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Abstract—The nematode worm C. elegans provides a unique
opportunity for exploring in silico data-driven models of a whole
nervous system, given its transparency and well-characterized
nervous system facilitating a wealth of measurement data from
wet-lab experiments. This study explores the scaling properties
that may govern learning the underlying neural dynamics of this
small nervous system by using artificial neural network (ANN)
models. We investigate the accuracy of self-supervised next time-
step neural activity prediction as a function of data and models.
For data scaling, we report a monotonic log-linear reduction
in mean-squared error (MSE) as a function of the amount of
neural activity data. For model scaling, we find MSE to be a
nonlinear function of the size of the ANN models. Furthermore,
we observe that the dataset and model size scaling properties are
influenced by the particular choice of model architecture but not
by the precise experimental source of the C. elegans neural data.
Our results fall short of producing long-horizon predictive and
generative models of C. elegans whole nervous system dynamics
but suggest directions to achieve those. In particular our data
scaling properties extrapolate that recording more neural activity
data is a fruitful near-term approach to obtaining better predictive
ANN models of a small nervous system.

Index Terms—nervous system, neural networks, machine
learning, neuroscience, scaling laws

I. Introduction
Exploring neural system dynamics is crucial in neuroscience

and artificial intelligence (AI). This intersection has spurred the
evolution of artificial neural network (ANN) models, inspired
by biological neural systems. ANNs offer the potential to
emulate diverse animal behaviors, providing advantages like
detailed specification, causal manipulability, and increasing
analytical accessibility, reflecting key aspects of biological
nervous systems ( [1], [2]). The nematode Caenorhabditis
elegans (C. elegans) is an exemplary model in this context,
offering a valuable platform for comparing real and artificial
neural dynamics.

C. elegans is an excellent model organism for neural
dynamics research due to its well-mapped connectome and

capabilities for non-invasive neuronal activity tracking via
advanced imaging techniques ( [3], [4]). The organism’s
compact size, transparency, and well-annotated genome allow
for intricate optical measurements and deep insights into
neural activity. NeuroPAL, a multicolor atlas, allows precise
in vivo neuron identification, enhancing the capabilities for
measurement and analysis of the C. elegans nervous system
[5].

We formulate the problem of in silico nervous system
modeling as a teacher-student framework. A real biological
neural network (that of C. elegans, in our case) is the teacher,
ANN models are the students, and self-supervised next time-
step neural activity prediction is the curriculum. We consider
different instances of the nervous system to be phenotypically
matched animals (in our case, adult hermaphrodite worms).

Predicting future neural activity based on historical neural
data is not new but the machine learning approach to do it has
seen increasing adaption ever since advancements in models
like LSTMs demonstrating some success in mammals [6]. In
C. elegans, the simplified behavioral repertoire and consistent
biology offer a unique setting for in-depth model analysis.
Self-supervised learning, predicting future states from intrinsic
neural patterns, reduces dependence on behaviorally annotated
data. While acknowledging the importance of behavior in neural
dynamics, our study concentrates on the inherent predictability
within neural activity, exploring how neural dynamics can be
predicted without direct behavioral reference, similar to how
large language models (LLMs) uncover intricate structures in
language data [7].

Research into ANNs’ scaling properties has shown that
improvements in model size, data volume, and computational
resources significantly enhance performance ( [8], [9]). The
relationship between data size and model capacity is critical in
optimizing model performance. However, this relationship in the
context of predicting neural dynamics in biological organisms



like C. elegans is not well-explored. Our study aims to fill this
gap by analyzing the impact of data volume, model architecture,
and size on ANN performance in neural activity prediction in C.
elegans. These insights are crucial for optimizing experimental
and modeling strategies in neuroscience, contributing to the
development of more accurate predictive models for biological
nervous systems.

II. Methods
A. Neural Activity Data

Data sources. We obtained 8 open-source datasets ( [5],
[10]–[16]) measuring neural activity in C. elegans (Table I).
These datasets, each recorded under varying experimental
conditions, quantify neural activity through the measurement
of changes in calcium fluorescence (Δ𝐹/𝐹0) within subsets of
the worm’s 302 neurons. The 8 experimental datasets contained
different numbers of recorded instances of the nervous system
(i.e. worms) as well as variable lengths of time for neural
activity measurements (Fig. 1A). The experimental conditions
were variable across datasets, ranging from freely moving [10],
immobilized [12], and asleep [15] states, to optogenetically
stimulated scenarios [11]. However, our modeling strategy is
agnostic to the potentially differing conditions and protocols
under which the data was acquired as long as the measured
system (C. elegans) and metric (Δ𝐹/𝐹0) is consistent.

TABLE I
Open-source C. elegans neural activity datasets.

Paper Link Database Link Files w/ Data
tinyurl.com/Leifer2023 osf.io/e2syt/ exported_data.tar.gz
tinyurl.com/Flavell2023 wormwideweb.org YYYY-MM-DD-

*.json/h5
tinyurl.com/Uzel2022 osf.io/3vkxn/ Uzel_WT.mat
tinyurl.com/Yemini2021 zenodo.org/records/3906530 _Activity_OH*.mat
tinyurl.com/Kaplan2020a osf.io/9nfhz/ Neuron2019_Data_.mat
tinyurl.com/Skora2018 osf.io/za3gt/ WT_.mat
tinyurl.com/Nichols2017 osf.io/kbf38/ let.mat
tinyurl.com/Kato2015 osf.io/2395t/ WT_Stim.mat
Num. worms Mean num. neurons ID’d Num. ID’d neurons (min, max)

103 69/122 (26, 102)
42 88/136 (64, 115)
6 50/138 (46, 58)
49 110/125 (33, 179)
19 36/114 (23, 51)
12 46/129 (39, 55)
44 34/108 (23, 43)
12 42/127 (31, 51)

Summary of key details such as publication references, data sources,
content format, worm counts, and neuron labeling statistics.

Standard data format. Each dataset D𝑛 includes individual
recordings from 𝑛 worms, each consisting of neural activity
and a mask indicating the subset of the 302 neurons that were
measured and labelled. This mask ensures models are trained
only on neural activity recorded from NeuroPAL labelled
neurons (Fig. 1B). Specifically:

D𝑛 = {X1,X2, . . . ,X𝑛} × {y1, y2, . . . , y𝑛} (1)

where 𝑛 = |D𝑛 |.

Fig. 1. Worm neural datasets curation. Eight open-source C. elegans neural
activity datasets were downloaded, preprocessed and assimilated. (A) The
distribution of the number of worms and the total recording time in each
dataset. (B) The neural activity data of all worms is organized a standard
format involving a muti-dimensional time series and a boolean feature mask.

Each worm, indexed by 𝑘 , has a data matrix X𝑘 ∈ R302×𝑇𝑘

and a binary vector y𝑘 ∈ {0, 1}302 specifying which neurons
were recorded and labelled. Each row x𝑘

𝑖
of the matrix X𝑘

contains the time series of neural activity for the 𝑖𝑡ℎ neuron
for 𝑇𝑘 time steps. The rows of X𝑘 and are ordered according
to the alphabetical canonical names of the neurons 1 with rows
ordered analogously to y𝑘 .

Preprocessing. The data, denoted as X𝑘 , is processed from
the original raw data. First, we normalized the calcium data
of each worm by 𝑧-scoring the full time series independently
for each neuron. We then smoothed the signal using a causal
exponential kernel (smoothing parameter 𝛼 = 0.5). Finally,
the neural data was resampled to a fixed time step interval
(Δ𝑡 ≈ 0.667𝑠). Fig. 2 steps through the preprocessing pipeline
for a handful of neurons from one worm in the Kato dataset
DKato [16].

Train-Test split. For each worm’s neural activity data matrix
X𝑘 , we performed a temporal split to create a training set X𝑘

train
and a testing set X𝑘

test. A balanced 50:50 split was adopted,
allocating the first half of the neural activity recording to
the training set and the second half to the testing set. One
might create equally sized train and test sets containing 𝑛s
sequences of length 𝐿 by sampling their start indices uniformly
from (or equidistantly within) the range [0, ⌊𝑇/2⌋ − 𝐿 − 1) and
[⌈𝑇/2⌉, 𝑇 − 𝐿 − 1] for train and test, respectively

Amount of Data. The ability to vary the amount of training
data is central to our investigation of the effects of data scaling
on the ability of self-supervised models to do future neural

1https://www.wormatlas.org/NeuronNames.htm



Fig. 2. Example of preprocessing worm neural data. We use the example
of the Kato (2015) dataset to illustrate steps of the preprocessing the neural
activity data. Starting with the raw calcium fluorescence signals (A); we first
standardize or 𝑧-score each neuron independently (B); then smooth using a
causal filter (C); and finally resample to a fixed time step (D).

activity prediction. However, we are data constrained in our
setting since the collective dataset of all worms D𝐴𝐿𝐿 has only
284 worms (Fig. 3).

Source Datasets. The experimental sources contributing to
DALL = D284 are Kato DKato (|DKato | = 12), Nichols DNichols
(|DNichols | = 44), Skora DSkora (|DSkora | = 12), Kaplan DKaplan
(|DKaplan | = 19), Yemini DYemini (|DYemini | = 49), Uzel DUzel
(|DUzel | = 6), Flavell DFlavell (|DFlavell | = 42), Leifer DLeifer
(|DLeifer | = 103).

Mixed Datasets. To create mixed datasets combining worms
from the different experimental sources, we randomly sample
from the combined pool of all available worms DALL.

Let 𝑖 ∈ [8] := {1, 2, . . . , 8} index into the list of experimental
sources (sorted by publication date): [Kato, Nichols, ..., Leifer].
We denote a mixed worm dataset containing 𝑛𝑤 worms from

Fig. 3. Distribution of neurons in D𝐴𝐿𝐿 . Since the train-validation split is
along the temporal (not feature) dimension, the neuron distribution is the same
in the train and validation sets. The combined dataset has 284 worms from
the 8 experimental dataset sources, with 247 out the 302 neuron classes in
𝐶.𝑒𝑙𝑒𝑔𝑎𝑛𝑠 represented (i.e. recorded in at least 1 worm). Of the recorded
neurons, some are over-represented whereas others have been recorded in only
1 worm.

any combination of experimental sources as D𝑛𝑤 .

D𝑛𝑤 =

8⋃
𝑖=1

D (𝑘𝑖 )
𝑖

s.t.
8∑︁
𝑖=1

𝑘𝑖 = 𝑛𝑤 (2)

Here, D (𝑘𝑖 )
𝑖

stands for 𝑘𝑖 worms sampled specifically from
the experimental dataset indexed by 𝑖 (Fig. 4A). Note that
there are multiple assignments that can achieve a dataset with
𝑛𝑤 worms. Therefore, 𝐷𝑛𝑤 is a random variable. Our mixed
dataset sampling process is akin to sampling from a multinomial
distribution where the probabilities correspond to the proportion
of available worms from each experimental source:

D𝑛𝑤 ∼ Multinomial(𝑛𝑤; 𝑝1, . . . , 𝑝8) (3)

where 𝑝𝑖 reflects the relative contribution of the experimental
dataset indexed by 𝑖 to the pool.

This methodical approach allows us to create increasingly
larger mixed datasets up to the largest one containing all worms
D𝐴𝐿𝐿 := D284 (for which there is only 1 possible assignment).
The result is a series of mixed datasets, each with a unique
composition of worms, yet collectively spanning the full range
of neural dynamics present in the collective data. The mixed
datasets D𝑛𝑤 thus represent a diverse cross-section of neural
activities encompassing variations in experimental conditions.

We could also generate subsets from any single experimental
dataset using this approach by simply restricting our random
sampling to that source. This allows us to create increasingly
larger data subsets constrained to a particular experimental
context.



Fig. 4. Sampling datasets and dataset scaling experiment. (A) Creating mixed worm datasets of various sizes by sampling from the pool of all available worms
across different experimental datasets. (B) The validation loss from optimizing for next time step prediction is a decreasing function of the number of training
time steps and depends on the model architecture. All models are approximately matched in size at 580K (K=thousand) trainable parameters. (C) Within a
model class, the data scaling slopes exhibit remarkable similarity across experimental dataset sources, despite the diversity of the experimental and behavioral
conditions.

Synthetic Datasets. We created synthetic datasets that mirror
the complexity and challenges of the processed real C.elegans
neural activity data, such as partial observability, sparsity, and
noise, with 200 synthetic ‘worms’ each having 1500 time steps
of activity from 50 randomly chosen neurons. These datasets
allow for robust model validation against known dynamics,
offering clear benchmarks for performance evaluation.

The Sines dataset models each neuron’s activity as an
independent sinusoid with a random phase but consistent
frequency across worms, exploring an assumption of neuron-
specific ‘fingerprints’ in the network dynamics. This dataset
tests models on their ability to capture simple, uncoupled
oscillatory patterns, a task suited for recurrent models like
LSTMs.

Conversely, the Random Walk dataset challenges models
with inherently unpredictable neural activity simulated through
a random walk process, aiming to benchmark against the naive
predictor’s performance which is provably the best estimator

in this case. This setup serves as a critical test of model
implementations, ensuring no model unjustifiably surpasses
this baseline.

B. Model Structure

Model architectures. Our study utilizes three distinct
classes of neural networks to harness different inductive
biases for the prediction of future neural activity in C.
elegans. These include Long-Short Term Memory (LSTM)
networks, Transformer networks, and Feedforward networks.
These architectures were chosen to represent a fundamental
set of mechanisms—recurrence, attention, and feedforward
processing—allowing us to assess the impact of structural and
mechanistic differences on the task at hand.

Shared model structure. Each architecture is implemented
within a common structural framework comprising an em-
bedding block, a hidden ‘core’ module, and a linear readout
layer to enable a consistent training and evaluation procedure.



This shared structure is modular allowing for the comparison
of different ANN architectures by substituting only the core
module (Fig. 5A).

1) Embedding: The basic embedding layer linearly projects
from the 302-dimensional neural state space to a higher or
lower 𝐻-dimensional latent space. Certain architectures
like the Transformer may add a positional encoding and
other architectures may apply layer normalization to
stabilize the learning process.

2) Core: The core module is architecture-specific and
constitutes the primary computational engine of the
model. It is restricted to use a single layer to maintain
simplicity and facilitate interpretability. Besides the single
layer restriction, we place no constraints on the class of
computations the core is allowed to use (e.g. recurrence,
parallel-processing, etc.), making our approach highly
modular and scalable. The Baseline and LinearRegression
prediction models are ‘shallow’ models, which means
that they lack the ‘core’ module.

3) Output Mapping: The final component of the model is
a linear projection from the latent space back to the
original neural state space. The output of this layer is
the predicted future neural activity X̂ = 𝑓ℎ𝑜 (Z), where
𝑓ℎ𝑜 is the linear transformation from the hidden to the
output space.

Causal Predictions and Temporal Memory. Our models are
tasked with making causal predictions, where future predictions
do not rely on future inputs. We use a causal attention mask in
the Transformer and Attention models. The LSTM and CTRNN
models are inherently causal by definition. The Linear and
Feedforward models lack access to temporal context beyond the
current time step (i.e. they process each time point in a sequence
independently). This essentially restricts the computation of the
Linear and Feedforward models to feature regression (linear and
nonlinear, respectively), providing a baseline for the importance
of temporal information in self-supervised neural prediction.

Baseline Model. We use the naive predictor which posits that
the next neural state will be identical to the current one as our
baseline model. This baseline is a commonly used one for time
series prediction tasks and it is the known optimal predictor for
a random walk. Despite its simplicity, this baseline is not trivial
to beat in the context of neural activity data which can often
resemble, at a first-order approximation, a random process.
Beating this baseline requires our ANN models to uncover
and leverage complex, higher-order structures in the neural
activity data beyond what is expected from a purely stochastic
process. To maintain consistency with our models super-
structure (Fig. 5A left), our Baseline model is implemented
as‘thunk’ model class with no trainable parameters that simply
copies its masked input as its output.

C. Training Objective and Loss Function
Training Objective. The models are trained under a self-

supervised objective to predict the 1-time step shifted sequence
of neural activity given a input sequence of neural activity of

Fig. 5. Model architecture and model scaling experiment. (A) The six (6)
model classes we investigate share a common backbone but have differentiated
core architectures: Feedforward, Linear, LSTM, CTRNN, Transformer, and
Attention. Asterisks indicate modules appear in some architectures but not
others. *Positional encoding present here in the Transformer and Attention
models. **Layer normalization absent here in the Feedforward and Attention
models. (B) The next time step prediction validation accuracy (inverse relation
to loss) improves non-linearly with increasing the model sizes with some
model architectures scaling better than others. Only the recurrent (CTRNN and
LSTM) models beat the baseline loss. All models are trained and validated
on the fixed largest training and validation datasets, respectively, made from
D𝐴𝐿𝐿 .

length 𝐿. The training objective is simply to minimize the mean-
squared error (MSE) between the predicted and true neural
activity sequences. The loss function further incorporates the
boolean neuron mask to ensure that only neurons with measured
data contribute to the loss computation. The mean-squared error
(MSE) loss function with the boolean mask is defined as:

L(X, X̂; y) = 1
𝑁 × 𝐿

𝑁∑︁
𝑖=1

𝐿−1∑︁
𝑡=0

y ⊙ (X𝑖 (𝑡 + 1) − X̂𝑖 (𝑡 + 1))2 (4)

where X𝑖 (𝑡 + 1) is the true activity of the 𝑖𝑡ℎ neuron at time
𝑡+1, X̂𝑖 (𝑡+1) is the predicted activity at time 𝑡+1, y ∈ {0, 1}302

is the boolean feature mask indicating the presence of data
for neuron 𝑖, 𝐿 is the sequence length used for training the
model, and 𝑁 = 1⊤y is the number of masked neurons (i.e.
the number of labelled neurons with data).

Data Sampling and Model Evaluation. We construct the
training and validation sets by sampling from each worm 𝑛𝑠 =

32 sequences of length 𝐿 = 180 time steps according to the
method in subsection II-A Train-Test split. For example, a
dataset D𝑛𝑤 containing 𝑛𝑤 worms would produce training
and validation sets each with 𝑛𝑤 × 32 sequences. Train and
validation data loaders use a batch size of 128.



Training Protocol. Models are trained up to a maximum
of 500 epochs using the AdamW optimizer, with an initial
learning rate of 0.001. A learning rate scheduler reduces the
rate upon a validation loss plateau, with a decay factor of 0.1.
Early stopping with a patience of 100 epochs is employed for
efficiency. Training for all experiments was run with the same
computing resources and device specifications (1 NVIDIA
A100 80GB GPU).

III. Results

A. Data Scaling

1) Mixed Dataset Scaling: To assess how increasing the
amount of training data influences the self-supervised next time
step neural activity prediction.

We trained models of every architecture on incrementally
larger training sets from a sequence of mixed worm datasets
ranging in size from 1 to 284 worms, sampled according to
subsection III-A1 Mixed Dataset Scaling. At each training set
size, the models were evaluated against the fixed maximum
sized validation set made from D𝐴𝐿𝐿 . Since there are multiple
possible combinatorial assignments for a mixed dataset D𝑛𝑤

of size 𝑛𝑤 < 284 worms, we plot the independent variable as
the number time-steps in the train dataset. We controlled for
the hidden size of each model architecture class so that all
models were approximately matched at 580K (K=thousand)
trainable parameters (Table II).

TABLE II
Model Hidden Sizes and Parameter Counts.

A: Parameter Counts for Hidden Size 300
Model Name Model Alias Hidden Size Parameter Count
FeatureFFNN Feedforward 300 272702

NetworkCTRNN CTRNN 300 363302
NetworkLSTM LSTM 300 904802

NeuralTransformer Transformer 300 1268402
PureAttention Attention 300 543602

A comparison of the size in number of trainable parameters
for different model architectures.
A The models are matched for the hidden size of their internal
‘core’ module to compare their parameter counts.

B: Matched Parameter Count (Approx. 580K)
Model Name Model Alias Hidden Size Parameter Count
FeatureFFNN Feedforward 516 580286

NetworkCTRNN CTRNN 408 582110
NetworkLSTM LSTM 234 582260

NeuralTransformer Transformer 196 584186
PureAttention Attention 312 580310

B The models are approximately matched for their
parameters count to compare their hidden sizes.

The results shown in Fig 4B indicate that, at a fixed model
size 0.580M trainable parameters, the CTRNN models scale
to scale the best (slope = −0.65) with dataset size, whereas the
Feedforward models scale the worst (slope = −0.40), out of the
architecture classes investigated. We also validated our dataset
scaling on the synthetic datasets introduced in subsection II-A
Synthetic Datasets (Fig. 6A-B).

2) Individual Dataset Scaling: To determine if models
trained on mixed datasets maintained consistent scaling prop-
erties when evaluated on the individual experimental source
datasets.

Utilizing the best model from the mixed dataset scaling
experiment at each training dataset size, we evaluated on the
largest validation set made from each of the experimental
sources (refer to last paragraph of subsection II-A Mixed
Datasets).

Fig. 4C presents the results for scaling the sizes of the
individual experimental source datasets.

B. Model Scaling
To determine the effect of model complexity, as determined

by the number of trainable parameters and architecture, on the
performance of self-supervised neural activity prediction in C.
elegans.

We varied the hidden size of the ‘core’ architecture as a knob
with which to vary the number of parameters of our models.
Since each architecture (Linear, Feedforward, CTRNN, LSTM,
Transformer, Attention) has a different number of trainable
parameters than the others at any given hidden size, we plot
the number of trainable parameters as the independent variable.
The various sized models of each architecture/class were trained
on the same, fixed maximum sized training dataset made from
D𝐴𝐿𝐿 . We also validated our model scaling on the synthetic
datasets introduced in subsection II-A Synthetic Datasets
(Fig. 6C-D).

Fig. 5B shows the results of increasing the model size for
the different architecture classes. As discussed in subsection
II-B Shared model structure, the Baseline and Linear models
have no hidden size dimension to vary. The Baseline model
simply has no trainable parameters at all, whereas the Linear
model has no trainable parameters in its ‘core’ module – which
is just an Identity layer (Fig. 5A left).

The Baseline model achieved a minimum validation loss of
0.03541 which, by definition, is the baseline loss. The Linear
model achieved a minimum validation loss of 0.03533. The
minimum validation loss and parameter counts of the other
trained models is presented in Fig. 7, along with a qualitative
comparison of their auto-regressive generation capability.

C. Synthetic Experiments
To investigate the degree to which the scaling properties

observed for the real worm datasets are a function of the
underlying system (C elegans) versus of the networks being
trained.

We trained the same ANN classes and sizes used to model
the real C. elegans neural datasets (sections III-A and III-B)
on two synthetic neural datasets generated by known dynamical
systems: a sinusoidal oscillator (Sines) and a stochastic process
(Random Walk).

To scale the dataset sizes, for each architecture class, we
sampled increasingly larger subsets of worms from each
synthetic dataset (Sines or Random Walk) ranging from 1
worm to all 200 worms. Varying the number of worms in



Fig. 6. Dataset and model size scaling on synthetic datasets. (A-B) Dataset size scaling experiments. (A) Dataset size scaling of the ANN models used in 4B
on the Sines dataset. Beyond a modest dataset size threshold, the sequence models – recurrent and transformer – outperform the naive predictor baseline loss.
(B) Dataset size scaling of the ANN models used in 4B on the Random Walk dataset. As expected, no model beats the naive predictor baseline loss since that
is the optimal predictor for a random walk. (C-D) Model size scaling experiments. (C) Model size scaling of the ANN models used in 5B on the Sines dataset.
Beyond modest model size threshold, the sequence models – recurrent and transformer – outperform the naive predictor baseline loss. (D) Model size scaling
of the ANN models used in 5B on the Random Walk dataset. No model can beat the naive predictor baseline loss, even after training on all the available data.

a dataset was an indirect way to vary the number of time
steps of neural activity in the dataset since those two variables
are positively correlated. The number of time steps, in turn,
causally determines the amount of data used for training. To
scale the model sizes, for each architecture class, we increased
the number of parameters by varying the hidden size in the
range [8, 4096] at log-spaced intervals. The hidden size was a
proxy variable that could be manipulated to directly vary the
number of trainable parameters in the models.

For the dataset size scaling experiments, all models were
approximately matched in size at 580K (K=thousand) trainable
parameters and the validation set used was the fixed largest
possible one made from all 200 worms in the synthetic dataset.
For the model size scaling experiments, the training and
validation sets used were the fixed largest possible ones made
from all 200 worms in the synthetic dataset.

Fig.6 presents the results for scaling the sizes of the synthetic
datasets.

IV. Discussion

This study’s exploration into the scaling properties of ANNs
in predicting neural activity within C. elegans reveals critical
insights into data-driven modeling of biological neural networks.
Our results demonstrate that the predictive accuracy of ANNs

is significantly influenced by both the volume of training data
and the complexity of the model. We observed a logarithmic
decrease in mean-squared error with increased training data, a
consistency that persisted across various experimental datasets.
This suggests a pivotal role for data volume in enhancing model
performance, with further gains possible through optimal model
complexity.

Model architecture emerged as a decisive factor; recurrent
models, such as LSTMs and CTRNNs, outperformed others,
underscoring the importance of temporal dynamics in neural
activity prediction. The experiments indicated that different
datasets, despite their diverse origins, share common underlying
dynamics, as evidenced by the similar scaling slopes in
prediction accuracy. This finding substantiates the pooling of
data from multiple sources to improve model robustness.

Challenges encountered include determining appropriate
model sizes for varying data volumes and incorporating behav-
ioral contexts into predictions, which present promising avenues
for future research. Our work thus far has not fully realized
the long-horizon predictive capabilities for C. elegans neural
dynamics. However, it paves the way for more comprehensive
models by highlighting the potential benefits of incorporating
richer datasets and nuanced model architectures.

Future efforts will focus on refining models to capture



Fig. 7. Auto-regressive generation of trained models on DUzel. Models
attaining the lowest validation loss for some architecture classes in Fig. 5B are
seeded with a length 𝐿 = 180 time step sequence from the validation set of
one worm in DUzel as context. The models are then made to autoregressively
generate the next 180 time-steps by repeatedly predicting 1-time step ahead
and appending this prediction to the end of a sliding context window.

the complexity of neural dynamics more accurately. This
includes considering the integration of behaviorally-annotated
data to provide additional context and investigating architectures
capable of leveraging larger datasets without succumbing to
the diminishing returns of over-complexity. Extension of these
approaches to more complex nervous systems could offer
valuable comparative insights and further the understanding of
neural dynamics prediction.

In conclusion, this research contributes foundational knowl-
edge towards the development of ANN models that more
accurately reflect the intricacies of biological neural networks,
bridging the gap from model organisms to broader biological
contexts.

V. Reproducibility
We have made the combined C. elegans neural activity

dataset publicly available on the Hugging Face platform here:
qsimeon/celegans_neural_data. All the code written for this
study has been released publicly on GitHub at this repository:
metaconsciousgroup/worm-graph.
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