggregating those from all of the time segments.

D. Neuron Footprint Reconstruction

Given a sequence of probability maps pi(x) indicating the
likelihood of spiking neurons at pixel x during the i-th time
segment, we decompose it into N neuron footprints and their
temporal activity profiles by NMF as (see Figure 9):

P ≈ FA. (3)

Here, pi(x) is treated as a matrix P ∈ RM×K , where M is
the number of pixels per video frame and K is the number of
time segments. The matrix F ∈ RM×N consists of N column
vectors fj ∈ RM representing the j-th neuron footprint, and
the matrix A ∈ RN×K consists of N row vectors aj ∈ RK

representing the temporal profile of the j-th neuron.
In reality, applying NMF in Equation 3 directly does not

produce good results because the U-Net outputs have some
spurious detections, which can translate to false components.
Moreover, NMF requires the number N of neurons as input,
which is challenging to estimate. Therefore, we find the
following procedure to be more reliable. First, we threshold
the probability maps pi(x) to obtain binary masks bi(x),
eliminating U-Net detections with small probabilities. We
further eliminate regions whose shape is unlikely to be due to
neurons by looking at their area, concaveness, and eccentricity.
An example result of this process applied to the left image
of Figure 8 is shown in Figure 10(a), where small blobs
have been removed. After that, we project these cleaned-
up masks along time segments by logically OR-ing them to
obtain a single binary mask as b(x) =

∨K
i=1 bi(x), which

indicates potential areas of neuron footprints as shown in
Figure 10(b). Then, each connected component of b(x) is
where a few neurons might overlap (as visually noticeable at
the top of Figure 10(b)), to which we apply NMF individually.
By confining NMF to a small area, we can keep the matrix size
as well as the potential number N of neurons small, making
factorization more stable and faster. The bottom left image of
Figure 1 shows reconstructed neuron footprints.
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Fig. 11. Runtimes of VolPy [8] and our pipeline for one of HPC2 datasets shown in Figure 1. A shorter runtime is better. Our target is to process it within
the video recording time of 13.5 sec. Our pipeline meets the target.

IV. EVALUATION

We run our pipeline1 on a single desktop computer as in
Table I using two GPUs for motion correction and the U-Net.

TABLE I
COMPUTATIONAL ENVIRONMENT

Component Specification
CPU AMD Ryzen Threadripper 3960X (24 cores)
RAM DDR4 3200 MHz, 192 GB (6 ch. × 32 GB)
GPU 2 of NVIDIA GeForce RTX 2080 Ti
SSD KIOXIA EXCERIA PRO 2 TB (PCIe Gen 4 ×4)
OS Ubuntu 20.04.6 LTS, Linux kernel 5.15

Software NVIDIA Driver 525.105.17, CUDA 12.0
Python 3.8, TensorFlow 2.4.1

Table II shows datasets we use. Each dataset group includes
from 3 to 13 videos, totaling 37 videos. Each video has
10,000 through 20,000 frames. The first three dataset groups
are curated and annotated by the VolPy authors [15]. Here we
introduce a new dataset group2, named “HPC2,” consisting
of 13 videos capturing mouse hippocampi using SomArchon
voltage indicator [4]. While HPC uses patterned illumination
to reduce background clutter [10], HPC2 uses normal one-
photon wide-field microscopy. Hence, we believe HPC2 to be
a useful addition as conventional microscopy data of deep-
brain voltage imaging.

TABLE II
DATASETS

Dataset Animal & Frame Voltage
group brain region rate (fps) indicator

L1 [15] Mouse L1 cortex 400 Voltron [3]
TEG [15] Zebrafish Tegmentum 300 Voltron [3]
HPC [15] Mouse Hippocampus 1,000 paQuasAr3-s [10]

HPC2 Mouse Hippocampus 645-826 SomArchon [4]

A. Speed Evaluation

We begin by reporting the speed of our pipeline and that of
VolPy for the example dataset from HPC2 shown in Figure 1.
Figure 11 plots the runtimes of individual stages of each
pipeline as well as a breakdown of the segmentation stage of
each method into summary image generation, CNN (either U-
Net or Mask R-CNN), and NMF (only used by our pipeline).
Our target processing time is the recording time of this video,

1Available at https://github.com/mitmedialab/voltage
2Available at https://zenodo.org/records/10020273

 100

 1000

L1 TEG HPC HPC2

Datasets

Processing frame rates [fps]  (log scale)

Target 400 fps

300 fps

1000 fps

646 fps

827 fps

741 fps

Fig. 12. Processing speeds of our pipeline in frame rates for individual
datasets. Higher rates are better. Our target is to process a video at its recording
frame rate. Our pipeline meets the target for all the datasets.

 0

 0.2

 0.4

 0.6

 0.8

 1

L1 TEG HPC HPC2

Datasets

F1 score

Fig. 13. F1 scores of our neuron segmentation method for individual datasets.
The possible range of scores is [0, 1]. Higher scores are better.

which is 13.5 sec. Our pipeline finishes processing within the
target time, while VolPy’s runtime is 8.9 times longer.

For all of the datasets, Volpy’s runtime is longer than the
video recording time (6.4, 7.8, 4.2, and 7.2 times longer on
average for L1, TEG, HPC, and HPC2, respectively), whereas
our pipeline achieves real-time processing. Figure 12 shows
the processing speeds of our pipeline for individual datasets
expressed in frame rates. For each dataset, its video recording
frame rate is set as a target indicated by the horizontal bars.
The processing speeds exceed the respective targets for all of
the datasets, demonstrating real-time processing speeds.

B. Accuracy Evaluation

In order to assess segmentation accuracy, we rely on human
annotation. While the agreement with human annotation by no
means signifies whether a given method correctly detects true
neurons, it represents how well it can replace manual labor
that is routinely done in research [3]–[6]. We follow previous
work [8], [16] and use the F1 score as an accuracy metric at
an intersection-over-union threshold of 0.3.
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Fig. 14. Example results of our segmentation method.

Figure 13 shows the F1 scores of our segmentation method
for individual datasets. The scores range from around 0.6 to
1.0, and our method achieves an F1 score of 0.8 on average.
Figure 14 shows some of the segmentation results.

Table III shows the average F1 scores (along with precision
and recall) of VolPy and our method for each dataset group.
For L1, TEG, and HPC, the VolPy scores are taken from their
paper [8]. For HPC2, we evaluated VolPy through leave-one-
out cross-validation. Namely, each one of the 13 videos was
processed by the Mask R-CNN trained on the remaining 12
videos. Note that our U-Net was trained on synthesized data
alone without using any of the test datasets. Table III indicates
that VolPy and our method perform roughly equally well for
cleaner datasets L1 and TEG. In contrast, HPC has more noise
and background fluorescence even with patterned illumination,
and HPC2 has even more cluttered backgrounds. Our method
maintains high F1 scores for these datasets.

TABLE III
PER-GROUP AVERAGE SEGMENTATION ACCURACY

Dataset VolPy Ours
group Prec. Recall F1 Prec. Recall F1

L1 0.92 0.88 0.90 0.91 0.85 0.88
TEG 0.78 0.74 0.76 0.83 0.76 0.79
HPC 0.61 0.77 0.66 0.75 0.77 0.74

HPC2 0.42 0.51 0.38 0.89 0.79 0.82

V. CONCLUSION

We have proposed a fast neuron segmentation method for
voltage imaging, and demonstrated real-time processing on a
single desktop computer for the first time. Future work in-
cludes experimenting with newer computer hardware and other
CNN architectures, as well as incorporating better voltage
trace extraction methods while accelerating them.
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