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Over the previous two decades, a diverse array of geochemical negative emissions

technologies (NETs) have been proposed, which use alkaline minerals for removing

and permanently storing atmospheric carbon dioxide (CO2). Geochemical NETs include

CO2 mineralization (methods which react alkaline minerals with CO2, producing

solid carbonate minerals), enhanced weathering (dispersing alkaline minerals in the

environment for CO2 drawdown) and ocean alkalinity enhancement (manipulation

of ocean chemistry to remove CO2 from air as dissolved inorganic carbon). CO2

mineralization approaches include in situ (CO2 reacts with alkaline minerals in the Earth’s

subsurface), surficial (high surface area alkaline minerals found at the Earth’s surface are

reacted with air or CO2-bearing fluids), and ex situ (high surface area alkaline minerals

are transported to sites of concentrated CO2 production). Geochemical NETS may also

include an approach to direct air capture (DAC) that harnesses surficial mineralization

reactions to remove CO2 from air, and produce concentrated CO2. Overall, these

technologies are at an early stage of development with just a few subjected to field trials.

In Part I of this work we have reviewed the current state of geochemical NETs, highlighting

key features (mineral resources; processes; kinetics; storage durability; synergies with

other NETs such as DAC, risks; limitations; co-benefits, environmental impacts and

life-cycle assessment). The role of organisms and biological mechanisms in enhancing

geochemical NETs is also explored. In Part II, a roadmap is presented to help catalyze

the research, development, and deployment of geochemical NETs at the gigaton scale

over the coming decades.

Keywords: carbon dioxide removal (CDR), mineral carbonation, enhanced weathering in soils, coastal enhanced
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HIGHLIGHTS

- Geochemical NETs (in situ, ex situ and surficial carbon
mineralization, enhanced weathering, ocean alkalinity
enhancement, etc.) are extensively reviewed.

- The potential role of biotechnology in geochemical NETs is
given special focus.

- The Review (Part I) is accompanied by a Roadmap (Part II) to
help catalyze development of geochemical NETs at scale in the
coming decades.

INTRODUCTION

To meet the 2◦C climate target set out in the Paris Agreement,
the atmospheric concentration of CO2-equivalent (CO2eq)
should not exceed 450 ppm (or 430 ppm for the 1.5◦C
target) (Spier, 2020). To achieve this, a drastic decrease in
anthropogenic emissions is required, which can be achieved
through the expansion of renewable energy generation and
lower emissions from land-use and land-use-change. The
International Energy Agency (IEA) estimates that carbon capture
and storage (CCS), i.e., capturing and storing CO2 before
it is released to the atmosphere, may prevent upwards of 6
Gt CO2 yr.−1 by 2050 (Haszeldine et al., 2018). In addition,
negative emissions technologies (NETs) may also need to
remove 10 Gt CO2 yr.−1 by 2050, and 20 Gt CO2 yr.−1

by the end of the century (National Academies of Sciences,
Engineering, and Medicine, 2019). These targets necessitate
technologies capable of capturing, removing, and storing CO2 at
a large scale.

Carbon can be stored as organic materials, e.g., terrestrial
vegetation, ocean biomass, and biochar, or as pure CO2 deep
underground in sedimentary rocks. However, the permanence
of these storage media vary greatly, creating uncertainty
and legacy issues for industry, policymakers, and regulators
(Lackner, 2003). On the other hand, carbon can be permanently
stored in the form of the carbonate anion (CO2−

3 ) in solid
minerals, e.g., calcium carbonate (CaCO3) and magnesium
carbonate (MgCO3), or in the form of dissolved bicarbonate
(HCO−

3 ) in ocean water. These forms of storage can be
achieved by three main groups of technologies, commonly
referred to as CO2 mineralization, enhanced weathering, and
ocean alkalinity enhancement, collectively referred to here as
“geochemical NETs.”

Most geochemical NETs involve enhancing the reactions
of alkaline minerals with CO2 (and H2O), mimicking natural
chemical weathering reactions of silicate rocks at the Earth’s
surface, which removes∼1.1 Gt CO2 yr.−1 from the atmosphere,
primarily stored as ocean bicarbonate (Strefler et al., 2018). The
goal of geochemical NETs is to add considerably to this natural
removal rate as a tool to combat climate change. In the last
two decades, and particularly during the past few years, research
on geochemical NETs has grown considerably, with many novel
approaches being explored. Several companies and projects have
been recently established. Though some are already operating
at the kiloton (kt) scale, as a group they are, by and large,

at an early stage of their development, with just a few at the
pilot scale.

In Part I of this work, geochemical NETs are reviewed
and their potential impacts and limitations discussed. In
Part II, a set of projects and interventions that warrant
prioritization are presented in the form of a roadmap with
the aim of catalyzing the development and deployment of
geochemical NETs at the scale necessary to achieve significant
carbon removal.

OVERVIEW OF GEOCHEMICAL NETs

A geochemical NET is any technology which involves the use
of substantial amounts of alkaline minerals in its flowsheet and
involves enhancing the reaction of CO2 and mineral alkalinity
for the purpose of safely removing and storing CO2 from the
atmosphere as stable carbonate minerals, or dissolved ocean
bicarbonate. At a fundamental level, most geochemical NETs
are simply an acid-base neutralization of the form given in
Equation (1).

Acid (CO2 +H2O)+ Base (alkaline mineral)

= Salt (carbonate or bicarbonate) (1)

Figure 1 conceptualizes how sources of CO2 and mineral
alkalinity can be combined, giving rise to various geochemical
NETs. In order for such a technology to be carbon negative,
it must remove significantly more CO2 than it emits from
its life-cycle (Fajardy and Mac Dowell, 2017). Therefore, CO2

must be removed directly or indirectly from the atmosphere,
typically using renewable energy or bioenergy, rather than fossil
fuel energy.

In order to create solid carbonate minerals, CO2 (and H2O)
must react with alkaline minerals (Table 1). Alkaline minerals
are simply any natural or artificial mineral that is rich in
alkaline earth metals (second column of the periodic table),
particularly magnesium (Mg) or calcium (Ca), since these are
far more abundant than strontium or barium, etc. (which also
form stable carbonate minerals). Common Ca- and Mg-rich
minerals are given in section the Common Alkaline Minerals.
These minerals are found in natural igneous, metamorphic, and
sedimentary rocks (section Naturally Occurring Alkaline Rocks)
as well as in industrial by-products and wastes such as mine
tailings, cement kiln dusts, fly ash, slag, desalination brines,
etc., or minerals tailored for purpose (section Artificial Alkaline
Minerals—Industrial By-Products and Wastes, and Tailored
Minerals and Table 2). Abundant silicate minerals rich in alkali
metals (first column of the periodic table), in particular sodium
and potassium, may be able to contribute in some geochemical
NETs, but their carbonates are too soluble for long-term carbon
sequestration. While other elements may also form carbonate
minerals (e.g., cadmium, cobalt, copper, iron, lead, manganese,
nickel, uranium, zinc) their abundance, stability, or toxicity limit
their large-scale reaction with CO2.

Most of the reactions between CO2, H2O and mineral
alkalinity (section Reaction Chemistry) are thermodynamically
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FIGURE 1 | Conceptualizing many of the possibilities for geochemical NETs by combinations of CO2 and alkaline minerals.

favorable, as indicated by their negative Gibbs free energies.
The result of these reactions is either a solid carbonate
mineral (section Carbonate Products and Other Secondary
Minerals), or dissolved ocean bicarbonate. However, owing
to kinetic limitations, the reaction between rock outcrops
containing natural alkaline minerals and CO2 at ambient
conditions occurs on geological timescales. Therefore,
the main goal of geochemical NETs is to considerably
enhance the rate of these reactions to a timescale relevant
to climate change mitigation by manipulating the kinetics
(section Kinetics).

Those geochemical NETs which predominantly produce solid
carbonate minerals (section CO2 Mineralization), can be divided
conceptually into in situ, ex situ and surficial CO2 mineralization.
In situ approaches typically involve circulation of CO2-rich fluids
through alkaline rocks, e.g., basalt or peridotite, in the Earth’s
subsurface (Matter and Kelemen, 2009). Ex situ approaches
typically involve reacting high concentration CO2 with finely
ground natural alkaline minerals or artificial alkaline by-
products/wastes in engineered reactors. These reactions typically
go to completion within minutes using high temperatures,
pressures, concentrated CO2 and/or other reagents such as
acids (Sanna and Maroto-valer, 2016). On the other hand,
surficial approaches typically involve reaction of air, or CO2-
bearing fluids/gases, with ground minerals at the Earth’s surface,
occurring more slowly than ex situ reactions. Examples include
reactions of natural minerals in controlled environments like
greenhouses (Myers and Nakagaki, 2020), or in heaps or piles

of artificial wastes such as slags (Stolaroff et al., 2005) or mine
tailings (Wilson et al., 2006, 2009). In both ex situ and surficial
CO2 mineralization, the carbonate products may be valorized
(sold or utilized), whereas in in situ approaches the mineralized
CO2 is safely and permanently stored underground. Surficial
approaches may also be harnessed for the purpose of cost-
effective direct air capture (DAC) (Box 1).

Other geochemical NETs involve the dispersing of alkaline
minerals for the purpose of enhanced weathering in large
open spaces, exploiting certain environmental conditions.
Where the reactive medium is soil, this is referred to
as enhanced weathering in soil, or terrestrial enhanced
weathering (section Enhanced Weathering in Soils) (Schuiling
and Krijgsman, 2006). Where the weathering takes place
at beaches and coastal shelves, the method is referred to
as coastal enhanced weathering (Montserrat et al., 2017).
Coastal enhanced weathering is one approach for ocean
alkalinity enhancement (OAE), which is any process that
involves increasing alkalinity in the oceans, resulting
in atmospheric CO2 removal. Other methods for OAE
include ocean liming (Caserini et al., 2021), and a range of
electrochemical processes (House et al., 2007; Davies, 2015;
Mustafa et al., 2020). The role of alkaline minerals in ocean-
based NETs is discussed in the section Ocean Alkalinity
Enhancement. Key features of the different geochemical NETs
are summarized in Table 3. Finally, biological mechanisms
that influence geochemical reactions or transport ions may
potentially be integrated into many of the above-mentioned
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TABLE 1 | Mg-, Ca-, Na- silicate, oxide, hydroxide, aluminate, carbonate, etc., minerals typically encountered in geochemical NETs, with their Gibbs free energies (1Gf ) and enthalpies (1Hf ) of formation (Robie and

Hemingway, 1995), and in some cases their Gibbs free energies (1Gr) of reaction with H2O and CO2, at 1 atm and 25◦C [calculated using data from Robie and Hemingway (1995)].

Mineral Formula Molar mass

(g mol−1 )

1Gf

(kJ mol−1)

1Hf

(kJ mol−1)

Reaction 1Gr

(kJ mol−1)

1Hr

(kJ mol−1)

Carbonation—aqueous

Calcite CaCO3 100.09 −1128.5 −1207.4 CaCO3 + CO2 + H2O —-> Ca2+ + 2HCO−

3 22.8 −35.9

Chrysotile Mg3Si2O5(OH)4 277.11 −4034.0 −4361.7 Mg3Si2O6(OH)5 + 6CO2 + 5H2O —–> 3Mg2+ + 6HCO−

3 +

2H4SiO4

24.7 −308.4

Dolomite CaMg(CO3)2 184.41 −2161.3 −2324.5 CaMg(CO3)2 + 2CO2 + 2H2O —-> Mg2+ + Ca2+ + 4HCO−

3 48.6 −86.2

Hydromagnesite Mg5(CO3)4(OH)2.4H2O 546.54 −5864.16 −6514.9 Mg5(CO3)4(OH)2.4H2O + 6CO2 —-> 5Mg2+ + 10HCO−

3 27.9 −357.6

Ikaite CaCO3.6H2O 208.21 −2540.9 −2954.1 CaCO3.6H2O + CO2 —-> Ca2+ + 2HCO−

3 + 5H2O 12.6 −4.0

Magnesite MgCO3 84.32 −1029.5 −1113.3 MgCO3 + CO2 + H2O —-> Mg2+ + 2HCO−

3 22.5 −54.1

Monohydrocalcite CaCO3.H2O 118.11 −1361.6 −1498.3 CaCO3.H2O + CO2 —-> Ca2+ + 2HCO−

3 18.8 −30.8

Nesquehonite MgCO3.3H2O 138.38 −1723.8 −1977.26 MgCO3.3H2O + CO2 —-> Mg2+ + 2HCO−

3 + 2H2O 5.4 −47.5

Sodium

carbonate

Na2CO3 105.99 −1045.3 −1129.2 Na2CO3 + CO2 + H2O —> 2Na+ + 2HCO−

3 −29.9 −51.9

Thermonatrite NaHCO3 124.01 −851.2 −949.0 Na2CO3.H2O + CO2 —> 2Na+ + 2HCO−

3 −26.2 −37.2

Anorthite CaAl2Si2O8 278.22 −4007.9 −4229.1 CaAl2Si2O8 + 2CO2 + 3H2O —–> Ca2+ + 2HCO−

3 +

Al2Si2O5(OH)4

−36.8 −169.2

Diopside MgCaSi2O6 216.57 −3036.6 −3210.7 MgCaSi2O6 + 4CO2 + 6H2O —–> Ca2+ + Mg2+ + 4HCO−

3

+ 2H4SiO4

25.4 −189.8

Forsterite Mg2SiO4 140.71 −2053.6 −2173.0 Mg2SiO4 + 4CO2 + 4H2O —–> 2Mg2+ + 4HCO−

3 + H4SiO4 −25.3 −263.2

Jennite Ca9Si6O18(OH)6.8H2O 927.32 −13644.4 −272.0 Ca9Si6O18(OH)6.8H2O + 18CO2 + 10H2O —-> 9Ca2+ +

18HCO−

3 + 6H4SiO4

−457.5 −1145.9

Larnite Ca2SiO4 172.25 −2191.2 −823.0 Ca2SiO4 + 4CO2 + 4H2O —–> 2Ca2+ + 4HCO−

3 + H4SiO4 −85.1 −282.0

Rankinite Ca3Si2O7 288.42 −3748.1 −1293.1 Ca3Si2O7 + 6CO2 + 7H2O —–> 3Ca2+ + 6HCO−

3 +

2H4SiO4

−83.2 −386.2

Tobermorite Ca5Si6O12(OH)10.5H2O 588.94 −10466.4 −824.6 Ca5Si6O12(OH)10.5H2O + 10CO2 + 7H2O —-> 5Ca2+ +

10HCO−

3 + 6H4SiO4

−513.0 −941.4

Wollastonite CaSiO3 116.17 −1549.9 −1635.2 CaSiO3 + 2CO2 + 3H2O —–> Ca2+ + 2HCO−

3 + H4SiO4 −5.1 −103.0

Brucite Mg(OH)2 58.33 −833.5 −924.5 Mg(OH)2 + 2CO2 —-> Mg2+ + 2HCO−

3 −26.2 −135.2

Lime CaO 56.08 −603.1 −635.1 CaO + 2CO2 + H2O —-> Ca2+ + 2HCO−

3 −118.3 −214.7

Periclase MgO 40.31 −569.2 −601.5 MgO + 2CO2 + H2O —-> Mg2+ + 2HCO−

3 −53.5 −172.4

Portlandite Ca(OH)2 74.1 −898.4 −986.1 Ca(OH)2 + 2CO2 —-> Ca2+ + 2HCO−

3 −60.1 −149.5

CAH10 CaAl2O4.10H2O 488.14 −4622.3 – CaAl2O4.10H2O + 2CO2 —–> Ca2+ + 2HCO−

3 + 2Al(OH)3
+ 6H2O

−68.5 –

C2AH8 Ca2Al2O5.8H2O 478.2 −4812.8 – Ca2Al2O5.8H2O + 4CO2 —–> 2Ca2+ + 4HCO−

3 + 2Al(OH)3
+ 3H2O

−125.3 –

C3AH6 Ca3Al2 (OH)12 378.32 −5019.3 – Ca3Al2(OH)12 + 6CO2 —–> 3Ca2+ + 6HCO−

3 + 2Al(OH)3 −165.8 –

C4AH13 Ca4Al2O7.13H2O 755.41 −7327.5 – Ca4Al2O7.13H2O + 8CO2 —–> 4Ca2+ + 8HCO−

3 +

2Al(OH)3 + 6H2O

−238.8 –

(Continued)
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TABLE 1 | Continued

Mineral Formula Molar mass

(g mol−1 )

1Gf

(kJ mol−1)

1Hf

(kJ mol−1)

Reaction 1Gr

(kJ mol−1)

1Hr

(kJ mol−1)

C2FH8 Ca2Fe2O5.8H2O 416.01 −3919.0 – Ca2Fe2O5.8H2O + 4CO2 —–> 2Ca2+ + 4HCO−

3 + Fe2O3 +

6H2O

−163.2 –

C3FH6 Ca3Fe2O6.6H2O 436.05 −4125.5 – Ca3Fe2O6.6H2O + 6CO2 —–> 3Ca2+ + 6HCO−

3 + Fe2O3 +

3H2O

−203.8 –

C4FH13 Ca4Fe2O7.13H2O 618.27 −6433.7 – Ca4Fe2O7.13H2O + 8CO2 —–> 4Ca2+ + 8HCO−

3 + Fe2O3

+ 9H2O

−276.7 –

Tricarboaluminate Ca6Al2 (CO3)3(OH)12.26H2O 1147.11 −14536.0 – Ca6Al2(CO3)3(OH)12.26H2O + 9CO2 —–> 6Ca2+ +

12HCO−

3 + 2Al(OH)3 + 23H2O

−131.0 –

Carbonation—solid

Anorthite CaAl2Si2O8 278.22 −4007.9 −4229.1 CaAl2Si2O8 + CO2 + 2H2O —–> CaCO3 + Al2Si2O5 (OH)4 −59.5 −133.3

Diopside MgCaSi2O6 216.57 −3036.6 −3210.7 MgCaSi2O6 + 2CO2 + 4H2O —–> CaCO3 + MgCO3 +

2H4SiO4

−19.9 −99.8

Forsterite Mg2SiO4 140.71 −2053.6 −2173.0 Mg2SiO4 + 2CO2 + 2H2O —–> 2MgCO3 + H4SiO4 −70.3 −155

Gehlenite Ca2Al2SiO7 274.21 −3808.7 −4007.6 Ca2Al2SiO7 + 2CO2 + 5H2O—–> 2CaCO3 + 2Al(OH)3 +

H2SiO4

−111.6 −237.4

Jennite Ca9Si6O18(OH)6.8H2O 927.32 −13644.4 −272.0 Ca9Si6O18(OH)6.8H2O + 9CO2 + H2O —-> 9CaCO3 +

6H4SiO4

−662.4 −822.8

Larnite Ca2SiO4 172.25 −2191.2 −823.0 Ca2SiO4 + 2CO2 + 2H2O —–> 2CaCO3 + H4SiO4 −130.7 −210.2

Lime CaO 56.08 −603.1 −635.1 CaO + CO2 —-> CaCO3 −141.0 −178.8

Merwinite MgCa3Si2O8 328.71 −4339.4 −4566.8 MgCa3Si2O8 + 4CO2 + 4H2O —–> 3CaCO3 + MgCO3 +

2H4SiO4

−205.3 −371.5

Rankinite Ca3Si2O7 288.42 −3748.1 −1293.1 Ca3Si2O7 + 3CO2 + 4H2O —–> 3CaCO3 + 2H4SiO4 −151.5 −386.2

Tobermorite Ca5Si6O12(OH)10.5H2O 588.94 −10466.4 −824.6 Ca5Si6O12(OH)10.5H2O + 5CO2 + 2H2O —-> 5CaCO3 +

6H4SiO4

−626.8 −761.9

Wollastonite CaSiO3 116.17 −1549.9 −1635.2 CaSiO3 + CO2 + 2H2O —–> CaCO3 + H4SiO4 −27.8 −67.1

Brucite Mg(OH)2 58.33 −833.5 −924.5 Mg(OH)2 + CO2 —-> MgCO3 + H2O −48.7 −81.1

Portlandite Ca(OH)2 74.1 −898.4 −986.1 Ca(OH)2 + CO2 —-> CaCO3 + H2O −82.8 −113.6

Periclase MgO 40.31 −569.2 −601.5 MgO + CO2 —-> MgCO3 −75.9 −118.3

Amorphous silica precipitation*

H4SiO4 —–> SiO2 + 2H2O −22.7 −22.3

*The enthalpy and free energy for precipitation of SiO2 from H4SiO4 is given (last row) to enable calculation of the free energy and enthalpy of carbonation reactions where SiO2 is the product.
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TABLE 2 | Current production values for some common artificial minerals used in geochemical NETs, with estimated production values and NET potentials by 2050.

Current annual

production levels (Gt of

material)

2050 forecast

production (Gt of

material)

2050 NET potential

(Gt CO2 yr.−1)

References

Ash 0.6 – 1 17 – 29 0.07–0.14 Renforth, 2019

Cement—uptake into

cement and construction

and demolition wastes

1.4–5.8 40–170 1.4–2.0 Renforth, 2019

Mine tailings 9–17 1.1–4.5 Bullock et al., 2021

Red mud 0.12 3.5 <0.1 Renforth, 2019

Slag (BOF, BFS) 0.17–0.5 5–15 0.3–0.5 Renforth, 2019

Desalination brines (dry

NaOH)

0.12 0.06 0.2 Gao et al., 2017; Jones

et al., 2019; Ihsanullah

et al., 2021

Lime (CaO) 0.43 0.9–1.6* Unknown, but

potentially on the order

of 0.5–5***

Renforth, 2019

Magnesia (MgO) 0.14 0.5** José et al., 2020

*Forecast production lower estimate from Renforth (2019), upper estimate assuming additional 10% yr.−1 growth.
**Upper estimate assuming additional 10% yr.−1 growth.
***Lower estimates assuming once through capacity (e.g., ocean liming) on production forecast. Higher estimates for proposals that consider looping Ca or Mg (McQueen et al., 2020)
with subsequent geological storage.

BOX1 | Harnessing sur�cial mineralization processes for direct air capture.

Direct Air Capture (DAC) requires the removal of CO2 from the air to produce

a concentrated source of CO2. This concentrated CO2 can then either be

utilized or permanently stored. Surficial mineralization processes have been

proposed that fit this definition. For example calcium oxide (Hanak et al.,

2017; Hanak andManovic, 2018) or magnesium oxide (McQueen et al., 2020)

looping systems. Calcium looping is a pre- or post-combustion CO2 capture

technology which uses high temperatures. Carbonation is usually performed

at around 650◦C to form calcium carbonate (CaCO3). The carbonates, while

still hot, are then fed into the next part of the system where they are calcined

above 900◦C. The calcination step regenerates the lime and produces a more

concentrated source of CO2 which is suitable for CCS (Martínez et al., 2018).

Hybrid surficial DAC works similarly, except that CaO or MgO is carbonated

under ambient conditions in air, at potentially unlimited scale. The carbonation

step in air has slower reaction kinetics than calcium looping processes and is

thought to be dependent on a relative humidity above 55% (Erans et al., 2020;

Samari et al., 2020). For further details on these and other DAC systems see

(Sanz-Pérez et al., 2016; Okesola et al., 2018; McQueen et al., 2021a).

methods to improve efficiency (section Application of
Biotechnology to Geochemical NETs).

ALKALINE MINERAL RESOURCES

Common Alkaline Minerals
A mineral is an inorganic solid with distinctive chemical
and physical properties, composition, and atomic structure,
whereas rocks are an assemblage of minerals. In geochemical
NETs, the alkalinity for the neutralization reaction (Equation
1) is usually supplied by abundant Ca- and Mg-rich silicate
(or aluminosilicate) minerals, and in some cases the oxides,
hydroxides or carbonates of calcium and magnesium (see

Table 1). Potential material resources for magnesium-bearing
minerals are much larger than that of calcium owing to
their natural availability, while on the other hand, markets
for magnesium-based products are much smaller than that of
calcium-based products. Minerals rich in other cations such as
Na, K, Fe are also considered in some approaches (Kheshgi, 1995;
Palandri and Kharaka, 2005; Campbell, 2019).

Naturally Occurring Alkaline Rocks
Alkaline minerals are found in alkaline rocks, including: (i)
igneous rocks, such as basalt and peridotite (McGrail et al., 2006;
Kelemen and Matter, 2008; Matter and Kelemen, 2009; Clark,
2019; Kelemen et al., 2020), (ii) metamorphic rocks, such as
serpentinites (Okamoto et al., 2006; Power et al., 2013b; Bide
et al., 2014; Dichicco et al., 2015), and (iii) sedimentary rocks
such as limestone and dolomite (Rau and Caldeira, 1999; Rau
et al., 2007; Rau, 2011). There are two main types of igneous and
metamorphic alkaline rock considered for geochemical NETs:
(i) mafic rocks such as basalt, and (ii) ultramafic rocks such
as peridotite and serpentinite. Mafic and ultramafic rocks are
chemically and physically distinct. For example, mafic rocks
typically contain 15–28% MgO, 1–15% CaO, and 46–54% SiO2

(among other minor components), whereas ultramafic rocks
typically contain 35–46% MgO, 5–15% CaO, and 42–48%
SiO2 (Sen, 2014). Depending on the particular geochemical
NET, some rock types might be more suitable than others,
e.g., olivine may be more promising than basalt in enhanced
weathering approaches. For in situ mineralization, both mafic
(e.g., basalt) and ultramafic (e.g., peridotite and serpentinite)
formations with suitable properties, such as high porosities and
permeabilities, will allow for cost-effective storage. Together,
mafic and ultramafic rocks represent over 90 teratonnes (Tt) of
resources, sufficient to store the equivalent of 700-years worth

Frontiers in Climate | www.frontiersin.org 6 June 2022 | Volume 4 | Article 879133

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


C
a
m
p
b
e
lle

t
a
l.

G
e
o
c
h
e
m
ic
a
lN

e
g
a
tive

E
m
issio

n
s
Te
c
h
n
o
lo
g
ie
s:

R
e
vie

w

TABLE 3 | Qualitative comparison of geochemical NET processes.

CO2 mineralization Enhanced weathering and ocean alkalinity enhancement

In situ Ex situ Surficial Enhanced

weathering in soils

Enhanced

weathering at coasts

Ocean liming Electrochemical

seawater splitting

Where? Subsurface Reactors Heaps, piles, ponds,

greenhouses

Forest and agricultural

soils

Beaches and coastal

shelves

Oceans Coastal zones and

oceans

CO2 source Suited for industrial flue

gases, but also air/DAC

Industry (potentially also

DAC)

Air/DAC/industry Air Air Air Air

If concentrated CO2 is

used, is it retained?

Yes, minor losses Yes Potential losses N/A N/A N/A N/A

CO2 transport? Some approaches No Some approaches N/A N/A N/A N/A

Mineral transport? Rocks in place Rocks transported to CO2

sources

Minimal transport,

some spreading

Transport and

spreading

Transport and

spreading

Transport and

spreading

Rocks transported to

electrochemical reactor

Carbon products Carbonate minerals Carbonate minerals Carbonate minerals Carbonate minerals,

ocean (bi)carbonate

Ocean (bi)carbonate Ocean (bi)carbonate Ocean (bi)carbonate

Can carbon products be

utilized?

No Yes Yes No No No No

Temperature and pressure Rock formation

dependent (depth)

Likely non-ambient Ambient Ambient Ambient Non-ambient

(calcination)

N/A

Enhancements CO2 concentration,

reaction driven

cracking, H2O/CO2

ratio, additives

Grinding, mixing, agitation,

sonication, acids, salts,

additives, pre-treatments,

CO2 concentration,

solid-liquid ratio, humidity

Grinding, mixing,

agitation, sonication,

dispersing minerals,

sparging, CO2

concentration,

solid-liquid ratio,

humidity

Comminution.

Physical, chemical, and

biological location-

dependent weathering

Comminution.

Physical, chemical, and

biological location-

dependent weathering

Calcination to produce

highly reactive CaO

Electricity

CO2 removal rate Days to years Minutes Weeks to months Years Years Weeks Weeks

Potential removal scale Gt CO2 yr.−1 Mt CO2 yr.−1 Mt CO2 yr.−1 Mt–Gt CO2 yr.−1 Mt–Gt CO2 yr.−1 Mt–Gt CO2 yr.−1 Mt CO2 yr.−1

Emissions reduction (ER)

or NET

ER or NET ER or NET ER or NET NET NET NET NET

Monitoring and verification Potentially

straightforward

Straightforward Potentially

straightforward

Difficult Difficult Difficult Difficult
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of global CO2 emissions (Bide et al., 2014). For ex situ and
surficial mineralization, as well as for enhanced weathering, near-
surface deposits of mafic and ultramafic alkaline rocks could
be mined, crushed, and ground to create high surface areas to
facilitate a reasonable rate of reaction with CO2. In this regard,
the available rock resources that could be used for geochemical
NETs at the Earth’s surface are plentiful, since the estimates for
global sand, gravel, and stone reserves amount to more than 190
Tt (Sverdrup et al., 2017). If only a small part of this industry
were to be redirected toward production of crushed alkaline
rocks for surface geochemical NETs, then many Gt CO2 yr.−1

would be achieved in the near future. The reason is that a robust
and expanding industry is already in place, i.e., the construction
aggregates industry, which annually extracts and processes 50
billion tons (Gt) of rocks (range 47–59 Gt) (Sverdrup et al., 2017).
Finally, it may be possible to use natural carbonate rocks for
enhanced weathering and remove CO2 from air in the form of
bicarbonate (Kirchner et al., 2020).

Artificial Alkaline Minerals—Industrial
By-Products and Wastes, and Tailored
Minerals
In addition to naturally occurring mineral resources, some
geochemical NETs can also exploit abundant artificial mineral
resources (Table 2). These are typically wastes or by-products of
industrial processes, landscaping, or quarrying (Dijkstra et al.,
2019). On a global scale, it is estimated that 7 Gt of these
alkaline mineral by-products/wastes are produced annually, with
a combined potential to capture and store CO2 away from the
atmosphere at 2.9–8.5 Gt yr.−1 by 2100 (Renforth, 2019). More
specifically, these materials include: (i) iron and steelmaking slags
(blast furnace, basic oxide, electric arc furnace, ladle furnace, and
argon oxygen decarburization slags) (Mayes et al., 2018; Pullin
et al., 2019; Reddy et al., 2019; Luo and He, 2021); (ii) cement
wastes (cement and concrete wastes, construction and demolition
wastes, cement kiln/bypass dust, recycled calcium sulfates, and
blended hydraulic slag cement) (Huntzinger et al., 2009a; Medas
et al., 2017; Pedraza et al., 2021); (iii) ashes and relevant residues
[bottom ash from furnaces and incinerators (municipal solid
waste incinerator bottom ash, fly ash, boiler ash, coal slag, oil
shale ash), air pollution control residues (cyclone dust, cloth bag
dust), and fuel combustion ashes (coal fly ash, lignite fly ash, oil
shale, biomass ashes)] (Alba et al., 2001; Baciocchi et al., 2006;
Sun et al., 2008; Zhang et al., 2008; Montes-Hernandez et al.,
2009; Prigiobbe et al., 2009; Lombardi et al., 2016; Brück et al.,
2018; Liu et al., 2018; Ji et al., 2019; Vassilev et al., 2021); (iv) mine
and mineral processing wastes (asbestos tailings, nickel tailings,
diamond tailings, and red mud) (Wilson et al., 2010, 2014; Power
et al., 2014, 2020; Gras et al., 2017; Mervine et al., 2018); (v)
alkaline paper mill wastes (lime kiln residues, green liquor dreg,
paper sludge) (Pérez-López et al., 2008; Sun et al., 2013; Li
and Sun, 2014; Spínola et al., 2021); and (vi) reject brines from
desalination (Mustafa et al., 2020). The latter can be employed by
electrochemical approaches that aim at removing acidity (HCl)
from seawater and return alkalinity (NaOH). Currently, more
than 95 million m3 of desalinated water is produced daily on a

global scale, which is responsible for generating more than 141
million m3 of brine each day that is typically discharged into
the oceans, often negatively affecting the receiving ecosystems
(Jones et al., 2019). This number is on the rise, since recent
estimates suggest that by 2030 the global desalination capacity
will be more than 200 million m3 day−1 (Ihsanullah et al., 2021),
while this number could be more than tripled by 2050 since
the total global desalination population is projected to increase
by 3.2-fold in 2050 compared to the present (Gao et al., 2017).
These very large volumes of reject brines (waste) present certain
advantages for OAE, since their mean salinity is twice that of
seawater (Ihsanullah et al., 2021), suggesting that if they were
used for OAE, CO2 removal at the Mt yr.−1 scale at least could
be achieved in the nearterm.

Regarding the solid alkaline waste materials, these are
generally low-cost (Huijgen et al., 2005) and often deposited
in heaps or buried at the shallow subsurface, implying that
these are more accessible and more readily available than
natural minerals. Furthermore, most legacy deposits may be
only partially weathered, suggesting their great potential for
CO2 removal. For example, 40–140 years after deposition, a slag
deposit in Consett, England, which is estimated to be over 30
Mt, has only reached ∼3% of its CO2 sequestration potential
(Pullin et al., 2019). Artificial alkaline minerals also tend to have
higher reactivities than natural minerals, due to their activation
by various industrial pre-treatments (e.g., grinding and heat
treatment), which often create high surface areas and higher
crystal disorder (La Plante et al., 2021a). However, compared to
natural alkaline rocks, they are less abundant and may contain
more labile toxic metals, possibly making their use problematic
in large-scale geochemical NETs.

Therefore, rather than using wastes and by-products of
existing industrial processes, artificial alkaline minerals, tailored
for the purpose of negative emissions, could be more promising.
For example, the carbonates of calcium and magnesium can be
calcined, the CO2 generated by their decomposition could be
captured and stored, while the resulting high-reactivity oxides
(CaO and MgO) could be used in different NETs such as power
generation using an integrated solid-oxide fuel cell (Hanak et al.,
2017), metal oxide looping DAC (see Box 1) (McQueen et al.,
2020), or ocean liming applications (Renforth and Kruger, 2013;
Renforth et al., 2013). Substances other than CaO and MgO have
also been investigated for hybrid DAC systems, such as sodium
and potassium oxides, and related compounds (Nikulshina et al.,
2008; Campbell, 2019).

REACTION CHEMISTRY

Reactions of alkaline minerals with CO2 can occur as gas-solid
systems (e.g., Equation 2).

X2SiO4(s) + 2CO2(g) → 2XCO3(s) + SiO2(s) (2)

Where X is Mg or Ca. Humidity is usually required to catalyze
these reactions. See section Gas-Solid Kinetics for discussion on
the kinetics of gas-solid reactions.

Frontiers in Climate | www.frontiersin.org 8 June 2022 | Volume 4 | Article 879133

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Campbell et al. Geochemical Negative Emissions Technologies: Review

Alternatively, and more commonly, reactions of alkaline
silicate minerals with CO2 occur in the aqueous phase. First, CO2

dissolves in water forming carbonic acid (H2CO3), which releases
acidity, H+, into solution:

CO2(aq) +H2O(l) → H2CO3 (3)

H2CO3 → H+

(aq) +HCO−

3(aq) (4)

HCO−

3(aq) → H+

(aq) + CO2−
3(aq) (5)

Alkaline mineral surfaces then react with H+:

X2SiO4(s) + 4H+

(aq) → 2X2+
(aq) +H4SiO4(aq) (6)

Over time, carbonate minerals may precipitate:

X2+
(aq) + CO2−

3(aq) → XCO3(s) (7)

Overall the reaction is:

X2SiO4(s) + 2CO2(aq) + 2H2O(l) → 2XCO3(s) +H4SiO4(aq) (8)

Theoretically, 1mol of CO2 is removed for every 1mol of alkaline
metal. Similar reactions can occur for a wide array of alkaline
silicate minerals (Table 1). In some geochemical NETs, such as
coastal enhanced weathering, the goal is to remove carbon and
store it as dissolved ocean bicarbonate, rather than minerals:

X2SiO4(s) + 4CO2(aq) + 4H2O(l) → 2X2+
(aq)

+4HCO−

3(aq) +H4SiO4(aq) (9)

In this case, 2mol of CO2 are theoretically removed for every
1mol of alkaline metal (example reactions are given in Table 1).
The residence time of bicarbonate is tens to hundreds of
thousands of years in the ocean and thus it can be considered a
stable store of carbon since abiotic mineral carbonate formation
is kinetically inhibited by the ocean’s chemistry (Renforth and
Henderson, 2017). Alkaline carbonates can also be used to
remove CO2:

XCO3(s) + CO2(aq) +H2O(l) → X2+
(aq) + 2HCO−

3(aq) (10)

In this instance, 1mol of CO2 is theoretically removed for
every 1mol of alkaline metal, assuming the carbon is stored as
ocean bicarbonate.

Some geochemical NETs do not react alkaline minerals with
CO2 or H2CO3 directly, but instead react alkaline minerals with
other acids, which are by-products or wastes of other NETs.
For example, electrochemical seawater dialysis may produce HCl
(House et al., 2007; Davies, 2015):

NaCl(aq) → NaOH(aq) +HCl(aq) (11)

Where NaOH is used for ocean alkalinity enhancement and
CO2 removal:

NaOH(aq) +H2CO3 → Na+(aq) +HCO−

3(aq) + H2O(l) (12)

And where HCl is disposed of by reaction with alkaline minerals.

X2SiO4(s) + 4HCl(aq) → 2X2+
(aq) + 4Cl−(aq)

+H4SiO4(aq) (13)

Furthermore, some geochemical NETs capture CO2 from air and
produce concentrated CO2 gas in a looping process (McQueen
et al., 2020):

XO(s) + CO2(g) in Air → XCO3(s) (14)

XCO3(s) +Heat → XO(s) + CO2(g) (15)

The concentrated CO2 stream can then be used or safely stored
geologically. This process may be possible with minerals other
than Ca- and Mg- oxides.

CARBONATE PRODUCTS AND OTHER
SECONDARY MINERALS

Solid products of geochemical NETs primarily include carbonate
minerals such as calcite (CaCO3), magnesite (MgCO3), dolomite
(CaMg(CO3)2), and various hydrated magnesium carbonates
(Mg5(CO3)4(OH)2·nH2O). These are stable enough to be stored
for long time periods. Other carbonate minerals such as
siderite (FeCO3), dawsonite (NaAl(CO3)(OH)2), and ankerite
(Ca(Fe,Mg,Mn)(CO3)2) can act as stores of carbon, but may only
be stable in subsurface environments (Hellevang et al., 2005;
Snæbjörnsdóttir et al., 2014; Yu et al., 2020).

Besides carbonates, other products of mineral carbonation
and weathering include silica, iron oxides, and clays. These
secondary minerals, including the carbonate products, can
occlude reactive surfaces, halting further reaction (Béarat et al.,
2006; Andreani et al., 2009; Maher et al., 2009; Saldi et al.,
2013; Sissmann et al., 2014). The role of clay mineral formation
via “reverse weathering” (Equation 16) is a subject of ongoing
debate within several geochemical NETs, as these reactions may
inhibit their CO2 sequestration efficiencies (Montserrat et al.,
2017; Oelkers et al., 2018; Renforth and Campbell, 2021).

3X2+
(aq) + 2H4SiO4(aq) + 6HCO−

3(aq) → X3Si2O5(OH)4(s)

+6CO2(g) + 5H2O(l) (16)

Where X is a cation such as Mg2+ or Ca2+. Successful
geochemical NETs will likely include approaches for avoiding or
minimizing the extent and impact of secondary minerals.

KINETICS

The field of kinetics involves the study of reaction rates, and
provides the basis for reactor design and system optimization.
Although conversion of alkaline minerals into carbonates is
thermodynamically favored in the presence of CO2, the reactions
are kinetically inhibited. To become an effective tool for
climate change mitigation, conversion rates must be enhanced
considerably. Table 3 summarizes some common enhancements.
In geochemical NETs, there are many competing effects, and
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trade-offs will be required. For example, maintaining a low
pH can significantly increase the dissolution rate of silicate
minerals but will limit the formation of carbonate minerals,
while elevated temperatures favor mineral dissolution and
carbonate precipitation, they also lead to lower CO2 solubility.
These competing effects are particularly relevant to direct
carbonation. Separating dissolution and precipitation allows each
process to be optimized independently (indirect carbonation).
See section Ex situ for more details on direct vs. indirect
approaches. Generally speaking, most geochemical NETs are
CO2-mineral-water systems that can be divided into gas-solid
(section Gas-Solid Kinetics), or aqueous (section Aqueous Phase
Kinetics). In the latter, three main processes occur: (i) mineral
dissolution (section Mineral Dissolution); (ii) CO2 dissolution
and hydration (section CO2 Dissolution and Hydration); and
(iii) precipitation of carbonate minerals (section Carbonate
Precipitation). Biological influences on kinetics are discussed
separately in the section Application of Biotechnology to
Geochemical NETs.

Gas-Solid Kinetics
Gas-solid kinetics are relevant to ex situ (Baciocchi et al., 2009)
and surficial (Myers and Nakagaki, 2020) CO2 mineralization,
as well as DAC (McQueen et al., 2020). These systems operate
with gaseous (humidity), rather than liquid water, thus avoiding
significant leaching of potentially toxic metals (El-Naas et al.,
2015). The reaction of spherical particles of natural and artificial
alkaline minerals with CO2 is usually limited by ion diffusion
through a growing product layer, a process often described by a
shrinking core model such as in Equation (17) (Yagi and Kunii,
1955).

t =
ρsolidr

2

6DCgas

[

1− 3

(

r − d

r

)2

+ 2

(

r − d

r

)3
]

(17)

where t is time (s), ρsolid is the molar density of Ca or Mg in
the solid phase (mole m−3 of mineral), r is the particle radius
(m), d is the thickness of the product layer (m), Cgas is the CO2

concentration in the gas phase (moles m−3 of gas), and D is the
carbonate ion diffusivity through the product layer (m2 s−1). The
ion diffusivity has an Arrhenius temperature dependence, thus
increasing temperature increases carbonation rate (Li, 2020).
According to Equation (17), using pure CO2 rather than ambient
air increases the reaction rate by 3 orders of magnitude whereas
grinding from 10mm to 10µm increases mineralization rates by
6 orders of magnitude. Values of D for relevant minerals can
vary across 7 orders of magnitude depending on the mineral
composition and structure (Myers et al., 2019). Other kinetic
enhancements are possible for gas-solid processes. For example,
in fluidized bed processes, the use of a nanosilica additive
increased the gas-solids contact efficiency and carbonation rates
of Ca(OH)2 (Pontiga et al., 2013), while attrition has been shown
to prevent the build-up of passivating product layers, improving
CO2 uptake by CaO (Chen et al., 2012).

Humidity also plays a crucial role in gas-solid approaches.
For example, the rate and extent of reaction between portlandite
(Ca(OH)2) and CO2(g) (60–90◦C) was found to increase

significantly with increasing humidity, proposed to be due to
the rate limiting step of dissolution of Ca(OH)2 in adsorbed
surface water (Shih et al., 1999). For brucite (Mg(OH)2),
dehydroxylation/rehydroxylation processes have been shown to
induce morphological changes, including translamellar cracking
and delamination, that can serve to enhance carbonation
reactivity via disruption of the passivating product layer
(McKelvy et al., 2001; Fagerlund et al., 2012). Humidity is found
to have similar mechanistic effects on gas-solid carbonation of
natural silicate minerals such as wollastonite (CaSiO3) (Longo
et al., 2015) and chrysotile (Mg3Si2O5(OH)4) (Larachi et al.,
2010, 2012), mine tailings (Veetil andHitch, 2020), and industrial
alkaline by-products/wastes such as air pollution control residue
(Baciocchi et al., 2006), fly ash (Liu et al., 2018) and calcium
silicate hydrates found in hydrated portland cement (Steiner
et al., 2020).

Aqueous Phase Kinetics
Mineral Dissolution
Mineral dissolution is the degradation of a solid mineral in
aqueous media, with the subsequent release of soluble species
such as Mg2+/Ca2+ and H4SiO4 (e.g., Equation 6). The rate of
carbon sequestration in geochemical NETs is often limited by the
mineral dissolution rate. Mineral dissolution can be described by
the rate law:

Rate = SA.k0.e
−EA/RT .

∏

i

a
ni
i .f (1G) (18)

where SA is the reactive surface area, k0 is the standard rate
constant, EA/RT is apparent activation energy divided by the
gas constant, R, and temperature, T, ai is the activity of aqueous
species i to the power of n, and f (1G) is a function of the Gibbs
free energy change (see Lasaga, 1998; Black et al., 2015 for more
detail).

As implied in Equation (18), the rate of dissolution is directly
proportional to the reactive surface area (Brantley and Mellott,
2000). For earth-surface geochemical NETs that make use of
rocks, crushing and milling is needed to increase reactive surface
areas (Haug et al., 2010; Moosdorf et al., 2014; Rigopoulos
et al., 2016). For subsurface mineralization, high vesicularity
basalts provide large reactive surface areas (Galeczka et al., 2014;
Xiong et al., 2018). Temperature also plays an important role
in mineral dissolution, since the rate constant in Equation (18)
greatly depends on temperature and even small increases in
the temperature will largely increase mineral dissolution rates.
As a result, in ex situ approaches mineral dissolution rates are
often enhanced through temperature increase (Gerdemann et al.,
2007). For in situ approaches, greater depths are prioritized,
since the naturally warmer underground temperatures will
greatly enhance carbonation rates, by up to 76 times compared
to ambient surface rocks (Paukert et al., 2012). Indeed, fully
carbonated peridotites (listevenites) give a good indication of the
enormous potential of carbonation of ultramafic rocks at high
temperatures (Falk and Kelemen, 2015). Finally, for enhanced
weathering at the Earth’s surface, warm tropical regions are
typically prioritized, since in these areas mineral dissolution rates
are greatly accelerated (Kohler et al., 2010).
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The composition of the aqueous phase also plays an
important role. For example, the dissolution rates of minerals
such as forsterite and apatite increase linearly with decreasing
pH (Brantley, 2008). However, others may show a non-
linear dependence, for instance albite has a parabola-shaped
dependence, having a minimum at pH∼5 (Gislason et al., 2014).
In some geochemical NETs, carbonic acid provides the acidity
needed to enhance dissolution (see Equation 3) (O’Connor et al.,
2000; Kanakiya et al., 2017) while in others, organic and inorganic
acids will provide acidity (van Hees et al., 2000; Kakizawa et al.,
2001; Teir et al., 2007a,b). Organic acids can also catalyze silicate
dissolution by acting as chelators, which complex and solubilize
cations in the mineral crystal framework (Drever and Stillings,
1997; Lazo et al., 2017; Oelkers et al., 2018). Inorganic ligands,
such as sulfate and phosphate (Pokrovsky et al., 2005) may also
enhance mineral dissolution.

Dissolution rates are also dependent on the solids’
composition. In silicate minerals, the dissolution rate is
controlled by breaking of the shortest and strongest (usually
the Si–O) bonds. Thus, minerals with a low degree of silica
polymerization (e.g., olivine) dissolve at faster rates than
minerals with higher degrees (e.g., quartz) (Goldich, 1938).
For this reason, artificially tailored minerals such as MgO and
CaO exhibit much faster dissolution rates than silicates, making
them good candidates for OAE (Kheshgi, 1995; Renforth and
Henderson, 2017). Furthermore, calcium-rich minerals dissolve
faster than their magnesium-rich counterparts, owing to the
comparatively weaker Ca–O bond (Brantley, 2008). The presence
of transition metals and their potential for reduction–oxidation
(redox) reactions, particularly Fe and Mn, can have a substantial
impact on dissolution rates, e.g., Fe(III)–O bond is stronger
than Fe(II)–O bond, suggesting that reductive conditions could
increase mineral dissolution rates (Brantley, 2008). Silicates tend
to dissolve non-stoichiometrically, i.e., the ratio of release rates
for the various species is not equal to the stoichiometry of the
starting mineral, often because their most soluble elements,
e.g., Na, K, Ca, Mg, are released preferentially (Brantley, 2008).
Such incongruent dissolution may lead to the formation of a
silica-rich outer layer on the particle surfaces, inhibiting further
dissolution (Béarat et al., 2006; Andreani et al., 2009; Maher et al.,
2009; Saldi et al., 2013; Sissmann et al., 2014). Surfaces can also
be passivated by precipitating secondary minerals which limit
diffusion of reactants and products (King et al., 2010). Agitation
and sonication have been employed to reduce the impact of
surface passivation (Santos and Van Gerven, 2011). Organisms
can also prevent secondary mineral precipitation by secreting
organic chelators (Liermann et al., 2000; Buss et al., 2007; Torres
et al., 2019).

Figure 2 shows the CO2 removal potential via enhanced
weathering (mineral dissolution) for the most relevant alkaline
minerals contained within various types of mine tailings over
a 50-year period (Bullock et al., 2022). The removal potential
is determined according to weathering (Equation 6) via a
shrinking core model under two conditions: “unimproved”
(pH of 6–8, and common grain sizes for these materials,
e.g., 75µm for platinum group metal (PGM) tailings) and
“improved” (pH of 3–4, and grain sizes of 10µm for all

types). Tailings containing high abundances of olivine, serpentine
and clinopyroxene show the highest CO2 removal potential
due to their favorable kinetics. The rates of CO2 removal are
estimated to become substantially augmented using improved
conditions. Specifically, Bullock et al. (2022) estimate that
the average annual global CO2 removal potential of tailings
weathered over 2030–2100 to be ∼93 (unimproved conditions)
to 465 (improved conditions) Mt CO2 yr.−1. These data clearly
demonstrate the enormous impact that enhancing the reaction
kinetics can have on the CO2 removal potential of alkaline
materials.

CO2 Dissolution and Hydration
In low and neutral pH aqueous solutions CO2 will react with
water and form carbonic acid, H2CO3, with deprotonation to
form bicarbonate, HCO−

3 , and carbonate, CO2−
3 (Equations 3–

5) (Knoche, 1980). As the pH increases, the equilibrium shifts
further to the right, increasing the concentrations of HCO−

3 and
CO2−

3 . At higher pH values (>8) the CO2 reaction mechanism
changes, with HCO−

3 forming directly via the much faster
reaction (Morel and Hering, 1993):

CO2(aq) +OH−

(aq) ⇋ HCO−

3(aq) (19)

This behavior is the essence behind many geochemical NETs
which use dissolved mineral alkalinity as the driving force for
CO2 capture and sequestration. However, in some geochemical
NETs, mineral dissolution is not the limiting factor, but rather
they are constrained by the CO2 availability, particularly where
atmospheric air is the CO2-bearing gas (Power et al., 2013b;
Gras et al., 2017). According to Henry’s Law, doubling the
CO2 partial pressure approximately doubles the CO2 solubility
(Henry and Banks, 1803). Increasing CO2 partial pressure can be
achieved by increasing the total pressure or by increasing the gas
phase CO2 concentration (O’Connor et al., 2000, 2001). In some
geochemical NETs, CO2 is artificially pre-concentrated by DAC
or bioenergy with carbon capture and storage (BECCS) (Kelemen
et al., 2020). Others exploit the Earth’s natural mechanisms for
pre-concentrating CO2. For example, in enhanced weathering
in soils, the weathering rate of the applied alkaline minerals
is accelerated due to elevated concentrations of CO2 in the
soil pores, which traces back to microbial/plant respiration
(Robbins, 1986), while some ocean NETs may take advantage
of the higher carbon concentration by volume of seawater
compared to air (de Lannoy et al., 2018). Furthermore, diffusion
of CO2 into the aqueous phase can be artificially accelerated
through bubbling (Legendre and Zevenhoven, 2017; Abe et al.,
2021), stirring (Gadikota, 2020), spraying solution in scrubbing
towers (Gunnarsson et al., 2018), spraying fluids rich in mineral
dissolution products (Stolaroff et al., 2005), sparging (Kelemen
et al., 2020), or by using thin films of alkaline solution trickled
over high surface area packing materials (Keith et al., 2018). The
rate of hydration of CO2 into carbonic acid can be catalyzed by
the enzyme carbonic anhydrase (CA) (Lindskog, 1997) (section
The Influence of Organisms and Biological Mechanisms on the
Chemical Reactions Underlying Geochemical NETs). In coastal
enhanced weathering, the CO2 concentration from surface to
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FIGURE 2 | CO2 removal potential by enhanced weathering of a theoretical 1 kg of different mine tailings materials over a 50 yr time period, modeled using a shrinking

core model. Minerals typically contained within each tailings material are shown (abundance based on modal mineralogy, with non-reactive or untargeted minerals not

included) under unimproved (UI) (pH of 6–8, and common grain sizes for these materials, e.g., 75µm for PGM tailings) and improved (I) (pH of 3–4, and grain sizes of

10µm for all types) (Bullock et al., 2022).

seabed is constantly resupplied since the shallow, high-energy
coasts enable rapid sea-air mixing and equilibration. Other
factors might also influence CO2 dissolution rates. For example,
CO2 solubility in aqueous solutions decreases with increasing
temperature, as related via the temperature dependence of
Henry’s coefficient (Carroll et al., 1991), and also with increasing
salinity due to the “salting out effect” (Setschenow, 1889;
Yasunishi and Yoshida, 1979).

Carbonate Precipitation
Most geochemical NETs require production of dry solid
carbonate minerals, and in some of these approaches carbonate
precipitation is the rate-limiting step. For example, in OAE,
precipitation of carbonate minerals reduces the efficiency of the

overall sequestration by release of CO2:

Ca2+(aq) + 2HCO−

3(aq) → CaCO3(s) + CO2(g) +H2O(l) (20)

In general, precipitation occurs when the aqueous medium
is oversaturated with respect to the mineral that precipitates,
i.e., the ionic activity product is higher than the equilibrium
constant; whereas dissolution occurs when the aqueous medium
is undersaturated with respect to these minerals (Brantley,
2008). For calcium carbonate precipitation (Equation 7), the
stoichiometric solubility product, K∗

sp, is defined by:

K∗

sp = [Ca2+]sat × [CO2−
3 ]sat (21)
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where [Ca2+]sat and [CO2−
3 ]sat are the equilibrium

concentrations of each species in a solution saturated with
CaCO3 (at a specific temperature, pressure, and salinity). The
saturation state, Ω , is then defined as:

� = [Ca2+][CO2−
3 ]/K∗

sp (22)

where [Ca2+] and [CO2−
3 ] are the concentrations of each species

in solution. If Ω =1, the solution is at equilibrium with the
mineral phase. If Ω < 1, the aqueous phase is undersaturated,
and calcium carbonate is expected to dissolve, whereas if Ω > 1
then the aqueous phase is oversaturated, and calcium carbonate is
expected to precipitate. However, even when saturated, carbonate
minerals may not always precipitate. For example, the presence
of Mg2+(aq) is known to inhibit calcium carbonate formation

(Morse et al., 2007). Similarly, organic and inorganic ligands
present in the aqueous phase can inhibit calcium carbonate
formation via complexation and adsorption (Morse et al., 2007),
although some enhance the precipitation rates by accelerating
desolvation kinetics (Schott et al., 2009). The rate of carbonate
precipitation increases with increasing pH, owing to the shift
of aqueous equilibrium toward CO2−

3 (Ruiz-Agudo et al., 2011).
Higher temperatures and pressures result in greater precipitation
of calcium carbonate and (hydrated) magnesium carbonates
(Zeebe and Wolf-Gladrow, 2001; Hänchen et al., 2008). In
turbulent conditions, eddy formation increases the diffusion rates
of species enhancing carbonate precipitation (Dreybrodt et al.,
1997). Precipitation of CaCO3 is ∼4 orders of magnitude faster
than precipitation of MgCO3, as Ca2+ is much larger than Mg2+

and the water molecules in its coordination sphere are held
more loosely, enabling faster exchange with carbonate (Schott
et al., 2009). Notably, microorganisms have been observed
to catalyze the nucleation of MgCO3 (McCutcheon et al.,
2019). Microorganisms can catalyze nucleation of carbonate
precipitation by concentrating cations near the surfaces of cell
walls or extracellular polymeric substances (Dupraz et al., 2009).

PROCESSES

Processes for geochemical NETs that produce solid carbonate
minerals via CO2 mineralization include in situ, ex situ and
surficial approaches. Processes which increase the ocean’s storage
capacity of dissolved inorganic carbon (DIC) are termed
OAE and include coastal enhanced weathering, electrochemical
seawater splitting, and ocean liming. Enhanced weathering in
soils produces both carbonate minerals (carbonation) and also
lead to ocean alkalization since cations from rock dissolution
will remain dissolved in water and eventually be transferred
to the oceans (Renforth, 2012; Lefebvre et al., 2019). Table 3
summarizes some of the defining features of each of these
processes. Furthermore, geochemical NETs which use alkaline
minerals in their flowsheets but which do not necessarily
result in carbon storage are introduced in Box 1. Note that
descriptions of geochemical NETs, e.g., CO2 mineralization,
enhanced weathering, OAE, etc., in other sources may vary from
the ones in this review, and that their defining features may
overlap in one or more ways.

CO2 Mineralization
In situ
In CCS, CO2 is typically injected as a pure supercritical fluid
into geological formations, such as deep sedimentary formations,
salt mines, depleted oil fields, or unmineable coal seams, where
it becomes trapped in rock pores and structural spaces, with
minimal CO2 mineralization. An impermeable caprock is needed
in order to limit leakage and long-term monitoring is required
(Zhang and Song, 2014). In in situ mineralization, the focus is
on mineral storage, rather than pore and structural storage. This
is achieved by injecting supercritical CO2, or CO2-rich fluids,
into alkaline geological rock formations. Once injected, the CO2

creates a low pH zone within the rock, enhancing dissolution of
the surrounding silicate minerals and causing Mg2+ and Ca2+

to be released (Equation 6). As mineral dissolution increases, the
pH begins to increase, which in turn induces the precipitation
of stable carbonate minerals (Equation 7). With mineralization
there is less need for long-term monitoring of the storage efficacy
compared to traditional forms of CCS, particularly when CO2 is
pre-dissolved prior to injection. However, pre-dissolution incurs
additional cost and complexity compared to injection of pure
supercritical CO2 (Blondes et al., 2019).

As mentioned above, there are two main types of alkaline
rock formation suitable for in situ mineralization: (i) mafic
rocks such as basalt, and (ii) ultramafic rocks such as peridotite
and serpentinite. Due to their higher alkalinity, ultramafic
rocks have greater potential for CO2 mineralization per cubic
volume of rock, while their exothermic reaction with CO2

releases larger amounts of heat which is beneficial for the
mineralization reaction kinetics (National Academies of Sciences,
Engineering, andMedicine, 2019). However, ultramafic rocks are
usually found at greater depths, are less porous and permeable,
and have a wider range of crystal size than mafic rocks
(Kelemen and Matter, 2008). For both, capacity is large (section
Naturally Occurring Alkaline Rocks), and these rocks are widely
geographically distributed (Pilorgé et al., 2021). For example,
extensive reserves of onshore flood basalts exist in the US, India,
and Russia. However, most of the potential lies offshore, as
the majority of the seafloor is composed of basalt. Although
most peridotite is deeply buried, near-surface deposits can be
found in locations such as Oman, United Arab Emirates, the
Mediterranean, the Pacific Islands and New Zealand.

There are four main approaches to negative emissions via
in situ mineralization which are based on the rock types
and engineering methods employed, with two of them being
already demonstrated at the kt CO2 yr−1 removal scale
(Figure 3). In the first (i) approach, CO2 is injected into
porous mafic rock formations, e.g., basalt, as a supercritical
fluid. An impermeable caprock is needed to minimize CO2

leakages. If the rocks are not already water-saturated, then
some water can be co-injected alongside the supercritical
CO2 to facilitate mineralization. This has been successfully
demonstrated in 2013 by the Wallula project, whereby 977
tons of water-saturated supercritical CO2 from the industry
were injected into a permeable Columbia River basalt at a
depth of 900m over a 3-week period (McGrail et al., 2011,
2014, 2017a,b; Spane et al., 2012; White et al., 2020; Holliman
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FIGURE 3 | Schematics of four negative emissions approaches for in situ mineralization, i.e., (i) water-charged supercritical CO2 injection into mafic rock; (ii)

CO2-bearing fluids circulated through mafic rock; (iii) CO2-bearing fluids circulated through ultramafic rock; and (iv) seawater circulation through ultramafic rock.

et al., 2021). Although CO2 mineralization was observed in
sidewall core samples, evidence suggests that much of the CO2

remains structurally trapped (White et al., 2020; Holliman et al.,
2021).

In the second (ii) approach, an impermeable caprock is not
present and thus pre-dissolution of CO2 in reservoir fluids
or seawater is required, prior to injection into porous basalt.
Recirculation of the CO2-carrier fluids helps maintain a constant
rock formation pressure, reducing the chance of seismic activity,
as well as enabling monitoring of the extent of mineralization
via tracers such as 14C rich CO2 or Ca isotopes (Matter et al.,
2016; Snæbjörnsdóttir et al., 2017; Gíslason et al., 2018; von
Strandmann et al., 2019; Clark et al., 2020). This approach was
adopted at a geothermal energy plant in Hellisheiði, Iceland
(Carbfix project). Specifically, CO2 (and H2S) emitted by the
process were pre-dissolved by sparging in water and then co-
injected with geothermal brine into highly-fractured basalt at
depths of 300–1000m (Matter et al., 2009; Gislason et al., 2010;
Gutknecht et al., 2018). Each ton of CO2 required ∼25 tons
of water. To date, more than 70,000 tons of CO2 have been
injected with an estimated 60% successfully mineralized (Clark
et al., 2020). In 2021, the world’s first DAC-mineralization plant
(Project Orca) went live as a collaboration between CarbFix and
the company Climeworks, with the goal to annually remove 4
kt CO2. Modeling studies indicate that basalt carbonation may
be limited by alkalinity constraints and lead to the existence of

unreacted free-phase CO2 (Tutolo et al., 2021). However, recent
field-scale three-dimensional transport models of the CarbFix
injection site indicate mineralization rates remain high even after
many years of injection and that 300 Mt CO2 can be stored using
just 10% of the rock pore space (Ratouis et al., 2022). The role that
secondary minerals, e.g., clays and zeolites, play in the reactivity
of CO2 with basalt is yet to be fully understood. Furthermore, the
evolution of dissolution and precipitation fronts and their effect
on rock permeability and fluid flow during the injection period
is another phenomenon with great uncertainty (Lisabeth et al.,
2017; Peuble et al., 2018).

In the third (iii) approach, alkaline geological fluids are
extracted from ultramafic rock formations, such as peridotite,
and allowed to absorb CO2 from air in surface ponds creating
DIC. The fluids are then recirculated through the rock where DIC
reacts and forms carbonate minerals. This speculative approach
is based on natural terrestrial alkaline springs and their associated
surface travertine deposits (Kelemen and Matter, 2008; Kelemen
et al., 2011; Power et al., 2013b). However, the circulation of
fluids with such low concentrations of dissolved carbon could
be prohibitively expensive. Therefore, it has been suggested that
this approach can be scaled cost effectively by combination with
DAC that produces low purity (3–5% wt.) CO2 (Kelemen et al.,
2020). Although the process seems promising, challenges remain.
For example, as the fluid pathways become filled with product
carbonate minerals the permeability of the rock formation would

Frontiers in Climate | www.frontiersin.org 14 June 2022 | Volume 4 | Article 879133

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Campbell et al. Geochemical Negative Emissions Technologies: Review

reduce, inhibiting CO2 transport to unreacted rock further
from the injection well and causing the system to become
self-limiting. On the other hand, volume expansion during
carbonation can create enough force to fracture the host rock,
maintaining permeability. Such “reaction-driven cracking” could
increase permeability, thus enhancing the efficiency of in situ
mineralization in peridotite (Kelemen and Hirth, 2012; Kelemen
et al., 2013; Sohn, 2013; Evans et al., 2020). Overall, the balance
between clogging and cracking during in situ mineralization in
peridotite remains a key uncertainty.

In the fourth (iv) and final approach, seawater is circulated
through ultramafic rocks near the oceans (Kelemen and
Matter, 2008). Although largely speculative, some natural
analogs exist which indicate potential feasibility (Grozeva et al.,
2017; Kelemen, 2017; Picazo et al., 2020). This approach
simultaneously increases alkalinity of the ocean, while removing
DIC in seawater by reaction with peridotite, thus creating a
double driving force for CO2 drawdown from the air into the
ocean via manipulation of the Revelle factor (Egleston et al.,
2010). Thermal gradients between the rock and seawater could
drive natural circulation.

DAC with in situ mineralization is energy intensive and can
require significant heat for regenerating capture sorbents, in
addition to significant power input for CO2/air sparging and
fluid pumping. In both the CarbFix and Orca projects, the
heat and power needs are met by geothermal energy (Marieni
et al., 2018; Adams et al., 2020). Geothermal fluids typically have
temperatures of 70–250◦C (Zarrouk and Moon, 2014) enabling
integration with DAC systems whose synthetic sorbents (usually
amine-based polymers) are regenerated in a similar range.
Tectonically active areas such as the Western United States,
Alaska, Hawaii, British Columbia, Indonesia, the Philippines,
Italy, Turkey, New Zealand, Japan, Iceland, Kenya, Mexico, El
Salvador, and Central America (Zarrouk and Moon, 2014) could
provide low-cost opportunities for geothermal powered DAC
and mineralization. As new geothermal technologies develop,
such opportunities could expand elsewhere (Olasolo et al.,
2016). Alternatively, the CO2 and power requirement for in situ
mineralization could be simultaneously provided by bioenergy
(Turner et al., 2018), which has the advantage of lower levelized
cost of CO2 capture than DAC. However, pipelines would be
needed for transportation of CO2, and issues with biodiversity,
land requirements, sustainability, and scalability could arise
(Burns and Nicholson, 2017; Smith et al., 2019).

In situ mineralization may have fewer adverse environmental
and human health effects than surface-based geochemical
NETs, since materials are mostly contained beneath the Earth’s
surface where they have little direct impact on ecosystems and
biodiversity, and typically use less land and fresh water than
other NETs (National Academies of Sciences, Engineering, and
Medicine, 2019). Wastewater could be co-injected with CO2

for dual benefit (Phan et al., 2018). In situ mineralization
could have other potential co-benefits, such as enabling the
transition of workers from fossil fuel industries into the clean
energy sector where near-identical skills are required. Reaction-
driven cracking could be applied to in situ mining of metals
and uranium (Kelemen et al., 2020). On the other hand, there

are potential risks with the injection of CO2 and fluids for
geological storage, including: (i) production and leakage of
methane (CH4) and hydrogen sulfide (H2S) to the atmosphere
by CO2-reducing bacteria (Guyot et al., 2011); (ii) groundwater
acidification (Li et al., 2018); (iii) heavy metal mobilization,
which could contaminate local water supply (de Orte et al.,
2014); and (iv) increasing seismicity (Blondes et al., 2019). The
latter presented certain key challenges, which were identified
during the initial stages of the CarbFix project where several
(micro)seismic events were initially observed (Hjörleifsdóttir
et al., 2021). Improved engineering methods, i.e., constant
recirculation of the fluids, reduced seismic occurrences, while
engagement with local residents aided public acceptance of
the project. Partnership with Climeworks, as well as the
addition of a geothermal lagoon for bathing also aided
in improving public acceptance (Aradóttir and Hjálmarsson,
2018).

Ex situ
Ex situ routes were the first approaches for CO2 mineralization
to be investigated for the purpose of climate change mitigation
(Lackner et al., 1995), particularly focusing on reducing point
source emissions. Ex situ mineralization involves reacting high
surface area alkaline minerals with CO2-rich gases, mainly in
engineered reactors (Gerdemann et al., 2007). Ex situ approaches
using crushed natural rocks rich in minerals such as olivine
(Kwon et al., 2011), serpentine (Park and Fan, 2004; Wang
and Maroto-Valer, 2011b; Nduagu et al., 2012), and wollastonite
(Huijgen et al., 2006; Daval et al., 2009; Xu et al., 2019)
have been investigated, but industrial alkaline wastes and by-
products, such as mine tailings (Bodénan et al., 2014) or iron
and steel slags (Yadav and Mehra, 2017), are likely better
suited to ex situ processes owing to greater reactivity than
their natural counterparts, as discussed in the section Artificial
Alkaline Minerals—Industrial by-Products and Wastes, and
Tailored Minerals. High temperatures and pressures (Domingo
et al., 2006), high CO2 partial pressures (Li et al., 2019),
additives (Krevor and Lackner, 2009), and mechanical (Fabian
et al., 2010; Li and Hitch, 2018), or heat activation (Farhang
et al., 2019) could be used to capture and store CO2 within
timeframes relevant to industrial processes. Although ex situ
processes are likely best integrated with readily available sources
of concentrated CO2 from industry, integration with DAC may
also be possible. For example, OCO Technology, which makes
carbonate construction materials, is now working with London-
based Mission Zero Technologies, to use CO2 sourced by air
capture (OCO Technology, 2021).

Ex situ processes can be broadly categorized as either “direct”
or “indirect.” Direct CO2 mineralization occurs in one step, as
a gas-solid (Kwon et al., 2011; Liu et al., 2018) or as a gas-
liquid-solid process (Benhelal et al., 2019; Li et al., 2019). Indirect
CO2 mineralization methods use multiple steps which overall
result in the dissolution of a silicate mineral and the creation
of a carbonate mineral. First Mg and/or Ca is extracted from
the mineral feedstocks, followed by reaction with CO2. This is
usually achieved by a pH swing approach using reagents, e.g.,
hydrochloric acid (Lackner et al., 1995; Ferrufino et al., 2018),
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acetic acid (Kakizawa et al., 2001), ammonium salts (Wang
and Maroto-Valer, 2011a; Highfield et al., 2012), ammonia
and brine (based on solvay process) (Huang et al., 2001) or
molten salt (MgCl2·nH2O) (Wendt et al., 1998), where the
acidic reagents aid in mineral dissolution and the alkali reagents
aid in carbonate precipitation. Reagents should be recycled
as part of the process. Direct processes have the advantage
of greater simplicity, whereas indirect approaches have the
advantage of faster throughput and the production of high
purity carbonate minerals (Zevenhoven et al., 2011). Direct
mineralization requires pure CO2 for reaction (necessitating
integration with either DAC or BECCS), whereas some indirect
processes produce reactive alkaline hydroxides that may be
suitable for direct reaction with atmospheric CO2.

Ex situ approaches can also produce useful carbonated
products (Fernández Bertos et al., 2004; Hills et al., 2020; Qiu,
2020). Other valuable side products such as hydrogen could
enable ex situ processes to become more economical (Kularatne
et al., 2018). However, life cycle assessments (LCAs) frequently
show that not all ex situ approaches result in negative emissions
(Ncongwane et al., 2018; Thonemann et al., 2022). Further
information on different ex situ processes can be found elsewhere
(Sanna et al., 2014; Veetil and Hitch, 2020; Yadav and Mehra,
2021).

Surficial
Surficial CO2 mineralization is any process by which low purity
CO2 (either from the air, or low CO2 concentration gases and
liquids) is reacted with alkaline materials in piles, fields, pools,
or large indoor spaces such as greenhouses. Surficial processes
generally require less intensive reaction conditions than ex situ
processes, with carbon removal occurring over weeks to months,
rather than minutes. Surficial approaches allow minerals to be
carbonated near to their site of production, thus reducingmineral
transportation costs. Like ex situ approaches, surficial approaches
enable the sale of the carbonated minerals, for example, as
aggregates for the building and construction sector (Huntzinger
et al., 2009a,b; Liu et al., 2021).

Surficial mineralization of crushed alkaline materials was
investigated by Myers and Nakagaki (2020) who proposed a gas-
solid method whereby finely crushed materials are spread thinly
in vertical tiers in a greenhouse. Solar panels drive fans which
continuously supply fresh air over the layers of material and
trays of water provide the necessary humidity. This approach
suggested the use of a variety of alkaline materials from natural
mafic and ultramafic rocks to anthropogenic materials such
as slag and lime. Other surficial approaches have investigated
carbonation of existing mafic and ultramafic mine tailings
(Wilson et al., 2006; Power et al., 2010, 2014, 2020; Mervine
et al., 2018; Kelemen et al., 2020) and industrial wastes such
as slag (Stolaroff et al., 2005). Artificial materials are usually
favored due to their greater reactivity than natural minerals. In
general, most industrial wastes and by-products (Table 2) present
promising opportunities for surficial mineralization due to their
wide availability and relatively low cost (Renforth, 2019).

CO2 availability is often the limiting factor in ambient
weathering of mine tailings and other industrial alkaline wastes

(Wilson et al., 2009; Pullin et al., 2019). Therefore, increasing
the CO2 supply in surficial processes using DAC to provide low
purity CO2 could lower overall costs compared to air (Kelemen
et al., 2020). While higher purity CO2 could theoretically be used,
significant losses would occur for systems which are not closed.
The availability of humidity in the air could also be a limiting in
some cases, with some studies quoting a minimum requirement
of 55–60% relative humidity required for the reaction to take
place (Erans et al., 2020; Samari et al., 2020).

Surficial mineralization of anthropogenic waste materials may
serve a dual purpose of waste management (via a reduction
in liability associated with hazardous materials) in addition
to CO2 removal. This may be achievable at greater scale and
lower cost than ex situ approaches. For example, the building
and construction industry is thought to be accountable for
40% of solid waste worldwide (Shan et al., 2017). Stockpiles
of steel slag produce highly alkaline leachates (pH > 10) (Yi
et al., 2012) that can lead to environmental issues surrounding
potential heavy metal mobilization and local pollution (Mayes
et al., 2008). Carbonation reduces the pH of these wastes, and
reduces the mobility of toxic metals. Similarly, carbonation
destroys the hazardous asbestiform aspect of some mine tailings
(Bobicki et al., 2012). Likewise, 70 million tons of highly
alkaline red mud, a waste product of alumina production, are
generated annually. Disposal of this waste is challenging due to
aluminum toxicity and leaching of alkalinity into groundwater
supplies (Bobicki et al., 2012). Carbonationmitigates these effects
(Renforth, 2012) and enables the products to be used as a soil
amendment, a reagent for removal of nitrogen and phosphorus
from wastewater, a fertilizer additive, brick manufacture, plastic
filler, and cement production (Bonenfant et al., 2008).

Most of the work conducted on mineralization processes
has focused on ex situ approaches where high conversion
can be reached rapidly (Sanna et al., 2014). Alternative
surficial approaches are emerging which can potentially
combine the scalability of enhanced weathering with the
ability to produce useful carbonate products, or to remediate
hazardous industrial mineral wastes. However, the kinetics of
ambient mineralization are poorly understood, and more work
is needed.

Enhanced Weathering in Soils
Enhanced weathering in soils aims to accelerate the natural
process of weathering through the spreading of crushed Mg-
and Ca-rich silicate rocks in agricultural, urban, and forest soils
(Renforth, 2012; Hartmann et al., 2013; Beerling et al., 2020;
Haque et al., 2020b). Carbonate rocks, such as limestone or
dolomite, could also be used for enhanced weathering in soils,
however, (i) they are unlikely to achieve the same spatial flux
of alkalinity (Renforth and Campbell, 2021); (ii) they have a
lower CO2 sequestration potential; and (iii) they deliver fewer
co-benefits than silicate rocks (Beerling et al., 2018). Through
enhanced weathering in soils, atmospheric CO2 is drawn down
into the soil, dissolved into porewaters and transformed into
bicarbonate (HCO−

3 ) and carbonate (CO2−
3 ) anions. The result

of this process includes carbon stored as carbonate minerals
in soils, or dissolved bicarbonates and carbonates draining into
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surface waters and eventually transported to the oceanwhere they
contribute to ocean alkalinity (Renforth and Campbell, 2021).
Depending on the type of mineral used, enhanced weathering in
soils has the potential to remove between 0.3 and 1.25 tons of
atmospheric CO2 per ton of mineral dissolved (Renforth, 2012;
Moosdorf et al., 2014; Haque et al., 2019), although themaximum
scalable potential when using rocks is <1. Cost estimates for
enhanced weathering in soils vary by country ranging from
US$55–190 per ton of CO2 removed, with estimates for China,
India, Indonesia or Brazil at the lower end, and USA, Canada and
European countries at the higher end of the cost range (Beerling
et al., 2020).

The weathering rate of silicate minerals depends on several
abiotic and biotic factors. Specifically, it increases with increasing
surface area (Strefler et al., 2018), while higher pH, lower
temperature, and precipitation rates, along with varying soil
CO2 partial pressure can negatively affect the weathering rates
(Verbruggen et al., 2021). Biogeochemical and biomechanical
activity can also affect weathering rates in soils (Vicca et al.,
2022). Plants may enhance silicate mineral weathering in soils
through their roots and associated mycorrhizal fungi, via
diverse mechanisms such as the release of organic acids (Taylor
et al., 2009; Thorley et al., 2015; Verbruggen et al., 2021) and
secretion of acids or stimulation of acid-generating nitrification
by nitrogen-fixing plants (Bolan et al., 1991; Epihov et al.,
2017; Perakis and Pett-Ridge, 2019). Invertebrates in soil also
contribute to weathering, both chemically, through the action
of gut microbiota, and mechanically by biopedturbation (Van
Groenigen et al., 2019; Vicca et al., 2022).

Besides capturing CO2, enhanced weathering in soils also
presents potential associated benefits. For example, soil pH
is increased by alkalinity fluxes, eroded soils are replenished
in the long-term with macro (e.g., Mg, Ca, K, P, and S)
and micronutrients (e.g., B, Mo, Cu, Fe, Mn, Zn, and Ni)
(Leonardos et al., 1987; Hartmann et al., 2013; Anda et al.,
2015), while plant resilience to biotic and abiotic stress improves
(Beerling et al., 2018). Particularly in agricultural land, enhanced
weathering in soils could help revert agricultural soil erosion,
act as a liming agent, and help reduce the use of fertilizers
and pesticides (Kantola et al., 2017; Beerling et al., 2018, 2020;
Haque et al., 2020b). As croplands cover 10% of the Earth’s
land surface (Monfreda et al., 2008), there is potential for
large-scale application. Additionally, the equipment currently
used in farming (e.g., lime spreaders) can be easily adapted
to spread ground rocks on agricultural lands. Forested areas
also provide opportunity for enhanced weathering in soils. The
associated benefits of applying silicate rock dust on soils could
promote plant growth and survival rate, through replenishing soil
nutrients (Leonardos et al., 1987; Hartmann et al., 2013; Anda
et al., 2015) and through increasing plant resilience to external
stresses (Beerling et al., 2018). Moreover, mycorrhizal fungi
associated with plant roots are one of the main drivers of silicate
rock weathering in soils (Taylor et al., 2009; Thorley et al., 2015;
Verbruggen et al., 2021). Urban and brownfield soils also present
certain advantages for soil enhanced weathering (Manning and
Renforth, 2013). In urban soils, enhanced weathering can be
integrated in the landscape design to create carbon sinks, such

as “carbon capture gardens,” while brownfields have the potential
to develop value by removing CO2 as part of their remediation
process (Manning and Renforth, 2013).

Alongside its many potential co-benefits, enhanced
weathering in soils also has several drawbacks and risks,
associated with comminution (which is the most energy
demanding step of the process) (Renforth, 2012), transportation
(as the distance from quarry to field increases, the CO2eq
emissions increase and by extension the CO2 sequestration
potential declines) (Lefebvre et al., 2019), and pollutants
embedded into the mineral matrix being released in the
environment through weathering (Haque et al., 2020a). For
example, depending on the chemical composition of the parent
material, the weathering of silicate minerals such as olivine
might release heavy metals including chromium (Cr), nickel
(Ni), or other elements [e.g., silicon (Si)], affecting the receiving
ecosystems. Particularly in croplands, if these elements are
present in concentrations higher than recommended by soil
quality guidelines, they could be incorporated in the food chain,
acting as pollutants and also affecting human and environmental
health (ten Berge et al., 2012; Haque et al., 2020a). Plants with
metal-accumulating mechanisms have been proposed as a
strategy for preventing contamination of soils and water with
toxic metals during enhanced weathering (Suhrhoff, 2022).
There are also concerns about the effect of alkalinity addition to
freshwater ecosystems, which have been shown to be sensitive to
pH changes (Morgan, 1987; Wyatt and Stevenson, 2010; Pulido
et al., 2012). Furthermore, the mining of natural rocks can have
an ecological impact on wildlife, and/or require deforestation
(Edwards et al., 2017). To reduce the need for mining and lower
the overall cost, silicate-rich non-hazardous by-products or
wastes from industrial processes, such as iron and steel slag
(Das et al., 2019) or cement kiln dust (Beerling et al., 2020), can
be used. Nevertheless, long-term comprehensive field studies
across different climates and soil types are required to assess the
suitability of spreading industrial alkaline wastes or by-products
in soils (Beerling et al., 2020).

Finally, enhanced weathering in soils could be combined with
other NETs, such as afforestation or reforestation, or with the
feedstock crops used in BECCS and biochar. A combination
of different approaches implemented together has a greater
potential of achieving the CO2 removal capacity that is needed
(Minx et al., 2018) and reducing operational costs (Beerling et al.,
2018). Additionally, combining enhanced weathering in soils
with afforestation or reforestation and biochar could also lead to
synergies, both through negating one another’s potential negative
impacts, and through increasing the carbon capture uptake
(Amann and Hartmann, 2019). Figure 4 shows the synergistic
effects of combining enhanced weathering in soils, BECCS,
afforestation/reforestation, and biochar. One proposed co-
deployment scenario is the combination of enhanced weathering
and biochar onto land used to grow crops for BECCS. In this
scenario, the crushed rocks would act as a source of micro- and
macronutrients (Leonardos et al., 1987; Hartmann et al., 2013;
Anda et al., 2015), while biochar would increase nutrient release
(Atkinson et al., 2010) and crop productivity (Jeffery et al., 2011;
Kantola et al., 2017).
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FIGURE 4 | Summary of effects from combining terrestrial NETs: enhanced weathering, biochar, afforestation/reforestation and bioenergy with carbon capture and

storage (BECCS). Adapted from Amann and Hartmann (2019).

Ocean Alkalinity Enhancement
Seawater covers the majority of the Earth’s surface (Shiklomanov,
1993) and is a large natural reservoir of carbon. Specifically,
DIC in ocean water, which is dissolved CO2 gas and bicarbonate
and carbonate ions, is 140 times higher, by volume, than
gaseous carbon in the atmosphere (de Lannoy et al., 2018).
An equilibrium between atmospheric CO2 and surface ocean
waters exists, described by the Revelle factor, which accounts
for ∼25% of anthropogenic (surplus) CO2 emissions already
absorbed (Watson et al., 2020). The main mechanism for CO2

mineralization in the oceans is its dissolution in seawater, since
when CO2 reacts with water (H2O) it forms carbonic acid
(H2CO3), bicarbonate (HCO−

3 ) and acidity (H3O+), the latter
mainly neutralized by carbonate ions (CO2−

3 ) forming again
bicarbonate, but also contributing to acidification (Egleston et al.,
2010). As a result, the oceans are annually sequestering ∼0.5
Gt CO2 from the atmosphere (Renforth and Henderson, 2017).
However, the capacity of the oceans for CO2 uptake is not
infinite and cannot cope with the increasing anthropogenic
CO2 emissions. Furthermore, CO2 is acidic and therefore its
uptake by surface ocean waters comes at the expense of their
natural alkalinity, i.e., their mean pH has dropped by ∼0.1
units over the past two centuries from an initial average
of ∼8.2 (Caldeira et al., 2005), and is projected to further
decline by ∼0.3 by 2100 (Figuerola et al., 2021). Note that pH
scale is logarithmic and therefore the ∼0.1 drop corresponds
to around a 26% reduction of the surface ocean waters’
mean alkalinity.

Research has previously explored injection of CO2 into the
deep ocean (Caldeira et al., 2005), however, the possibility
of storing neutralized CO2 as increased alkalinity is gaining
increasing attention (Renforth and Henderson, 2017), along with
the removal of DIC from seawater. Specifically, two main ocean-
based NETs include: (i) removing carbon (DIC) from seawater,
similar to DAC, using electrochemical processes (de Lannoy et al.,
2018; Eisaman et al., 2018; La Plante et al., 2021a); and (ii)
artificially increasing ocean alkalinity for enhancing seawater’s
carbon sequestration capacity (Renforth and Henderson, 2017), a
process popularly known as ocean alkalinity enhancement (OAE)
(Bach et al., 2019; Gagern et al., 2019). For the first pathway, given
that the majority of carbon in seawater is in the form of carbonate
and bicarbonate ions, CO2 extraction processes must “swing”
alkalinity to extract as much DIC as possible. DIC-depleted
seawater will then return to the oceans, where atmospheric CO2

will be taken up tomaintain the air-ocean equilibrium. Therefore,
ocean water can be used for both carbon capture and/or storage.
Other CO2 storage pathways exist, however these are not long-
term DIC storage, but rather “ephemeral” storage up to 1,000
years of pure phase CO2, such as dry ice torpedoes where CO2

is released from the sea surface with the goal being to penetrate
the sea floor (Herzog and Drake, 1996), and intentional storage
of CO2 in deep ocean, as solid CO2 hydrate, possibly in depths
higher than 3,000m, where CO2 is denser than seawater and
long-term storage is promoted (Caldeira et al., 2005). However,
these storage pathways have been associated with environmental
impacts on deep ocean ecosystems (Caldeira et al., 2005), while,
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even in the deep ocean solid CO2 hydrate will slowly decompose
(GHG, 2004).

Electrochemical processes aim at controlling seaweater’s pH
and trigger the removal of DIC (Sharifian et al., 2021). In
the context of geochemical NETs, an acid (HCl) and an alkali
(NaOH) are first produced, by seawater/brine electrolysis or
electrodialysis, which can be used for two different distinct
processes, i.e., the “acid” and the “base” process, respectively. In
the acid process, HCl is used to acidify (to pH ∼4) degassed
(O2 and N2 have been removed) seawater, thus converting DIC
to CO2 gas, which is then captured (e.g., using hollow fiber
membrane contactors). In the base process NaOH is directly
added to seawater to raise the pH (>9) and precipitate carbonates
in the form of CaCO3 (de Lannoy et al., 2018). Subsequently,
the natural alkalinity is restored in the decarbonized seawater
of both processes, which is then returned to the ocean to
recapture CO2 and store it as bicarbonate (Eisaman et al.,
2018). It could be possible to directly release the elevated-
pH seawater from the base process to the ocean, since this
will lead to additional atmospheric CO2 uptake due to ocean
alkalinity enhancement. Even though only the base process
comprises a direct mineralization pathway (CaCO3 is the final
product), the gaseous CO2 acid process can also be used to
produce carbonate minerals. Single-step carbon sequestration
and storage is similar to the base process since carbonateminerals
are electrochemically (flow-through membraneless electrolysis)
formed from DIC and divalent cations (Ca and Mg) that are
naturally contained in seawater, however, in this case, without the
need of fine-pore membranes but rather coarse-mesh electrodes
(La Plante et al., 2021b). The main challenge in electrochemical
processes pertains to high electricity and raw material (mainly
electrodes or membranes) inputs (Sharifian et al., 2021), which
raise costs and possibly environmental impacts.

In OAE alkaline materials, such as natural or artificial
minerals and industrial waste/by-products (Renforth, 2019), are
used to increase the oceans’ alkalinity, thereby adding to its
natural capacity as a carbon sink, i.e., CO2 is permanently
(>10,000 years) stored as aqueous bicarbonate ions (Renforth
and Henderson, 2017). Three main methods for addition of
alkaline materials to the ocean have been proposed: (i) coastal
enhanced weathering (Meysman andMontserrat, 2017; Renforth
and Campbell, 2021), whereby crushed or pulverized silicate
minerals are spread onto beaches and coastal shelves and waves
and currents promote their dissolution and the release of
alkalinity into the ocean; (ii) ocean liming, whereby lime is spread
on the open ocean for artificial alkalinity enhancement (Paquay
and Zeebe, 2013; Renforth et al., 2013); and (iii) electrochemical
approaches, which do not aim to remove DIC from seawater,
but produce alkaline agents that can be used for OAE (House
et al., 2009). Wastes from different industrial processes could
also be used for OAE at scale (Renforth, 2019). However,
alkaline wastes can be enriched with harmful pollutants, such as
trace (heavy) metals (Gomes et al., 2016), and therefore, more
likely, might find limited application for OAE, at least in the
near future.

For silicate minerals to be quickly dissolved in the upper
ocean, pulverization (<1µm) is required (Meysman and
Montserrat, 2017), which is energy intensive and not practical

(Hangx and Spiers, 2009). On the other hand, it can take
up to thousands of years for olivine sand to fully dissolve
in coastal environments (Hangx and Spiers, 2009), but high-
energy shallow marine environments (coastal shelves and
beaches) can greatly accelerate olivine dissolution (Schuiling
and de Boer, 2011). Specifically, natural forces acting on
the coastal environments, such as waves and currents, can
be used to enhance the dissolution rates of silicate minerals
(Montserrat et al., 2017). Among the industrially mined silicate
minerals, olivine has been found promising for coastal enhanced
weathering, since it is abundant and readily available (olivine
mines can be found across the world), while its dissolution rate
is significantly higher (three orders of magnitude) compared
to ordinary quartz (Meysman and Montserrat, 2017). Similar
to enhanced weathering in soils, coastal enhanced weathering
can capture 0.28 g C per g olivine dissolved in ocean water
(Köhler et al., 2013). On the other hand, olivine also contains
various nutrients (mainly silicic acid and iron) that improve
phytoplankton growth (fertilization), leading to a maximum
carbon capture capacity of up to 0.57 g C per g of olivine
spread (Hauck et al., 2016). Nonetheless, among others, silicic
acid can alter marine biology, shifting phytoplankton species
composition toward silicifiers such as diatoms (Köhler et al.,
2013), while phytoplankton fertilization cannot be considered
as a direct mineralization pathway. Silicifier growth can
also turn the color of seawater to greener shades (Bach
et al., 2019). Overall, coastal enhanced weathering appears
promising, however, many open questions exist, including non-
stoichiometric dissolution, pore-water saturation in the seabed,
possible secondary reactions, and the exact ecosystem and
feedback effects of large-scale olivine dissolution (Montserrat
et al., 2017).

The surface ocean waters are supersaturated with respect to
calcite (CaCO3), i.e., limestone, and therefore its “activation,”
typically through calcination prior to its spreading for OAE, has
been proposed (Kheshgi, 1995). As such, ocean liming is typically
achieved using artificial alkaline minerals such as calcium oxide
(CaO) or more likely calcium hydroxide (Ca(OH)2) (Caserini
et al., 2021), which will rapidly dissolve and release alkalinity
in seawater (Justnes et al., 2020). Specifically, limestone is
mined, crushed, washed, milled, and then calcined, before
being transported and dispersed into surface ocean waters for
alkalinity enhancement. It has been reported that 1.4–1.7 tons
of limestone can uptake 1 ton of CO2 from the atmosphere
(Renforth et al., 2013). Since (bi)carbonate ions are added
to seawater, ocean liming can benefit calcifiers such as corals
(Comeau et al., 2013; Feng et al., 2016), coccolithophores,
foraminiferans, and pteropods (Figuerola et al., 2021) which
are threatened by ocean acidification (Doney et al., 2020). The
rapid growth of calcifiers such as coccolithophores can give a
bluer or whiter shade to the ocean color (Bach et al., 2019).
Ocean liming faces several engineering challenges (Renforth
et al., 2013), particularly in capturing and storing the carbon
emissions from limestone decomposition (Paquay and Zeebe,
2013) and ocean spreading (Caserini et al., 2021), along with
uncertainties pertaining to the responses of marine organisms
to large-scale lime addition (Paquay and Zeebe, 2013; Das
and Mangwani, 2015). Furthermore, ocean liming appears to
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allow calcifiers to outcompete silicifiers, while coastal enhanced
weathering allows for the opposite (Moore, 2021). This implies
that these NETs can be used in tandem to maximize the uptake
of atmospheric CO2 and maintain the balance between different
marine (micro)organisms.

Finally, it is possible to use electrochemistry to remove acidity,
in the form of HCl, from seawater or from brines [e.g., from
the desalination industry (Mustafa et al., 2020)] and store or
neutralize this acidity (e.g., using silicate minerals) and return
alkalinity (NaOH is produced along with HCl while excess
alkalinity can also be produced from the dissolution of silicate
minerals) to the oceans (House et al., 2007; Davies, 2015).
Electrolysis or electrodialysis can be used to split seawater/brines
and generate acidity and alkalinity; however, the proposed
processes are typically energy intensive, with values in the range
of 3–18 GJ per t of CO2 removed from the atmosphere (Renforth
and Henderson, 2017). Brines with high salt concentrations can
be used to improve the process efficiency in acid (HCl) and
alkali (NaOH) production; however, it is unlikely that the existing
brines, primarily from the desalination industry, are sufficient
for scaling up this process to the gigaton range. Therefore, it
is more likely that electrochemical processes for OAE will be
used complementary to coastal enhanced weathering and ocean
liming, at least until the technology matures and becomes more
energy efficient.

Application of Biotechnology to
Geochemical NETs
Organisms are known to control many of the key reactions
underlying geochemical NETs (Table 4), and microbial
weathering strongly influences geologic cycling (Finlay et al.,
2020; Samuels et al., 2020). The organisms, biomolecules and
metabolisms underlying biogeochemical activity provide a
diversity of mechanisms that can be integrated into geochemical
NETs. Further, they can potentially be enhanced through protein
engineering, directed evolution, metabolic engineering or other
synthetic biology methods. Examples of naturally-existing
mechanisms, applications of biotechnology to geochemical NETs
to date, and future perspectives are discussed in the following
three subsections.

The Influence of Organisms and Biological

Mechanisms on the Chemical Reactions Underlying

Geochemical NETs
Many bacteria and fungi promote dissolution of alkalineminerals
by altering the chemical microenvironment at the mineral
surface, in some cases for liberation of essential nutrients
(Rogers and Bennett, 2004). Mechanisms include acidification
via secretion of protons and weak organic acids, generation
of carbonic acid as a byproduct of respiration, production of
strong acids by chemolithotrophs, and production of polymeric
and small molecule organic acids that act as chelators that
catalyze mineral dissolution (Barker et al., 1997; Drever and
Stillings, 1997; Nordstrom and Southam, 1997; Bennett et al.,
2001; Lazo et al., 2017; Pokharel et al., 2019; Gerrits et al.,
2021). Fungi can also increase the surface area of rocks by
exerting mechanical forces that induce cracking (Bechinger

et al., 1999). Lichen (a mutualism between a fungus and
a cyanobacterium) are particularly active in silicate mineral
weathering, through penetration of hyphae and thalli, secretion
of organic acids, and provision of dissolved carbonate and
acidification through respiration (Chen et al., 2000). Rates
of secretion of weathering agents by fungi and bacteria are
reported to vary by mineral substrate and nutrient availability
(Bennett et al., 2001; Schmalenberger et al., 2015), indicating that
weathering can occur by mechanisms that are actively regulated
by organisms. Organisms can also facilitate alkaline mineral
dissolution by inhibiting the formation of passivating iron oxide
layers; one such mechanism is secretion of small-molecule
chelators known as siderophores (Liermann et al., 2000; Buss
et al., 2007; Ahmed and Holmström, 2014; Torres et al., 2019).
There has been some disagreement over the extent to which
microbes and organic acid chelators catalyze mineral dissolution,
and the range of minerals on which they act (Pokrovsky et al.,
2009, 2021; Oelkers et al., 2015), indicating the need for further
discourse and research to obtain clarity on the contexts in which
microbial weathering occurs. Microbial biofilms have also been
observed to reduce mineral dissolution rates in some contexts by
inhibiting the exchange of ions with the bulk solution (Ullman
et al., 1996; Lüttge and Conrad, 2004). Plant roots can also secrete
organic acids that act as catalytic chelators (Ryan et al., 2001), and
also support fungal and bacterial communities with weathering
activity (Kang et al., 2017; Ribeiro et al., 2020; Verbruggen
et al., 2021), which together contribute to weathering within
the rhizosphere.

Microbially-mediated precipitation of carbonates is also
widespread (Zhu and Dittrich, 2016; Görgen et al., 2020),
and its mechanisms are more thoroughly characterized than
those of silicate dissolution. Many organisms promote carbonate
precipitation by generating alkalinity or increasing ionic
saturation state through metabolic activity. Photosynthetic
organisms, which are thought to have influenced the majority of
calcium carbonate formation through Earth’s history (Altermann
et al., 2006; Riding, 2006), promote carbonate precipitation
by increasing pH through conversion of HCO−

3 to CO2 and
OH−, after which CO2 is assimilated into biomass and OH−

is released (Power et al., 2007; Kamennaya et al., 2012).
Ureolytic bacteria increase pH by producing NH4+, OH−

and CO2−
3 through hydrolysis of urea (Zhu and Dittrich,

2016). Microbial degradation of amino acids as an energy
source, called ammonification, also produces NH4+, OH− and
CO2−

3 (González-Muñoz et al., 2010). Anaerobic oxidation
of organic matter via reduction of nitrates by denitrifying
bacteria, or reduction of sulfates by sulfate-reducing bacteria,
produces alkalinity via consumption of protons and thereby also
favors carbonate precipitation (Baumgartner et al., 2006; Martin
et al., 2013). Oxalotrophic bacteria also promote carbonate
precipitation by liberating both CO2−

3 and Ca2+, along with
CO2, through metabolism of solid calcium oxalate, which is
abundant in many soils (Cromack et al., 1977; Braissant et al.,
2002). Aerobic oxidation of organic matter by heterotrophs can
also promote carbonate precipitation by producing CO2, when
CO2 is limiting (Dupraz et al., 2009; Sánchez-Román et al.,
2011).
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TABLE 4 | Influence of biological agents on reactions or ions underlying geochemical NETs.

Type Biological agent Effects Process

Organisms Silicate-weathering microbes

(e.g., Knufia petricola)
Acceleration of silicate dissolution, e.g., 7x increase

in olivine dissolution by Knufia petricola in benchtop

experiment (Pokharel et al., 2019).

Microbes can acidify the mineral surface microenvironment by

secreting organic acids or by respiration; secrete

small-molecule or polymeric organic acids/chelators that

catalyze silicate dissolution; or prevent surface passivation by

chelation of iron (Lazo et al., 2017; Torres et al., 2019).

Strong acid-generating microbes

(e.g., Acidithiobacillus)
Acceleration of silicate dissolution, e.g., 39 and 84%

of Mg liberated from chrysotile mine tailings in

stoichiometric and excess sulphuric acid conditions,

in benchtop experiment (McCutcheon et al., 2015)

Chemolithotrophs can produce strong acids through

metabolism of minerals, such as production of sulphuric acid

by Acidithiobacillus sp. through metabolism of metal sulfides,

which readily dissolve alkaline minerals (Nordstrom and

Southam, 1997; Power et al., 2010; Schippers et al., 2014).

Carbonate-precipitating

microbes (e.g., cyanobacteria)

Promotion of carbonate precipitation, e.g., 18x

increase in carbonate formation from serpentine

mine tailings, with cyanobacteria-dominated

microbial consortium (McCutcheon et al., 2016).

Phototrophs, ureolytic bacteria, and other microbes can

increase pH and generate (bi)carbonate ions through

metabolic activity; various microbes, and particularly

cyanobacteria, secrete EPS that nucleate carbonate

precipitation; and heterotrophs can supply CO2 by oxidizing

organic carbon or metabolizing cation-saturated EPS (Dupraz

et al., 2009; Zhu and Dittrich, 2016).

Silica-forming microbes (e.g.,

diatoms)

Sequestration of waste silicic acid, the buildup of

which may inhibit mineral carbonation, e.g., diatoms

sequestered 87% of silicon in microbial carbonation

experiments with synthetic alkaline wastewater

(McCutcheon et al., 2019).

Diatoms and siliceous sponges form silica shells or skeletons

(Sumper and Kröger, 2004; Müller et al., 2013a).

Photosynthetic diatoms are found naturally growing in alkaline

mine wastewater.

Enzymes and

proteins

Carbonic anhydrase (CA) Alleviates CO2 hydration kinetics as a rate-limiting

factor

CAs are metalloenzymes that catalyze equilibration between

dissolved CO2 and carbonic acid (Mesbahuddin et al., 2021).

Some CAs can also inhibit or nucleate carbonate precipitation

depending on ionic conditions (Miyamoto et al., 2005;

Rodriguez-Navarro et al., 2019).

Silicateins and silaffins Sequestration of waste silicic acid, the buildup of

which may inhibit mineral carbonation.

Catalysis of polymerization of silica from silicic acid (Sumper

and Kröger, 2004; Müller et al., 2013a).

Calcareous shell matrix proteins Various functions, including nucleation and inhibition

of carbonate precipitation, mineralization templating,

CA activity, concentrating ions.

A complex matrix of proteins and other biomolecules

coordinates the formation, morphology and nanoscale

structure of shells in mollusks and corals (Falini et al., 2015;

Marin, 2020).

Ion transporters Manipulation of ion concentrations in

microenvironments, including Ca2+, Mg2+, H+,

HCO−

3 , and H4SiO4

Passive or active (ATP-dependent) transport of ions to

manipulate intra- or extracellular concentrations, to provide

input ions for photosynthesis, calcareous shell formation,

siliceous shell formation, or other purposes (Martin-Jezequel

et al., 2000; Dominguez, 2004; Maguire, 2006;

Buch-Pedersen et al., 2009; Reinfelder, 2011; Knight et al.,

2016).

Non-enzymatic

biocatalysts

Extracellular polymeric

substances (EPS)

Promotion of carbonate precipitation; catalysis or

inhibition of silicate dissolution

Negatively charged EPS adsorbs and concentrates cations,

which nucleate carbonate precipitation, and digestion of EPS

by heterotrophs liberates bound cations and produces CO2

to raise the saturation state (Dupraz et al., 2009). Some EPS

can catalyze silicate dissolution by concentrating protons or

chelating cations, and others may inhibit silicate dissolution

by adsorbing to mineral surfaces (Welch et al., 1999).

Organic acids and chelators Catalysis of silicate dissolution, e.g., 10–100-fold

acceleration of forsterite dissolution by oxalic and

phthalic acids (Oelkers et al., 2018).

Organic acids, which frequently also act as chelators, provide

acidity and/or complex and solubilize cations within the

mineral crystal framework in a pH-dependent manner (Lazo

et al., 2017; Oelkers et al., 2018).

Siderophores Inhibition of the formation of passivating iron oxide. Siderophores are a large class of microbial and plant

chelators that bind diverse cations, particularly Fe ions, at

high affinity and promote their uptake from the environment

(Ahmed and Holmström, 2014).

Carbonate precipitation can also be influenced through
biophysical mechanisms. Some extracellular materials secreted
by microbes, broadly termed extracellular polymeric substances

(EPS), contain a diversity of negatively charged or chelating
chemical moieties that bind cations, and are observed to
either inhibit or promote carbonate precipitation in different
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contexts. Under conditions of low saturation of bound
cations, EPS can inhibit carbonate precipitation by depleting
the microenvironment of cations, while under conditions of
high saturation, EPS can promote carbonate precipitation
by enriching the microenvironment with cations (Dupraz
et al., 2009). Degradation of EPS by heterotrophs, which
liberates bound cations and (bi)carbonates, can also induce
carbonate precipitation (Dupraz et al., 2009). The surfaces of
microbial cells themselves, which often bear negatively charged
functional groups, can also promote carbonate precipitation by
attracting cations (Dupraz et al., 2009). High EPS production
in combination with alkalinity generation make cyanobacteria
particularly effective at nucleating and precipitating carbonates
(De Philippis et al., 2001; Decho et al., 2005; Braissant et al., 2009).

Notably, biological precipitation of magnesite (MgCO3) has
been observed at room temperature (McCutcheon et al., 2019;
Zhang et al., 2020), despite being inhibited at temperatures
below 80◦C in abiotic conditions due to the high energy of
dehydration of aqueous Mg2+ (Saldi et al., 2009). The proposed
mechanism for magnesite precipitation at ambient temperature
is dehydration by the negatively charged EPS and cell surfaces
(Power et al., 2017). Magnesite precipitation is preferable
compared to hydrated magnesium carbonates, since it contains
a higher stoichiometric fraction of carbon.

Enzymes and peptides are also known to catalyze reactions
relevant to geochemical NETs, including hydration of CO2 and
carbonate precipitation. Of these, CO2 hydration is the best
studied and presently themost tractable to engineering. Carbonic
anhydrases (CAs) are metalloenzymes that catalyze equilibration
between dissolved CO2 and carbonic acid (Lindskog, 1997).
They are among the most efficient enzymes known in nature,
with their rates often being diffusion-limited. They exist as ≥8
evolutionarily distinct families of CA genes across all domains
of life (Mesbahuddin et al., 2021), with diverse enzymatic
parameters. CAs are involved in diverse processes, including
biomineralization of calcium carbonates (Bertucci et al., 2013;
Müller et al., 2013b; Karakostis et al., 2016; Sharker et al., 2021).
CAs commonly have additional activity, including inhibition
or promotion of carbonate precipitation (Miyamoto et al.,
2005). A recent study found that bovine CA directly influences
carbonate precipitation mechanisms in multiple ways: it interacts
with growing calcium carbonate crystals, thereby modifying
their growth and morphology; it can also inhibit precipitation
under conditions of low CO2, possibly by stabilizing pre-
nucleation ion complexes; and it can undergo conformational
changes and oligomerization under high pH or high CO2−

3 and
Ca2+concentrations, abrogating anhydrase activity and instead
templating nucleation of calcium carbonate (Rodriguez-Navarro
et al., 2019). It has been suggested that the above mechanisms of
CA are involved in the controlled growth of calcareous structures
like shells (Rodriguez-Navarro et al., 2019). Carbonic anhydrase
has also been demonstrated to catalyze the dissolution of calcite,
possibly by catalyzing the transfer of protons into the mineral
lattice during protonation of CO2−

3 (Dong et al., 2020).
Multicellular and unicellular organisms also demonstrate

exquisite control over carbonate precipitation using
combinations of the aforementioned mechanisms during

the formation of shells and intracellular carbonate inclusions.
Intracellular formation of carbonates in bacteria has been
observed, including in environments that are undersaturated
with respect to carbonate mineral phases, suggesting that active
mechanisms control the ion transport and mineral precipitation,
though the precise mechanisms of control are as-yet unclear
(Görgen et al., 2020). Shells in coccolithophores, mollusks, corals
and reptilian and avian eggs are typically >95% CaCO3 by
mass, with the remaining organic matter consisting of diverse
proteins and polysaccharides functioning to scaffold, nucleate, or
remodel calcium carbonate, including intracrystalline proteins
(Falini et al., 2015; Taylor et al., 2017; Marin, 2020; Gautron
et al., 2021). While the specific biomolecular functions of most
shell organic components are unclear, many functions have been
identified, including proteins that promote or inhibit calcium
carbonate nucleation, as well as CAs (Evans, 2019; Marin, 2020).
Interestingly, coccolithophores produce individual calcium
carbonate particles known as coccoliths intracellularly within
specialized vesicles, after which the particles are secreted onto
the cell surface to form a shell (Taylor et al., 2017).

Other enzyme families, especially enriched in ocean-dwelling
siliceous organisms, facilitate silica polymerization. Silicateins
are enzymes found in sponges that catalyze polymerization of
amorphous silica (Müller et al., 2013a), and silaffins are highly
post-translationally modified peptides found in diatoms that do
the same (Sumper and Kröger, 2004; Lechner and Becker, 2015).
Silicase is an enzyme reported to catalyze the dissolution of
amorphous silica (Schröer et al., 2003), though we are unaware
of other published work in which silicase activity is documented
reproduction of the original results should be pursued to inspire
confidence in their robustness.

Further, active biological transport mechanisms exist for
concentrating or depleting Ca2+, Mg2+, H+, HCO−

3 , and
H4SiO4 within microenvironments (Martin-Jezequel et al., 2000;
Dominguez, 2004; Maguire, 2006; Buch-Pedersen et al., 2009;
Reinfelder, 2011; Knight et al., 2016). For example, carboxysomes
are cyanobacterial organelles within which bicarbonate is actively
concentrated and then converted to CO2 by CA, thereby
providing high levels of CO2 to the photosynthetic enzyme
RuBisCO (Price et al., 2008).

Some research has investigated the influence of supercritical
CO2 on microbes, with potential relevance to the use, or passive
influence, of microbes on subsurface CO2 mineralization for
storage. While supercritical CO2 generally inhibits microbial
growth (Yu and Chen, 2019), multiple studies have found
organisms with only mildly inhibited growth under supercritical
CO2 and have investigated its effects on community structure and
geochemistry (Peet et al., 2015; Santillan et al., 2015; Jin and Kirk,
2016; Freedman et al., 2017, 2018; Ham et al., 2017; Li et al., 2017;
Boock et al., 2019).

Collectively, the organisms and biological mechanisms
discussed in this section constitute a starting point for the
integration of biology into alkaline mineral NETs.

Biologically-Enhanced Geochemical NETs
Biotechnology research has explored applied methods for
geochemical NETs to a limited degree. Pioneering examples
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to date have focused primarily on enhanced dissolution and
carbonation of mine tailings (Power et al., 2010; McCutcheon
et al., 2014) at laboratory scale.

Sulfur-oxidizing bacteria have been proposed for use in
dissolution of alkaline minerals by catalyzing the production
of sulphuric acid from sulfides, e.g., sulphidic mine tailings
(Power et al., 2010). Similar approaches are used for biomining
of copper and other metals (Schippers et al., 2014). Laboratory
optimization experiments found that such an approach liberated
39% of Mg from chrysotile mine tailings while maintaining
leachate pH suitable for carbonate precipitation, and up to 84%
of Mg in acidic leachate (McCutcheon et al., 2015). The cost
of transporting acid-generating feedstocks, which are consumed
stoichiometrically as silicates dissolve, may be strongly influenced
by relative geographic location of tailings and feedstocks (Power
et al., 2014). Combination of this approach with microbially-
mediated carbonate precipitation has been proposed for carbon
sequestration in ultramafic mine tailings or other ex situ
applications (Power et al., 2014).

Cyanobacteria have been proposed as catalysts for
precipitation of carbonates in alkaline mineral NETs (Jansson
and Northen, 2010). In laboratory experiments, a cyanobacteria-
dominated consortium sourced from an alkaline tailings lake
was inoculated into columns of acid-leached chrysotile tailings
and caused precipitation of a crust of magnesium carbonates
containing ∼18-fold more carbon than abiotic controls
(McCutcheon et al., 2016). Large-scale bioreactor experiments
simulating an artificial alkaline wetland with inoculation of
a microbial consortium confirmed cyanobacteria-mediated
formation of a magnesium carbonate crust, but found that
depletion of essential nutrients, including phosphate, in the
reaction medium limited microbial growth and EPS production
in the majority of the bioreactor, drastically reducing mineral
precipitation (McCutcheon et al., 2014). Increased nutrient
delivery in a follow-up experiment resulted in biofilm growth
that outpaced carbonate precipitation (McCutcheon et al.,
2019); these studies indicate that nutrient distribution is an
important consideration in scaled deployment. The latter
study also found that diatom growth successfully sequestered
∼87% of the silicon in the bioreactor, providing a sink for
silicon waste produced during alkaline mineral dissolution. A
microbial carbonation experiment on site at a tailings pile failed
to produce a cemented carbonate-chrysotile crust; the authors
hypothesized that accessibility of water and CO2, as well as effects
of weather, limited microbial growth and carbonate precipitation
(McCutcheon et al., 2017). Failure of the latter experiment
illustrates the need for increased application-focused research
and lends support to the notion that microbial carbonation of
tailings may benefit from more controlled environments like
bioreactors as compared with open tailings piles.

Oxidation of waste organics to CO2 in the presence of alkaline
minerals has been proposed as a mechanism for promoting
carbonation in contexts where CO2 accessibility is limiting; such
an approach sequesters carbon that was fixed into organics,
preventing its decay and the subsequent return to the atmosphere
(Mitchell et al., 2010; Power et al., 2011, 2014). Heterotrophic
bacteria have been shown to promote carbonate precipitation

via oxidation of organic matter in laboratory experiments
with phototrophic and heterotrophic consortia in mine tailings
(Power et al., 2011) and ureolytic microbes in synthetic brine
(Mitchell et al., 2010).

These early investigations into microbially-enhanced carbon
sequestration in mine tailings illustrate promise for more scaled
deployment. Carbon sequestration potential using microbes in
mine tailings has been variously estimated at 123 t ha.−1 yr.−1

(McCutcheon et al., 2016) to 222–238 t ha.−1 yr.−1 (McCutcheon
et al., 2019) based on rates found in laboratory experiments,
or 175 Mt yr.−1 globally if carbonation is taken to completion,
which could also be economically viable (Power et al., 2014).
Applications using minerals mined for the purpose of weathering
would increase this potential drastically. However, field trials
and pilot tests, as well as integration and optimization of
the combined use of phototrophs, heterotrophs, enzymes and
biostimulants will be required to determine the true benefits
and costs these approaches can bring to carbon removal
and sequestration.

Some authors have proposed the biomass produced during
phototroph-mediated carbonate precipitation could be used for
production of fuels or other commodity chemicals (Ramanan
et al., 2010; Power et al., 2011), providing a second source of
economic utility. The biomass could also be fed to heterotrophs,
producing carbonic acid and other organic acids that would
dissolve alkaline minerals and further precipitate carbonate.

CA has been investigated for applications in carbon capture,
utilization and storage (CCUS), primarily in point source CO2

scrubbers (Alvizo et al., 2014; Bose and Satyanarayana, 2017;
Giri et al., 2020; Mesbahuddin et al., 2021). Some research has
investigated the use of CA in geochemical NETs. Bovine CA
has been shown to efficiently promote carbonation of alkaline
minerals by alleviating the hydration of CO2 as a kinetic barrier,
with 240 and 360% increased sequestration rates of carbon in
brucite under non-optimized conditions with sparging of 10%
CO2 (Power et al., 2016) or ambient air (Power et al., 2013a),
respectively. E. coli expressing recombinant CA were also shown
to facilitate carbonate precipitation (Kim et al., 2012; Tan et al.,
2018). The native CA activity in unicellular algae was found
to facilitate carbonate precipitation during sparging of 10%
CO2 in alkaline media while producing algal biomass. These
experiments warrant further research into deployment of CA in
geochemical NETs.

Ureolytic (Mitchell et al., 2010) and denitrifying (Martin
et al., 2013) bacteria have also been explored for their potential
to mediate carbonate precipitation for carbon sequestration.
However, the utility of these alkalinity-generating heterotrophs
is limited by the requirement that the carbon should be delivered
as a reduced carbon feedstock (urea in the case of ureolytic), since
they only produce enough alkalinity to mineralize the carbonate
their metabolism produces (Mitchell et al., 2010). However,
they may be useful for sealing pores via carbonate precipitation
to form caprock for subsurface storage of supercritical CO2

(Cunningham et al., 2009).
While most engineered biomineralization research has been

conducted under ambient pressures, a few studies have been
performed at higher pressures more relevant to subsurface
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mineralization; however these studies were performed using
ureolytic and denitrifying bacteria for the purpose of caprock
formation (Martin et al., 2013; Mitchell et al., 2013). Organisms
have been found growing as deep as 2.8 km in the subsurface,
so the challenge of growth under high pressure is not
insurmountable (Chivian et al., 2008; Glombitza et al., 2016).

In addition to sequestering carbon, biomineralization of
alkalineminerals can provide ameans for bioremediation of toxic
metals or other pollutants by locking themwithin solid carbonate
(Gadd, 2010; Zhu and Dittrich, 2016; Krajewska, 2018; Jain
and Arnepalli, 2019; Ehrlich et al., 2021). Microbially-mediated
carbonation of mine tailings may serve the dual purpose of
sequestering carbon and remediating mine sites (McCutcheon
et al., 2016).

It has also been proposed that alkaline minerals could be
integrated into industrial microbial wastewater treatment and
biogas production systems, where they would both neutralize
acidity and sequester CO2 (Lu et al., 2018), with laboratory work
showing promising results. In the methods proposed, microbes
are not used for direct interaction with the minerals, but rather
the minerals are integrated into existing microbial digestion or
microbial electrosynthesis processes.

Toward Further Integration of Biology Into

Geochemical NETs
Despite these exciting examples, we posit that the possibility-
space of biologically-enhanced geochemical NETs is drastically
under-explored given the broad ability of biological mechanisms
to influence the key reactions. Organisms or biomolecules could
be incorporated into the abiotic geochemical NETs described in
the previous sections to improve reaction kinetics or prevent
inhibitory passivation.

In environments where the dissolution rate of CO2 is
limiting, CAs could be deployed in solution, immobilized on
surfaces or within water-permeable beads (Xu et al., 2021),
or produced by organisms engineered to secrete or display it
(Zhu et al., 2022). CAs could also be used to catalyze the
dissolution of calcite, generating alkalinity (Subhas et al., 2017).
Silicase enzymes, if developed, could be useful for promoting
the dissolution of alkaline minerals that contain polymerized
silica, extending fast dissolution beyond the typically-favored
orthosilicates (i.e., extend enhanced weathering beyond olivines
to include pyroxenes, feldspars, etc.). Silicases could also help to
dissolve passivation layers of amorphous silica.

Microbes could also be co-injected alongside aqueous or
supercritical carbon dioxide to facilitate in situ mineralization.
Microbes and enzymes could be particularly useful in reactor-
based mineral weathering environments, where conditions can
be more precisely controlled.

Microbes could also be applied alongside minerals that
are distributed for terrestrial or coastal enhanced weathering
efforts (Ribeiro et al., 2020). Given that environmental microbes
generally function in communities, emerging methods for
modification of microbial communities (Lawson et al., 2019)
could be developed for use in many of the applications proposed
above (e.g., in soil). If non-native or engineered microbes
were used, the impact of uncontained release on indigenous
ecosystems would need to be carefully considered, though

challenges to stable establishment of non-native microbial
communities is more likely to be encountered than unwanted
proliferation (Albright et al., 2022).

Given the ability of organisms to alter chemical
microenvironments, they may be useful in contexts where
different conditions are desired at the mineral surface compared
to the bulk solution; for example, acidic conditions could be
generated at a mineral surface to enhance dissolution kinetics
while more basic conditions are maintained in the bulk to
favor carbonate precipitation, or catalysts could be secreted at
the mineral surface to avoid costs of chemically altering the
bulk. In general, the microbes or biomolecules used could be
native or non-native, and unmodified or engineered. Engineered
organisms may provide superior performance, as they could
be optimized both for the unnatural chemical and physical
environments created by geochemical NETs and for their specific
roles in technologies; for example, catalysts discovered using
molecular engineering methods could be produced metabolically
by engineered organisms.

Biological approaches may also enable tuning of the
characteristics of the output materials of geochemical NETs for
improved utility; for example, carbonate or silica particles could
be produced biologically for use as cement additives that may
reduce emissions from cement production, or sequester carbon
in concrete, while improving concrete performance (Müller et al.,
2013a; Gadikota et al., 2015; Show et al., 2015; Singh et al.,
2015; Iravani and Varma, 2019). Diatoms could also be used for
low-cost production of silica particles, potentially with surface
functionalization or enzymatic display, for use in concrete or
other applications (Sardo et al., 2021).

Deployment of microbes or enzymes in the context of
geochemical NETs may require tolerance of extreme conditions
of pH, ionic strength, temperature, and/or pressure. Enzymes
may need to be engineered for stability and/or isolated from
extremophilic organisms (Packer and Liu, 2015; Mamo and
Mattiasson, 2016; Ma et al., 2019; Ren et al., 2019; Yin et al.,
2019); such work is already underway for carbonic anhydrase
(Mesbahuddin et al., 2021). Deployed organisms, whether
engineered or unmodified, will also need to tolerate those
conditions; in the case of engineered organisms, this will require
the development of synthetic biology methods for organisms that
are presently non-standard (Wannier et al., 2020; Filsinger et al.,
2021).

Many of the biogeochemical mechanisms discussed in this
section have not received much attention from molecular
biotechnology. Development of high-throughput platforms for
their study and engineering will benefit both their application
to NETs and the study of their underlying biology. For example,
platforms for highly multiplexed screening, selection, or directed
evolution of variants of enzymes or organisms that dissolve
silicates or precipitate carbonates would be useful both for
discovering natural mechanisms and for engineering. Such
platforms are ubiquitous in well-developed medical domains of
molecular biotechnology (Packer and Liu, 2015; Zeymer and
Hilvert, 2018; Zeng et al., 2020; Madhavan et al., 2021).

Risks of environmental biocontamination should be
considered before deployment of organisms in uncontained
environments, such as mine tailings ponds or the subsurface.
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While engineering organisms for environmental deployment
is a new frontier, we note that it is not without precedent, as
there are many such research efforts underway (Coleman and
Goold, 2019; Jaiswal and Shukla, 2020; Janssen and Stucki, 2020;
Rylott and Bruce, 2020; Zhou et al., 2022), including field trials
(Carvalho et al., 2015). Advances in biocontainment may provide
options for restricting the spread of engineered microbes outside
the intended environment (Lee et al., 2018).

Given the apparent potential for biotechnology to contribute
to geochemical NETs, we encourage the research and funding
communities to more thoroughly investigate possibilities,
including designs for possible NETs incorporating biological
mechanisms and applied engineering of specific mechanisms,
as well as the underlying biogeochemical science. Design
and techno-economic considerations should be examined,
accounting for the constraints biotechnology could alleviate
and introduce, for example, reductions in capital and operating
expenditures resulting from improved kinetics and extent
of reaction, as well as methods and costs for delivering
feedstocks to stimulate organism growth. The diversity of
organisms and biomolecules that manipulate key reactions, as
well their chemical mechanisms and metabolic and genomic
underpinnings, should be more comprehensively examined. New
research tools should be developed that will benefit both the
fundamental biology and engineering of relevant mechanisms.
Although biotechnology applications for geochemical NETs are
currently under-developed, they may prove to play an important
role with continued dedicated efforts. Possible applications range
in complexity, with some accessible today while others will
require years or decades of concomitant advances in basic
biology, biotechnology, and NETs engineering. The latter group
may assist in driving down costs to enable the crucial scaling of
NETs by mid-century.

LIFE CYCLE ASSESSMENT ON
GEOCHEMICAL NETs

Research has mainly focused on techno-economic aspects of
different geochemical NETs, and NETs in general. However,
this is not the case for other important aspects such as
their social perspective, including social acceptance, and their
environmental perspective, the latter typically examined using
the life cycle assessment (LCA) methodology. Specifically, even
though (geochemical) NETs aim at removing CO2, they could
also be responsible for emitting GHGs and other pollutants
throughout their life cycle (Cooper et al., 2022). Therefore,
LCA can play an important role in both identifying such
emissions andminimizing them, and also in comparing, from the
environmental perspective, different NETs to identify the most
promising solution under the local conditions. The reason is that
the environmental performance of NETs depends not only on the
technology but also on local conditions and spatial restrictions.
For example, Lefebvre et al. (2019) found that transportation
(distance from quarry to field) was a key limitation to enhanced
weathering in soils, whereas Deutz and Bardow (2021) studied
the environmental sustainability of the DAC plants in Hinwil and
Hellisheiði, operated by Climeworks, and noted that the LCA

results are very sensitive to the energy sources. Furthermore,
when comparing different NETs, a wide range of environmental
impacts should be considered (McQueen et al., 2021b) as well
as other aspects of each technology. For example, Cooper
et al. (2022) compared the effectiveness in carbon sequestration
of afforestation/reforestation, enhanced weathering, DAC, and
BECCS and noted that even though the first had the lowest
environmental impact it exhibited very low carbon removal rates,
whereas BECCS had a lower impact on climate change and
toxicity compared to enhanced weathering and DAC, but a much
higher impact on land use.

However, more research is required on LCA, since many
challenges pertaining to different functional units, system
boundaries, the climate change-energy nexus, and the timing of
GHG emissions and removals make the direct comparison of
different NETs difficult (Goglio et al., 2020). Furthermore, when
system expansion has been used in LCA, avoided emissions, due
to substitution of certain processes, have been misinterpreted as
negative emissions, i.e., as carbon removal from the atmosphere,
and therefore there is a need to distinguish between avoided and
negative emissions, along with consistency in system boundaries
and functional units (Terlouw et al., 2021). For example, when
27 LCA studies on NETs were reviewed by Tanzer and Ramírez
(2019), 41% (11 studies) labeled avoided emissions as negative
emissions, while it was also noted that system boundary choices
also play an important role on the perceived emission balance
of a NET. For this reason, guidelines for LCA studies on NETs
have been proposed (Müller et al., 2020), while detailed life
cycle inventory (LCI) data for different spatial extents, power
systems, and chemical processes pertaining to NETs are also
required (Cruz et al., 2021). The importance of the system
boundary, allocation/system expansion, data availability and
accuracy, parameter uncertainty, permanence of CO2 removal,
and the need for common guidelines in LCAs for NETs has
been also highlighted (McQueen et al., 2021b). In this regard,
the integration of LCAwith techno-economic analysis (TEA) can
decrease NETs uncertainty and improve technology readiness
levels (TRL) (Li and Wright, 2020).

Finally, apart from capturing and permanently storing CO2,
(geochemical) NETs can also be associated with a wide range
of positive but also negative environmental impacts, which
have yet to be fully identified and therefore are not typically
included in the system boundary of LCA studies. For example,
ocean acidification greatly impacts marine ecosystems and
reliant human communities (Doney et al., 2020), particularly
affecting tropical coral ecosystems (Comeau et al., 2013; Feng
et al., 2016). However, these positive effects of alkalinity
addition, along with possible negative ones such as changes in
the primary productivity, respiration, and photophysiology of
living organisms in alkalinized seawater (Gore et al., 2019) or
freshwater (Mant et al., 2013) have yet to be fully identified and
quantified and therefore cannot be captured in LCA studies that
examined ocean alkalinity enhancement NETs. This is also the
case for terrestrial NETs. For example, although the potential
co-benefits of dispersive enhanced weathering approaches are
numerous, these are difficult to quantify and use as inputs
in LCA studies, since their potentially irreversible effects may
not become apparent until years after application, at which
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FIGURE 5 | Global map of geochemical NET companies, projects, initiatives and non-profits. The figure includes projects found via basic online searches and may be

incomplete. See Supplementary Information for more details and links to the projects.

point the socio-technical systems may already be entrenched
[see Collingridge dilemma (Collingridge, 1979)]. Therefore, there
is a need for more research on the biological responses of
different NETs, as to identify and quantify both the negative
and positive effects and then use this data as inputs in LCA
studies dealing with NETs. By doing so, more robust and
reliable LCA results will be obtained which could also play an
instrumental role in improving the social acceptability of NETs.
Specifically, public acceptability can be a potential constraint
on the research and deployment of NETs (Bertram and Merk,
2020) and particularly of the ocean-based NETS, which might
face a greater public acceptability challenge than their terrestrial
counterparts (Cox et al., 2021). To this end, apart from the
environmental perspective, the social and economic perspectives
should also be considered, thus examining the overall life cycle
sustainability of each NET and effectively communicating the
results to improve public perceptions and acceptability.

THE CURRENT STATE OF GEOCHEMICAL
NETs

The recent Innovation for Cool Earth Forum (ICEF) Roadmap
underlined that geochemical NETs have the lowest ratio of
policy coverage to potential impact compared to other NET
approaches. Most policy frameworks [e.g., 45Q, CA LCFS,
EU CTS (Low Carbon Fuel Standard; EU Emissions Trading

System (EU ETS); Internal Revenue Service, 2021)] have criteria
that unintentionally exclude geochemical NETs. International
agreements prohibit commercial NETs that involve the release
of alkaline feedstock into the ocean. However, some government
agencies such as the Advanced Research Projects Agency-Energy
(ARPA-E) in the US are exploring the potential contribution
of alkaline mineral-based technologies to negative emissions,
enhanced metal recovery, and the decarbonization of industry
and mining (ARPA-E, 2021).

While geochemical NETs remain a niche industry, the
emergence of recent projects, such as those that offer carbon
removal credits or sequester carbon within concrete, suggest
that the industry is expanding. New companies are involved
in piloting projects, some partnering with DAC companies
that provide input CO2, e.g., the in situ mineralization projects
underway in Iceland and Oman. Early but increasing exploration
by large organizations in agriculture, mining, and concrete
includes diamond miner DeBeers, who is experimenting in-
house with mineralizing kimberlite (DeBeers group, 2019),
Rio Tinto, who recently invested in a CarbonCapture
DAC+mineralization project (Hiar, 2021), and The Global
Cement and Concrete Association (80% of global production),
whose 2021 roadmap calls for industrial-scale carbon capture at
calcination sites (GCCA, 2021).

A list of companies and projects currently known to the
authors is shown geographically in the map given in Figure 5.
This map illustrates the range of projects underway today,
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but underlines that we are far from having a large-scale,
high-functioning geochemical NETs industry, as many of these
projects are in their infancy and have yet to deploy geochemical
NETs or remove substantial amounts of CO2.

FINAL REMARKS

In this review, the body of knowledge on geochemical NETs was
distilled and comprehensively discussed, focusing on terrestrial,
subterranean, and ocean-based geochemical NETs. Over the
last two decades, an enormous amount of work has been
published relating to geochemical NETs, suggesting the large
strides that have been made in this regard. It appears that
these technologies have great potential for carbon removal and
storage, owing to the vast resource of low cost natural and
artificial alkaline minerals, their thermodynamically favorable
reactions with CO2, and the long-term stability of the carbon-
bearing products they form. However, the field of geochemical
NETs remains, by and large, nascent with few fully-fledged
technologies being available. To avoid the worst effects of climate
change the introduction of geochemical NETs at scale (Gt CO2

yr.−1) is required as soon as possible. To achieve this, proactive,
deliberate, and strategic initiatives are necessary for accelerating
technology maturity along with substantially improving the
public acceptance of these technologies, which is required for
their large-scale introduction. For this reason, in Part II of this
work, a roadmap, which is accessible and actionable to both
specialist and non-specialist actors, is put forth with the goal of
catalyzing the implementation of gigaton-scale removal on the
timeframes that the Intergovernmental Panel on Climate Change
(IPCC) and other key organizations suggest that is needed from
as soon as 2025.
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NOMENCLATURE

Carbonic anhydrase (CA): Enzyme that catalyzes equilibration
between dissolved CO2 and carbonic acid.
CO2 mineralization: also referred to as mineral carbonation,
a process by which CO2 becomes a solid mineral, namely
carbonate. The term carbon mineralization is also widely used in
the field and should not be confused with conversion of organic
carbon into CO2.
Direct air capture (DAC): an engineered process of capturing
carbon dioxide directly from ambient air and generating a
concentrated stream of CO2 for sequestration or utilization.
Dissolved inorganic carbon (DIC): HCO3

–
(aq) + CO3

2–
(aq)

+ CO2(aq)

Enhanced weathering: a method whereby crushed alkaline
minerals, typically Mg- and Ca-rich silicates, are spread in
the environment where they undergo physical, chemical and
biological weathering, thus removing CO2 from the atmosphere
and storing it as carbonate minerals and ocean bicarbonate.
Two main types of enhanced weathering exist—coastal enhanced
weathering and enhanced weathering in soils. Over longer time
frames, these are also methods of ocean alkalinity enhancement.
Extracellular polymeric substances (EPS): A broad term for
biological polymers secreted by microbes. Depending on
specific properties, EPS can influence ion concentrations
in microenvironments, nucleate carbonate precipitation, and
catalyze mineral dissolution.
Ex situ mineralization: High surface area alkaline minerals are
reacted with CO2-rich gases in engineered reactors, enhanced by
elevated temperature and pressure, or using reagents. Mineral

reactants are usually transported to a site of CO2 production.
Carbonate mineral products may be utilized.
Geochemical NETs: Any negative emissions technology which
involves substantial amounts of alkali or alkaline minerals in
its flowsheet.
Indirect ocean capture (IOC): Technologies which remove
dissolved inorganic carbon from the ocean, and thus CO2 from
the atmosphere, via air-ocean gas exchange due to the pH
sensitivity of the ocean’s carbonate buffer system.
In situ mineralization: CO2-bearing fluids or wet supercritical
CO2 are injected into suitable rock formations beneath the Earth’s
surface where the CO2 is mineralized.
Negative emissions technologies (NETs): Any technology which
removes CO2 from the air, directly or indirectly, for the purpose
of climate change mitigation. Also known as carbon dioxide
removal (CDR) technologies.

Ocean alkalinity enhancement (OAE): Technologies that increase
the alkalinity of seawater to enhance the ocean’s natural
carbon sink.
Ocean liming: Spreading soluble alkaline minerals in the ocean to
increase ocean alkalinity.
Surficial mineralization: Air, or low purity CO2-bearing gases
or fluids, are reacted with high surface area natural alkaline
rocks, mine tailings or other alkaline industrial wastes, in
large piles, heaps, or in controlled spaces such as greenhouses,
forming carbonate minerals. Surficial processes, like enhanced
weathering, occur more slowly than ex situ processes but unlike
enhanced weathering, minerals are not transported or spread in
the environment.
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