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Abstract—Light Field Microscopy (LFM) is a scan-less 3D imaging technique capable of capturing fast biological processes, such as

neural activity in zebrafish. However, current methods to recover a 3D volume from the raw data require long reconstruction times

hampering the usability of the microscope in a closed-loop system. Moreover, because the main focus of zebrafish brain imaging is to

isolate and study neural activity, the ideal volumetric reconstruction should be sparse to reveal the dominant signals. Unfortunately,

current sparse decomposition methods are computationally intensive and thus introduce substantial delays. This motivates us to

introduce a 3D reconstruction method that recovers the spatio-temporally sparse components of an image sequence in real-time. In

this work we propose a combination of a neural network (SLNet) that recovers the sparse components of a light field image sequence

and a neural network (XLFMNet) for 3D reconstruction. In particular, XLFMNet is able to achieve high data fidelity and to preserve

important signals, such as neural potentials, even on previously unobserved samples. We demonstrate successful sparse 3D

volumetric reconstructions of the neural activity of live zebrafish, with an imaging span covering 800× 800× 250µm3 at an imaging

rate of 24− 88Hz, which provides a 1500 fold speed increase against prior work and enables real-time reconstructions without

sacrificing imaging resolution.

Index Terms—Computational Photography, Microscopy, Light Field Imaging, Deconvolution, Sparse Representations, Neural

Networks

✦

1 INTRODUCTION

L IGHT field microscopy (LFM) is a single shot mi-
croscopy technique suitable for rapid 3D imaging ap-

plications [1]. The remarkable speed of LFM makes it a
powerful tool in neuroscience for high-speed neural activity
imaging, especially in small transparent animal models.
This capability has been first demonstrated in 2014 by
imaging the whole brain of C. Elegans and larval zebrafish
[2] and further enhanced in recent years [3]–[11]. It has
also been applied to mice [12]–[14] and drosophila [15]
neural activity imaging. Such pan-neuronal, high temporal
resolution data from LFM has fueled new understandings
of the principles underlying key cognitive processes, such
as decision making [16].

However, two drawbacks have limited the applicability
of LFM. First, compared to scanning 3D imaging methods
(e.g., confocal and light sheet microscopy), the inferior
spatial resolution of classical LFM methods is sometimes
insufficient to resolve, for instance, individual neurons in
larval zebrafish brains. Second, current methods for LFM
volumetric reconstruction can require days of data process-
ing.

To improve the spatial resolution of LFM, extended field-
of-view light field microscopy (XLFM) [17], an optimized
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light field architecture, was developed recently, also known
as Fourier LFM (FLFM) [18]–[20]. XLFM simultaneously
records multi-view projection images of a sample through a
micro-lens array at its Fourier plane, and has achieved near-
cellular resolutions throughout an entire larval zebrafish
brain [17]. More recently, sparse decomposition algorithms
were applied to XLFM reconstruction to take advantage of
the spatio-temporal sparsity of neural activity. This modi-
fied computational method, termed sparse decomposition
light field microscopy (SDLFM), has further improved the
resolution and signal-to-noise ratio in immobilized samples
[21].

Several attempts have been made to accelerate the re-
construction process of LFM. For example, the offline data
processing time can be greatly reduced by directly estimat-
ing the light field “footprints” and activity of individual
cells and structures without reconstructing volumes (see SID
[22] and Compressive LF (CLF) [23]). Where our method
reconstructs the full 3D volume, both SID and CLF recon-
struct the neural activity at discrete positions. SID/CLF
uses a conventional LFM with a space-variant PSF, where
the deconvolution is prone to strong artifacts, while our
approach uses a Fourier LFM with a space-invariant PSF.
Both SID and CLF require the re-computation of the neural
signatures for every new sample, which is not needed
for our method, as XLFMNet can be trained on a single
fish and used on different specimens. Also, in SID/CLF,
the 3D neural positions are computed using a numerically
generated PSFs, which is prone to errors due to aberrations
and component misalignment, while in our work we used a
measured PSF, which alleviates this issue.

An advantage of these methods is that they are com-
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Fig. 1: Top: Diagram of the extended field-of-view light field microscope (XLFM) used in this work. The microlens array
was conjugated to the back focal plane of the objective lens through a 4-f lens pair. Excitation light from a 470 nm LED
was projected on the sample through the objective lens using a dichroic mirror (DM). An sCMOS camera recorded all the
sub-images formed behind the microlens array. Bottom: A comparison between the state of the art SDLFM reconstruction
(in orange) and the proposed method (in blue). Both methods first compute a sparse representation of a XLFM time series
stack, and later perform 3D reconstruction of the sparse images.

Method Our
method

SID [23] CLF [22]

Microscope type XLFM LFM LFM
Pre-processing time 5h once 7h/sample 1h/sample
Recon. freq. (Hz) 24-88 30 33

Lateral FOV (µm) 800 900 200

Axial FOV (µm) 250 380 300

Lateral res. (µm) 3.2 20 1-8
Axial res. (µm) 7.7 20 0.5-1.5

TABLE 1: Comparison between the proposed method and
state of the art sparse neural activity recovery methods.

putationally more efficient and less memory intensive than
reconstructing a full 3D volume. Also, they provide the
possibility of imaging in deep scattering medium. For de-
tails about the field of view (FOV), the speed and the
specifications for each method refer to Table 1.

Recently, deep learning networks were applied to con-
ventional LFM reconstruction and have sped up the process
a hundred fold [24]–[26]. However, the generalization capa-
bilities of a neural network for 3D reconstruction of unseen
samples is still problematic. The work of Wagner et al. [8]
presents a system capable of quickly retraining the network
when a new sample is presented, but, with the extra degree
of complexity of a joint LFM and light sheet microscope.
Although this previous work performs at real-time, the need
of constant retraining complicates matters.

In this work, we propose SLNet and XLFMNet, two neu-

ral networks that can efficiently perform sparse decomposi-
tion and volume reconstruction on XLFM raw recordings at
high speed (see Fig. 1). We also evaluate the generalization
capabilities of the networks to unseen samples through
techniques such as reducing the number of parameters and
augmenting the training data with estimated noise statistics
and spatial transformations.

SLNet is trained with an unsupervised approach, by
minimizing a loss function that aims to approximate the
input images with a low-rank representation. Making use of
this reconstruction a sparse representation can be recovered,
as shown in the experiments. This problem is well suited for
the chosen network and allows our method to generalize
to new samples. XLFMNet learns the convolutional nature
of the XLFM image formation model, and it is able to
generalize to unseen samples, with sufficient quality to
be certain that the network is not modifying the acquired
information in unfeasible ways, i.e., through hallucination,
which is highly undesired in biomedical data. We evaluate a
wide range of neural network settings, and choose the most
robust one when reconstructing seen and unseen samples.

The SLNet trained network can perform a temporally
and spatially sparse decomposition using three images of
the sample at different time-points in an interval of less than
5 milliseconds. The trained XLFMNet reconstructs a 3D vol-
ume at 24 − 88Hz. This real-time reconstruction capability
would not only expand the applicability of LFM, but also
unlock novel paradigms of experiments that allow closed-
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loop feedback control of the experimental parameters, such
as instrumental adjustment (e.g., autofocus and tracking),
animal stimulus delivery (e.g., visual, auditory, or olfac-
tory), and neuronal activity manipulation (e.g., optogenet-
ics), based on the real-time information of the reconstructed
volumes.

We first present the unsupervised training of the SLNet
in section 2.2, followed by a description of the XLFMNet
parameter ablation and data augmentation in sections 2.3
and 2.4. In sections 2.5 and 2.6 we describe the XLFM
microscope and the sample preparation for the experiments.

In the experimental results in section 3.1, we describe
our findings on the SLNet training and the effect of the
design parameters. Later, in section 3.2 we discuss our
results on the XLFMNet ablation and in section 3.3 we
analyze the neural activity of seen and unseen zebrafish.
In section 3.4, an evaluation of the XLFM generalization
capabilities is presented by measuring the full width at half
maximum (FWHM) of micro-spheres that are not present in
the training set. Finally, section 3.5 presents an estimation
of the achieved resolution with the different methods using
Fourier domain analysis [27].

2 METHODS

2.1 Networks training strategy

The sparse decomposition and 3D deconvolution are per-
formed with two networks trained independently. The
SLNet (see section 2.2) is trained in an unsupervised manner
using only raw LF images and a crafted loss function. In
a separate step, the XLFMNet is trained in a supervised
manner (see section 2.3) with sparse images (generated by
the SLNet) and their corresponding 3D deconvolutions [21].
The deconvolved volumes are used as ground truth, as their
quality is sufficient for single neuron identification in the
zebrafish and the main goal of the proposed method is to
make this a real-time process.

2.2 Unsupervised Sparse Decomposition (SD)

The robust principal component analysis or sparse decom-
position [28] is a method that decomposes a matrix M
into its low rank (L) and sparse (S) components, such that
M = L + S. Let Mk,m,r ∈ R

k×m×r
≥0

be a set of images
captured at k different times points, with lateral sizes m
and r. SD can be used to decompose temporal stacks if we
arrange Mk,m,r to be Mk,mr ∈ R

k×mr
≥0

and minimize the
optimization problem

min
L,S

|L|∗ + λ|S|1

s.t. L+ S = Mk,mr.
(1)

Here |L|∗ is the nuclear norm of the low rank component,
λ a parameter controlling the degree of sparseness and
|S|1 the L1 norm of the sparse component. This type of
constrained optimization is usually solved by means of
Augmented Lagrangian methods, such as the Augmented
Lagrangian multiplier [29], [30].

However, as previously shown by [31], the constraint
can be implicitly fulfilled if we first compute L and with it
compute S = (M − L)≥0, the non-negative result of sub-
tracting the input image and the low rank representation.

Let N SL
Θ (Mk,m,r) ≈ Lk,mr be a neural network with param-

eters Θ that generates a low rank representation of M . We
refer to this network as SLNet. Then S = (M−N SL

Θ (M))≥0.

The final loss function becomes

min
Θ

|M − Γµ

(

N SL
Θ (Mk,m,n)

)

|1, (2)

where Γµ(·) is a singular value shrinking operator that
enforces a low rank in its output by setting the eigenvalues
Σ<µ = 0 and by shrinking the remaining ones. The full
operator reads

Γµ(X) = U [sign(Σ) ·max(|Σ| − µ, 0)]V ∗

where: X = UΣV ∗.
(3)

The work of Herrera et al. [31] employed four fully con-
nected layers to perform the decomposition, however due
to the dimensionality of our images (k = 3, m,n = 2160)
fully connected layers were not possible due to the memory
requirement. Hence, our network is implemented using two
convolutional layers followed by a single ReLu activation
function, as shown in Fig. 2. The threshold µ dictates
the degree of rank shrinkage together with the amount
of sparseness in S. We explore the effect of varying this
parameter in section 3.1.

The weight initialization here is crucial, as larger weights
produce an L with entries larger than the entries in M ,
resulting in zero entries in S and no further training. To
ensure this does not happen, we initialize the weights Θ of
the SLNet, first using the Kaiming method [32], followed by
scaling and a positivity constraint as in Θ = 0.1|Θ|.

For our decomposition we chose the frames Mt−100,
Mt−50 and Mt, where t is the time coordinate. We chose
these time shifts based on a grid search analysis, which we
make available in the supplementary material. Surprisingly,
using 3 frames causes a smaller error, and is computation-
ally cheaper than using 100 frames. Furthermore, employing
3 frames matched the maximum capability of our comput-
ing resources, as the memory consumption increases greatly
when adding more frames. In practice, to use the SLNet
one would start recording frames, and once the images at
Mt−100 and Mt−50 are available, then the network starts to
work in real time, by recovering the sparse components of
the 3 images. This could be interpreted as a 100 frame buffer
or warm up.

2.3 3D Deconvolution neural network architecture

In the next stage we employ a 2D U-net [33] for the 3D
reconstruction, similar to the one used by Wang et al. [26]
and Page et al. [24], where the depth stacks are stored in
the channel dimension. We named this part of our pipeline
XLFMNet. Our XLFMNet N 3D

Θ is parametrized by n and w,
the number of down/up sample steps and an exponent to
control the number of channels in use: The first layer has
2w channels and any of the n consecutive layers has 2w+n

channels. This parametrization allows the exploration of a
wide range of different networks, as shown in Fig. 2. We
explored networks with n = {2, 3, 4, 5} and w = {4, 5, 6, 7}
in a systematic grid-like fashion.
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Fig. 2: Proposed network architecture, where the SLNet performs a sparse decomposition of an image time series and
XLFMNet the 3D reconstruction of the sparse component. The number of depths can be controlled by the parameter n and
the amount of channels per convolutional layer per depth is controlled by the parameter w.

2.3.1 Network selection criteria towards generalization

We look for a network that could perform well with unseen
images of the same sample (validation set) as well as on
unseen samples (testing set). To achieve this we employed
several performance criteria:

• PSNR on the test set reconstruction results,
• SSIM in volume space (compared to a conventional

deconvolution algorithm),
• SSIM in image space (see below).

The image space metric is computed by forward project-
ing the reconstructed volume (R̃s) by means of the image
formation model is = R̃s ⊛ PSF , and then by comparing
the generated image against the sparse image (S) used as
input to the XLFMNet. This is possible as the PSF of the
XLFM setup was measured prior to the experiments.

2.3.2 Generalization to non-observed samples

Generalization in neural networks is not trivial to achieve,
as the networks tend to learn the statistics of the observed
images only. The degree of overfitting of a network to a
dataset depends, among other factors, on the type and size
of the dataset and on the number of trainable parameters of
the network. To evaluate the generalization capability of our
networks we build a testing dataset consisting of several ze-
brafish and microspheres data acquisitions (see section 2.6).
With our architecture parametrization we perform a system-
atic grid search of the parameters and evaluate the resulting
networks’ generalization capabilities using a training data
set of 100 images. The results for the grid search and the
final training can be found in Table 2 and 3, respectively.

2.4 Dataset generation for XLFMNet training

In this section we describe the dataset preparation for the
XLFMNet, which contains pairs of XLFM images and sparse
volumes (see Fig. 3 for an overview).

An important aspect for achieving generalization is the
close resemblance between the data used for training and
the data used at validation or test time. However, capturing
a dataset of zebrafish with enough variation is a time-
consuming task that we try to avoid. In this work, we con-
struct the training dataset by using a single time sequence
of a zebrafish, as explained by the following steps (see also
Fig. 3):

1) Capture a time series of a fluorescent specimen with
the XLFM.

2) Generate a sparse image (S) per frame by means of
a pre-trained SLNet.

3) Crop the 29 microlenses images using the coordi-
nates of the sensor response at the central depth
from the measured PSF.

4) Apply 3D deconvolution to each time step, using
the method from [17].

5) Perform data augmentation to the reconstructed
volumes and forward project them to image space.

6) Store the dense images (M ) and the sparse volumes
(Rs) into the dataset.

The augmentation consisted of random 3D rotations,
translation and scaling of the volumes Rm and Rs. How-
ever, in order to increase the resemblance of the simulated
images to those captured with a real microscope, there are
two key aspects to take into consideration:

• Noise augmentation: Fluorescence microscopes suf-
fer from noise when acquiring an image, mainly shot
noise. Thus, it is important to add the proper shot
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image Mn
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Fig. 4: Comparison between SLNet trained with different µ values and the SD method based on the augmented Lagrangian.

and background noise to the simulated dense images
M . Additionally, as the microscope might be used for
imaging samples with very low or very high counts,
we augmented M by rescaling its pixel intensities
to a random signal power (between 302 and 702

ADU). The noise is then added using the camera
specifications.

• Sample axial distribution: To avoid training bias
towards certain depths we apply a random z trans-
lation of the sample, such that in a subset of the
samples only a couple of structures are present at
depths that are far from the focal plane. We found
this to be of crucial importance, due to the nature

of the PSF, where the light gathered by the camera
pixels decrease for planes far away from the focal
plane, often biasing the network towards learning
the higher intensity structures near the focal plane.
By applying this random shifts, we ensure that there
is enough structure in planes far away from the focal
plane for the network to learn.

2.5 Extended field-of-view light field microscope

(XLFM)

For our imaging hardware (see Fig. 1), we built an XLFM
setup as described in [21]. The microscope used a 16×
0.8 NA water dipping objective lens (CFI75 LWD 16 × W ,
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XLFMNet ablation results

U-net depth (n) Channel exponent (w) # parameters PSNR volume SSIM volume (%) SSIM reproj. (%) Time (Hz)

2 4 76K 23.92 98.69 61.18 88.10
2 5 171K 24.31 98.98 70.29 79.36
2 6 511K 25.36 98.97 71.20 63.37
2 7 1.794M 25.59 99.00 72.64 45.06
3 4 168K 23.56 98.87 70.31 82.65
3 5 537K 25.34 98.87 67.27 71.45
3 6 1.972M 25.40 98.86 70.08 52.5
3 7 7.631M 25.99 98.97 72.43 29.42
4 4 533K 24.49 98.82 67.76 79.38
4 5 1.997M 25.18 98.90 65.54 67.06
4 6 7.809M 25.42 98.92 73.37 46.75
4 7 30.972M 25.91 98.94 72.48 24.00
5 4 1,994K 24.37 98.81 67.73 77.16
5 5 7.835M 25.31 98.96 71.60 62.93
5 6 31.150M 24.92 98.90 70.48 40.04

TABLE 2: Results of XLFMNet ablation study, as described in section 2.3.2. The row in gray is the setting used for our final
tests, achieving the best performance in two out of the four performance metrics.
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Fig. 5: (a) Sparseness progression during the SLNet training
with µ = 2 and compared against the SD result using the
augmented Lagrangian method. (b) Mean rank comparison
and min/max results between the SD method and SLNet
with µ = 2 when evaluating 12 images in the test set.

Nikon) for excitation and detection. The excitation light
generated by a blue LED (µ = 470nm, M470L4, Thorlabs)
was collimated and then passed a 480nm short-pass filter
before being reflected into the back pupil of the objective
lens by a dichroic mirror (FF495-Di03-25 × 36, Semrock).
A customized microlens array (29 lenses, f = 35.4mm
or 36.6mm) was mounted on a sCMOS camera (Zyla 5.5
sCMOS, Andor), with the camera sensor at the focal plane
of the microlenses. The microlens array was conjugated
with the back pupil plane of the objective lens through
a 4f relay lens pair (f1 = 180mm, AC508-180-A-ML,
Thorlabs; f2 = 125mm, PAC074, Newport). A 525/50nm
band pass filter (FF03-525/50-25, Semrock) was attached
on the microlens array for green fluorescent imaging. The
system point spread function (PSF) was measured by taking
a 600µm thick image z-stack of a 1µm-diameter green
fluorescent bead located at the center of the field of view
with an axial step size of 2.5µm.

2.6 Samples preparation

2.6.1 Zebrafish preparation for imaging

Pan-neuronal nuclear localized GCaMP6s
Tg(HuC:H2B:GCaMP6s) and pan-neuronal soma localized
GCaMP7f Tg(HuC:somaGCaMP7f) [34] zebrafish larvae
were imaged at 4–6 days post fertilization. The transgenic
larvae were kept at 28◦C and paralyzed in standard fish
water containing 0.25mg/ml of pancuronium bromide
(Sigma-Aldrich) for 2 min prior to imaging to reduce
motion. The paralyzed larvae were then embedded in agar
with 0.5% agarose (SeaKem GTG) and 1% low melting
point agarose (Sigma-Aldrich) in Petri dishes. Fish water
was added to the dishes once the agar solidified. All
procedures involving animals at the Massachusetts Institute
of Technology (MIT) were conducted in accordance with
the US National Institutes of Health Guide for the Care
and Use of Laboratory Animals and approved by the MIT
Committee on Animal Care.

2.6.2 3D fluorescent bead samples preparation

To better evaluate the performance of our method, we im-
aged 1µm-diameter green fluorescent beads (ThermoFisher)
randomly distributed in 1% agarose (low melting point
agarose, Sigma-Aldrich). The stock beads were serially di-
luted using melted agarose to 10−3, 10−4, 10−5, 10−6 of
the original concentration. The diluted beads-agar colloid
was then transferred to small Petri dishes to gel. The
thicknesses of solidified bead samples were approximately
800µm, which were sufficiently large to cover the full axial
field of view of the microscope.

3 EXPERIMENTAL RESULTS

3.1 Sparseness threshold and the SLNet

Controlling the degree of sparseness in the reconstructions
produced by the SLNet is possible through the term µ
from eq. (2). µ dictates how the eigenvalues of the im-
age M get shrunk and thresholded, forming a low rank
representation. This behavior was clearly visible in our
experiments, where we evaluated different SLNet networks
trained on a subset of 20 temporal 2D stacks and tested on
12 unseen ones. We tested networks with a threshold equal
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Dataset
Method

Deconv. input SDLFM. SLNet + Deconv. SLNet + XLFMNet
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3

4
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Time 100% 
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TABLE 3: 3D reconstruction of different samples. 100 frames of the first sample were used for training, as described in
section 2.4. The next 100 frames and the first 100 frames of the remaining 3 samples were used for testing. The neural
activity sections are taken from the white areas numbered 1 to 4 for each sample.

to µ = {0.0, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0}. Fig. 4 displays
how the different choices of µ influence sparseness, which
we define as

sparseness =
# non-zero elements

# total elements
× 100%. (4)

Our results corroborate the intuition behind the unsuper-
vised training approach (see section 2.2), as the sparseness
increases with an increasing µ. This makes this parameter
a user-friendly way of controlling the sparseness of the
network.
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An interesting finding is that even with µ = 0.0,
which corresponds to neither shrinkage nor thresholding,
the network produces a low rank solution in the spatial
domain, which is an excellent starting point for the SLNet
to focus mostly on refining the temporal sparseness. Our
interpretation is that the blurring nature of convolutions in
convolutional neural networks (CNN) is a good fit for this
task. In Fig 5 (b) a comparison of rank of the decomposed
images with the SD method against the SLNet are presented.
The mean, min and max rank is shown for an evaluation
of the 12 test images previously described. The rank of the
images produced by SLNet are distributed in a small region,
which shows the robustness of the proposed method across
the sample space.

Fig. 5 shows how the sparseness of a network (with
µ = 5.0) decreases across training epochs. We found it
useful that the user can decide the level of sparseness for
a given application by storing the state of intermediate
training steps. However, if the SLNet is trained for too
long, eventually the sparseness is too high to be useful, and
generates very low-contrast images as a result. We consider
that for our images, a sparseness of 5% suffices for the 3D
reconstruction to perform optimally.

3.2 Network ablation towards generalization

The network evaluation strategy consists on training on the
first 100 frames of a 10Hz capture of a single zebrafish, and
test in the following 100 frames of the same fish and in two
other fish, with different fluorescent labeling and age, as
described in section 2.6. As can been seen in Fig. 3 in the
supplementary material, our camera’s frame rate is higher
than the calcium dynamic of both a single event (decay
time > 200ms) and higher than events of sustained activity
(e.g., bursting neurons) that can appear as a long activation.
However, higher frame rates up to 40Hz can be achieved
without modifying the setup.

Training the XLFMNet on a workstation with a Nvidia
Quadro RTX 6000 graphic card takes around 5 hours for
500 epochs using the Adam optimizer. The possibility of
retraining the network for every new sample is at reach.
However, in daily microscopy work, one would avoid re-
training the network often. Also, the amount of graphic
memory required to train it efficiently is too large for regular
computers. In our case, we focus on crafting a network
robust enough to work with different samples, without com-
promising the data fidelity. Hence, reducing the network re-
training frequency.

The results of the XLFMNet ablation (see Table 2) show
that the number of trainable network parameters has a
direct relation to the achievable reconstruction quality (e.g.,
the SSIM of the volume), however, when the parameters are
spread across deeper networks, the performance decreases.
If we compare, for example, two networks with a similar
amount of parameters, but different depths (n) in the U-net,
such as the XLFMNet with n = 2 and w = 7 versus the
same network with n = 5 and w = 4, we find that the first
one performs better in all performance metrics.

3.3 3D reconstruction of seen and unseen samples

When evaluating neural networks with biological data it
is of crucial importance that the information of the neural

activity is preserved, no matter the method used for 3D
reconstruction. In other words, the network should not
introduce non-physical artifacts that might hamper the anal-
ysis of the recovered signal.

In Fig. 3 we evaluated the neural activity across a period
of 100 seconds by applying the following methods:

• Deconvolution of the raw image,
• SDLFM (SD + Deconvolution),
• SLNet + Deconvolution,
• SLNet + XLFMNet.

The SDLFM algorithm requires parameter tuning for opti-
mal performance. Based on the original work [21] we used
the Frobenious norm to find the best settings for the SD
method with the training sample. For more information on
this analysis, we refer the reader to the supplementary ma-
terial. XLFMNet shows consistency with the neural activity
detected with the other methods, by showing its reliability
even on unseen fish samples.

3.4 Reconstructing fluorescent beads

When applying the different sparse decomposition methods
to images of beads, we found that the output is quite similar
to the input, as seen in the last row of Fig. 3. However, we
can use the beads images to analyze how the XLFMNet
infers unseen types of samples. In this experiment, first
we applied conventional deconvolution to XLFM images of
beads and then computed their FWHM for every detectable
bead. The position of the beads was stored to extract the
same information from a volume reconstructed with an
XLFMNet trained on a single zebrafish.

In Table 4 we compare the FWHM of beads images when
3D reconstructed with deconvolution against XLMNet, to-
gether with the detection histogram per depth — in other
words, how many beads were detected per depth — which
helps us analyze the information trade-off of the proposed
method. By looking at the FWHM plots, it is evident that
XLFM suffers from resolution loss against deconvolution,
mainly in the axial direction. However, as seen in the his-
togram and the missing beads plot, it keeps a detection rate
comparable to that of the deconvolved volume.

3.5 Spatial resolution estimation

To further evaluate the image quality from the SLNet and
XLFMNet, we estimated the 3D resolutions of the recon-
structed larval zebrafish brain images based on 3D MTF
analysis. The analysis results are shown in Fig. 6. We in-
ferred the 3D resolutions from the spatial frequency support
regions in the 3D MTFs, as enclosed in white dotted lines
in Fig. 6. According to our estimation, XLFM has a lateral
resolution of ∼ 4.3µm and an axial resolution of ∼ 10.0µm,
while SDLFM, SLNet+Deconv., and XLFMNet provided
similarly enhanced resolutions of ∼ 3.2µm laterally and
∼ 7.7µm axially. These resolution values align well with
the measured FWHMs of fluorescent beads in Table 4.

4 DISCUSSION

The first contribution of our work is the SLNet, which
performs the sparse decomposition of temporal raw XLFM
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TABLE 4: Beads reconstructed with conventional deconvolution (left) and the proposed XLFMNet (right). The lateral and
axial plots show the full width at half maximum for every depth, and a detection rate histogram, i.e., the number of beads
found per depth with each method, and missing beads per depth.
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Fig. 6: Spatial resolution estimation for different reconstruc-
tion methods. Top panel shows the temporal and axial
max intensity projections of reconstructed zebrafish brain
volumes. The bottom panel are 3D MTFs (displayed in
log scale) that show the spatial frequency support of each
method.

stacks. During its training and evaluation we found that
CNNs are a great choice for this task, due to their ability
to produce blurry images that are already a low rank
representation of the input in the spatial domain. Then,
the SLNet focuses mostly on finding the sparseness in
the temporal domain. Also, we found that the sparseness
parameter µ used to shrink the principal components of the
images during training is very user friendly as it serves
as an intuitive way of controlling the sparseness of the
reconstructions. We consider that this approach could be

integrated into the microscopy workflow (e.g., as a Micro-
Manager or ImageJ plugin). Another option would be to
store multiple networks trained with different µ so that the
user could decide the level of desired sparseness at test time.

The second contribution is XLFMNet, which reconstructs
3D volumes out of the sparse representations produced by
the SLNet. We consider that the ablation study provided
useful information regarding the generalization of the net-
work to unseen samples. A network with higher number of
parameters performs better than one with a lower number.
However, these parameters should not be spread across
too many down-convolutional steps. The network that we
found to perform the best was the one with two down-
convolutional steps (n = 2) and w = 7 channels, which
was able to reconstruct volumes at a rate of 45.05Hz.

When evaluating the network with different samples, in
Table 3 we found out that when trained on a zebrafish, it
works well for other unseen zebrafish, and preserves the
neural potentials with a similar pace as the other recon-
struction methods. However, when imaging beads that are
substantially different than fish, the network is able to recon-
struct with high fidelity the central depths, but loses contrast
when approaching depths farther away from the focal plane.
The intuition behind this is that the beads that are far away
spread their energy in a larger sensor area, which dims the
individual pixels substantially. Nevertheless, the network
could still detect the beads even at far away planes, as seen
in the detection rate histogram comparison in Table 4, where
the number of detected beads is quite similar as the one from
the conventional deconvolution method.

A possible improvement would be to retrain a batch
normalization block at the entrance of the network for every
new sample type, while keeping the XLFMNet frozen. We
leave this for future work.

5 CONCLUSION

In this manuscript we discuss a novel 3D sparse reconstruc-
tion method for XLFM images, which achieve a real-time
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performance (45Hz) on large volumes (800×800×250µm3)
and can be used to infer previously unseen samples by
preserving data fidelity and image quality.

Having such an algorithm operating in real-time, opens
the possibility of a large array of closed loop experiments,
where the biological sample stimulation and measurement
are closely related (e.g., visual, auditory and olfactory stim-
uli, as well as optogenetics). We leave these directions as
future work.

ACKNOWLEDGMENTS

J. Page is supported by the Deutsche Forschungsgemein-
schaft (LA 3264/2-1). Z. Wang acknowledges the Alana
Down Syndrome Center. E. S. Boyden acknowledges Lisa
Yang, NIH R01DA029639, NIH R01MH12297101A1, NIH
RF1NS113287, NSF 1848029, NIH 1R01DA045549, and John
Doerr. P. Favaro acknowledges the interdisciplinary project
funding UniBE ID Grant 2018 of the University of Bern. We
thank Owen Randlett at Claude Bernard University Lyon
1 and Florian Engert at Harvard University for sharing
zebrafish brain image datasets.

REFERENCES

[1] M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light
field microscopy,” in ACM SIGGRAPH 2006 Papers, 2006, pp. 924–
934.

[2] R. Prevedel, Y.-G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein,
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