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3D Domain Adaptive Instance Segmentation
via Cyclic Segmentation GANs

Leander Lauenburg , Zudi Lin , Ruihan Zhang , Márcia dos Santos, Siyu Huang,
Ignacio Arganda-Carreras , Edward S. Boyden, Hanspeter Pfister , Fellow, IEEE, and Donglai Wei

Abstract—3D instance segmentation for unlabeled imag-
ing modalities is a challenging but essential task as col-
lecting expert annotation can be expensive and time-
consuming. Existing works segment a new modality by
either deploying pre-trained models optimized on diverse
training data or sequentially conducting image transla-
tion and segmentation with two relatively independent net-
works. In this work, we propose a novel Cyclic Segmen-
tation Generative Adversarial Network (CySGAN) that con-
ducts image translation and instance segmentation simul-
taneously using a unified network with weight sharing.
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Since the image translation layer can be removed at in-
ference time, our proposed model does not introduce ad-
ditional computational cost upon a standard segmenta-
tion model. For optimizing CySGAN, besides the Cycle-
GAN losses for image translation and supervised losses
for the annotated source domain, we also utilize self-
supervised and segmentation-based adversarial objectives
to enhance the model performance by leveraging unlabeled
target domain images. We benchmark our approach on the
task of 3D neuronal nuclei segmentation with annotated
electron microscopy (EM) images and unlabeled expan-
sion microscopy (ExM) data. The proposed CySGAN out-
performs pre-trained generalist models, feature-level do-
main adaptation models, and the baselines that conduct
image translation and segmentation sequentially. Our im-
plementation and the newly collected, densely annotated
ExM zebrafish brain nuclei dataset, named NucExM, are
publicly available at https://connectomics-bazaar.github.io/
proj/CySGAN/index.html.

Index Terms—3D instance segmentation, electron
microscopy (EM), expansion microscopy (ExM), neuronal
nuclei, unsupervised domain adaptation, zebrafish.

I. INTRODUCTION

THE 3D Instance segmentation of cell nuclei is an essen-
tial topic attracting both biomedical and computer vision

researchers [1], [2], [3], [4], [5]. Supervised deep learning
with in-domain annotations (e.g., U-Net [6], [7]) has become
the dominant methodology for mainstream imaging modalities.
However, such an approach is less applicable for novel imaging
modalities, e.g., expansion microscopy (ExM) [8]1, due to the
lack of existing labels and the high annotation costs for newly
collected data. This work focuses on segmenting a new imaging
modality without any in-domain annotation (Fig. 1(a)).

Two common approaches try to overcome the challenges
by leveraging existing labels from mainstream domains. One
approach is to train a supervised model on diverse datasets
(i.e., a generalist model) and apply it directly to the new do-
main [3], [4]. However, when the domain gap becomes too
large, generalist models can produce unsatisfactory predictions
without in-domain finetuning that requires new training labels.
The other approach, known as unsupervised domain adaptation,
usually involves unpaired image-to-image translation models
like CycleGAN [9] and segments a new domain with a two-stage

1Expansion microscopy [8] alleviates the resolution limitation in optical
microscopy by physically expanding the tissues.
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Fig. 1. Overview of the task and methods. (a) We aim to segment 3D instances in a completely unlabeled target domain (IY ) by leveraging the
images (IX ) and masks (SX ) in the source domain (i.e., unsupervised domain adaptation). Instead of (b) conducting image translation (e.g.,
via CycleGAN [9]) and instance segmentation as two separate steps, we propose (c) Cyclic Segmentation GAN (CySGAN) to unify the two
functionalities using weight sharing, which is optimized with both image translation as well as supervised and semi-supervised segmentation
losses.

pipeline. The first stage translates the source images to match
the target domain distribution, aiming to be indistinguishable
from the target images while keeping the source structures.
The second stage pairs the translated images and corresponding
ground-truth labels in the source domain to train a supervised
model. The optimized model can then segment real images in
the target domain2 (Fig. 1(b)). The limitation of this sequential
pipeline is that the segmentation depends on a translation model
optimized regardless of the end task. Although recent works
improve it by jointly training the translation and segmentation
models [10], [11], [12], [13], the two relatively independent
networks still make the pipeline complex.

In this work, we propose a Cyclic Segmentation Generative
Adversarial Network (CySGAN) that unifies image translation
and segmentation to tackle nuclei instance segmentation in an
completely unlabeled modality (Fig. 1(c)). For both the source
and target domains, we train a single 3D U-Net [7] that takes
only images as input but outputs both segmentation and trans-
lated images simultaneously.3 The segmentation and translation
components thus share most of the network weights except for a
single output layer. Such a design has two main advantages. First,
it decreases the pipeline complexity as we can simply extend
a segmentation model with a single additional output channel
for image translation to realize domain-adaptive segmentation.
Second, the shared backbone implicitly increases the consis-
tency between translated images and predicted segmentation as
they share the same input features before the task specific layer.
To our knowledge, similar frameworks have been explored only
for 2D semantic segmentation (e.g., SUSAN [14]) but not 3D
instance segmentation that assigns each object a unique index.
Furthermore, SUSAN [14] is trained with image translation and
supervised segmentation losses. Our CySGAN is additionally
optimized with structural consistency and segmentation-based
adversarial losses to better leverage the unlabeled domain im-
ages, connecting ideas from semi-supervised image segmenta-
tion.

2The opposite way, which transfers the target domain images to the source
domain and applies a supervised model trained on the source data, is also
reasonable. However, the community uses it less often as this direction requires
both the translation and segmentation models at inference time.

3The source-to-target generator is optimized jointly during training but not
needed at inference time.

Moreover, we propose a novel cycle-consistency strategy with
data augmentations to improve the performance and robustness
of CySGAN. Previous works show that training transformations
like blurry, noisy, and missing regions can significantly improve
3D instance segmentation models [5], [15]. However, the im-
age discriminator can easily distinguish between synthesized
and real images if the augmentations remain in the translated
ones, breaking the balance in GAN training. To tackle this, we
proposed to enforce the cycle consistency [9] between the recon-
structed images and the clean images instead of the augmented
ones, enabling the model to restore corrupted regions during
the translation process. This strategy acts as a regularization to
improve the spatial awareness of the 3D model as it learns to
restore and segment augmented regions using the surrounding
context.

To benchmark CySGAN, we curated and annotated two ex-
pansion microscopy (ExM) image volumes from a zebrafish
brain tissue with dense neuronal nuclei (IY in Fig. 1(a)). This
dataset is called NucExM, with a total of 18.4 K instances.
These two volumes are complemented by a publicly avail-
able and labeled electron microscopy (EM) dataset (IX and
SX in Fig. 1(a)). Without any annotation for the ExM do-
main, our CySGAN outperforms generalist models pretrained
on diverse datasets, feature-level adaptation models, and the
methods that conduct translation and segmentation using two
separate networks. We publicly released our code and the new
NucExM dataset at https://connectomics-bazaar.github.io/proj/
CySGAN/index.html.

Contributions We present CySGAN, a novel 3D domain
adaptive instance segmentation method that segments instances
in an unlabeled domain using a multi-task network. We in-
troduce an augmentation-restoration cycle-consistency strategy
that significantly enhances CySGAN’s spatial awareness and
robustness without disrupting the generator-discriminator bal-
ance. Furthermore, we contribute a new densely annotated ExM
zebrafish brain nuclei dataset, NucExM, as well as the training
and inference code, to the research community.

II. RELATED WORKS

A. Unpaired Image-to-Image Translation

In biomedical domains, paired images from different imaging
modalities are usually expensive or even infeasible to obtain.

https://connectomics-bazaar.github.io/proj/CySGAN/index.html
https://connectomics-bazaar.github.io/proj/CySGAN/index.html
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Therefore, unpaired image-to-image translation [9], [16] based
on Generative Adversarial Networks (GAN) [17] becomes a
sensible methodology to transfer source images to the target
distribution. An exemplary framework usually consists of a
generator that maps the source images to the target domain
and a discriminator that decides whether an input image is
from the real target distribution or synthesized. The generator is
optimized with the gradients of the GAN loss back-propagated
through the discriminator. CycleGAN [9] achieves impressive
performance by ensuring cycle consistency when transferring
translated images back to the source domain using a pair of
symmetric generators. Further improvements include shared
high-level layers [18] and latent space alignment [10]. We refer
readers to the survey by Pang et al. [19] for a more detailed
discussion of image-to-image translation literature. Specifically,
our work combines image translation with segmentation models
to tackle unlabeled modalities, extending a standard 3D seg-
mentation with one additional output channel optimized with
image translation objectives to adapt to the target distributions.
Our proposed CySGAN simplifies existing frameworks that
conduct image translation and segmentation using two separate
networks.

B. Instance Segmentation of 3D Microscopy

3D instance segmentation from microscopy images is chal-
lenging due to the dense distribution of objects and unavoid-
able physical limitations in imaging (e.g., data is frequently
anisotropic with uneven resolution among different axes). Re-
cent learning-based approaches tackle these challenges by first
optimizing CNN-based models to predict representations cal-
culated from the instance masks, including object boundary [6],
[20], [21], affinity map [15], [22], star-convex distance [4], flow-
field [3] and the combination of multiple representations [5].
Watershed transform [23], [24] and graph partition [25] can then
be applied to convert the predicted representations into instance
masks. However, most existing works train the segmentation
models in a supervised learning manner using in-domain an-
notations, which becomes infeasible considering the cost of ac-
quiring expert annotations for new modalities. Our work focuses
on unifying segmentation approaches with image translation to
segment instances in new domains via unsupervised domain
adaptation. At inference time, the image-translation component
of CySGAN can be removed, which means CySGAN does not
increase the deployment cost upon a standard 3D segmentation
model.

C. Domain Adaptive Segmentation

We focus on unsupervised domain adaptation with unla-
beled target data. Existing approaches can be categorized into
appearance-level and feature-level adaptation methods.

For appearance-level adaptation, utilizing unsupervised im-
age translation is a practical methodology. Chartsias et al. [26]
designed a two-stage framework that first translates source im-
ages to the unlabeled domain using CycleGAN [9] and then

trains a separate segmentation model using the synthesized im-
ages and source labels. However, since the two modules are op-
timized independently, the limited awareness of the translation
network to the downstream segmentation task can restrict the
performance. CyCADA [10], SIFA [13], EssNet [11] and SEC-
GAN [12] improve the sequential model by jointly optimizing
the translation and segmentation networks. However, using two
separate networks increases the system complexity in training
and deployment. The authors of CyCADA [10], for example,
stated that although the model is theoretically end-to-end train-
able, they need to train it in stages as it is too memory-intensive
to optimize the full objective. Different from the mentioned
works, we unify image translation and segmentation into a single
model to significantly reduce the system complexity. Since the
translation and segmentation layers base their predictions on
the same high-level features, the CySGAN model enforces the
consistency between translated images and segmentation maps
from an architectural perspective.

Feature-level adaptation methods commonly optimize a
model for two (or more) domains so that the outputs and high-
level features from different domains are indistinguishable in
distribution. For the unlabeled domain, adversarial losses are
usually applied to enforce the alignment. For example, SIFA [13]
uses GAN losses to minimize the gap between the segmentation
predictions from the real and synthesized target-domain images.
Tsai et al. [27] designs a model directly taking the source
and target images as inputs and applying adversarial losses to
align the high-level feature maps. Following existing works,
we implement a feature-level adaptation model for 3D instance
segmentation and show that our CySGAN and appearance-level
adaptation models can achieve significantly better performance
in neuronal nuclei segmentation.

To our best knowledge, the only existing work that explores
joint translation and segmentation with weight sharing is SU-
SAN [14], but our work differs from it in two main aspects.
First, SUSAN and most works mentioned above are for 2D
semantic segmentation, while our work focuses on the more
challenging 3D instance segmentation. Second, SUSAN only
applies supervised segmentation losses to the annotated domain,
while our CySGAN leverages semi-supervised losses for the
unlabeled domain in the absence of ground-truth labels.

III. METHOD

In this section, we first give an overview of the CySGAN
framework (Section III-A). We then present the image transla-
tion (Section III-B) and segmentation (Section III-C) objectives
to optimize the system, as well as our implementation (Sec-
tion III-D).

A. The CySGAN Framework

Suppose we have an annotated source domainX = (IX , SX)
where IX and SX denote the images and paired segmentation
labels, respectively. For an unlabeled target domain Y with only
images IY , the goal is to generate the instance segmentation SY
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Fig. 2. Architecture details of CySGAN. Given an image sampled from IY , the generator G predicts both the transferred image in IX and the BCD
segmentation representations SY . Then the generator F takes only the translated image as input and predicts both the reconstructed image and
segmentation representations. Specifically, BCD stands for “binary foreground mask, “contour map,” and “distance transform map.” We visualize the
predicted BCD representations in the dashed yellow boxes. Two generators have exactly the same architecture, but the weights are not shared as
they are optimized to translate images in different domains. Only the generator G is needed to segment IY images at inference time (the output
channel for translation can also be removed).

without acquiring any manual annotations in Y . One straight-
forward approach is to use some domain adaptation method F
to synthesize images IY ′ = F (IX) that are indistinguishable
from the distribution of IY but keep the instance structure in
SX . Then a supervised model can be optimized using (IY ′ , SX)
pairs, which predicts SY from IY at inference time (Fig. 1(b)).

Sequentially conducting the translation and segmentation suf-
fers from multiple weaknesses. First, the translation model is not
designed with an end task in mind and can propagate errors to the
second step. Second, the translation model does not benefit from
the powerful structural guidance that instance segmentation can
impose upon it. Third, two separate modules make the system
complicated in training and deployment. Thus, we propose
a framework that shares weights between the translation and
instance segmentation. Our framework uses two generators - one
per domain - that output both translated images and segmentation
simultaneously (Fig. 1(c)):

F : IX → (IY , SX) G : IY → (IX , SY ) (1)

We denote the proposed framework as the cyclic segmenta-
tion GAN (CySGAN). Specifically, for an image xi ∼ IX , we
have [ŷi, x̂s] = F (xi), where ŷi is the synthesized image, x̂s

contains the predicted instance representations, and [ŷi, x̂s] is
their concatenation along the channel dimension. For the clarity
in the following formulations, we also denote ŷi = F (xi)[I]
and x̂s = F (xi)[S]. Note that G(F (xi)) is no longer a valid
expression as both models take only an image as input but output
the translated image and segmentation.

Fig. 2 shows the architecture of our CySGAN framework.
For the segmentation part, each of the two generators yields
the three instance representations binary foreground mask (B),
instance contour map (C), and signed distance transform
(D) from which we derive the instance masks (detailed in
Section III-C). Therefore, a single generator simultaneously out-
puts the synthesized image and the three instance representations
as four different output channels. In particular, ŷi = F (xi)[I]
has a single channel while x̂s = F (xi)[S] has three channels,

but with the same spatial dimensions (the same for G). Un-
like previous works that sequentially conduct image translation
and segmentation, our design decreases the system complexity.
Moreover, since the translation and segmentation modules base
their predictions on the same high-level features in the generator
networks, our model implicitly increases the structural consis-
tency between synthesized images and predicted segmentation
maps from an architectural perspective.

At inference time, only the generatorG is required to segment
IY . Besides, the output layer for image translation can be simply
removed without influencing the prediction of the segmentation
maps. Therefore, our CySGAN model does not introduce any
additional computational cost in deployment.

In the following parts, we discuss how to effectively optimize
CySGAN with multiple objectives and data augmentations.
Different from standard unsupervised image translation, the two
domains are asymmetric, as X is labeled, while Y is unlabeled.
We thus apply similar image translation losses but unique seg-
mentation losses for X and Y domains.

B. Image Translation Losses

Given an input image xi ∼ IX , we can denote F as the
forward generator and G as the backward generator (1). Since
paired IX and IY are difficult or even infeasible to obtain, F
is usually optimized using the adversarial loss so that the real
and synthesized images gradually become indistinguishable in
terms of distribution:

LGAN (F,DI
Y ) = logDI

Y (yi) + log(1−DI
Y (ŷi)) (2)

where DI
Y is the IY discriminator, while yi and ŷi are true

and synthesized images (ŷi = F (xi)[I]), respectively. Follow-
ing CycleGAN [9], we additionally use a backward generator
G and discriminator DI

X for IX to symmetrically optimize
LGAN (G,DI

X) for translating IY to IX , as well as enforcing
the cycle-consistency loss for the images in both domains:

Lcyc(F,G) = ‖G(ŷi)[I] − xi‖1 + ‖F (x̂i)[I] − yi‖1 (3)
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Fig. 3. Different segmentation losses for two domains. (a) For an annotated image in X, we compute the supervised losses of predicted segmen-
tation representations against the label. (b) For an unlabeled image in Y , we enforce structural consistency between predicted representations (as
the underlying structures should be shared) and also segmentation-based adversarial losses to improve the quality of predictions in the absence of
paired labels.

The GAN and cyclic losses enable the models to transfer images
between IX and IY distributions. However, the training of the
original binary cross-entropy GAN loss (2) can be unstable.
Therefore, following the official CycleGAN implementation, we
instead optimize the LSGAN [28] loss:

LLSGAN (F,DI
Y ) =

(
DI

Y (yi)− 1
)2

+
(
DI

Y (ŷi) + 1
)2

(4)

This loss formulation has been shown to prevent vanishing gra-
dient and smooth the training process. A symmetric adversarial
loss is applied to optimize G. In our proposed CySGAN, the
image translation losses do not affect the output layers for the
segmentation maps, but it does change the backbone shared by
both translation and segmentation modules.

C. Instance Segmentation Losses

1) Labeled Source Domain: Instance segmentation ap-
proaches for microscopy images [3], [4], [5], [21] usually pre-
dict instance representations computed from the permutation-
invariant labels and then apply a decoding algorithm to yield
the masks. In this work, we follow U3D-BCD [5] that predicts
the binary foreground mask (B), instance contour map (C), and
signed distance transform (D) as three output channels using
a 3D U-Net [7], which are decoded by a marker-controlled
watershed (MW) algorithm. The B and C channels are optimized
with the binary cross-entropy loss (BCE), while D is regressed
with the mean squared error (MSE). Given an image-label pair
(xi, xs) sampled from (IX , SX), the loss is

Lseg(F ) = Lbce

(
F (xi)

B
[S], x

B
s

)
+ Lbce

(
F (xi)

C
[S], x

C
s

)

+ ‖F (xi)
D
[S] − xD

s ‖22 (5)

where xs = [xB
s , x

C
s , x

D
s ] is the concatenation of the three

representations. For the supervised direction, the segmentation
loss Lseg(F ) of the forward generator and segmentation loss
Lseg(G) (based on the synthesized ŷi) of the backward generator
are optimized by directly comparing x̂s and ŷs with xs from SX

( 1© and 2© in Fig. 3(a)).
The loss Lseg(G) effectively trains G in a supervised manner

to predict the segmentation representations. Moreover, this de-
sign is not restricted to a particular set of instance representations

and can be easily modified to incorporate other methods4. In the
next part, we present a set of novel losses to better leverage the
unlabeled domain Y .

2) Unlabeled Target Domain: Since Y is unlabeled, it is
impossible to apply the supervised losses that we applied to
X . To further improve segmentation quality, we introduce a
structural consistency loss between the segmentation outputs of
both generators, ŷs and x̂s ( 1© Fig. 3(b)), as they should share
identical underlying structures even if the inputs are from two
modalities. This loss Lsc(F,B) is formulated as

Lsc(F,G) = ‖G(yi)[S] − F (G(yi)[I])[S]‖1 (6)

On the other hand, since we have unpaired instance segmentation
masksSX of neuronal nuclei in a different modality, we also add
structure-based adversarial losses to the predictions ( 2© and 3©
in Fig. 3(b)) to enforce their distributional similarity with SX ,
which are denoted as LLSGAN (G,DS

X) and LLSGAN (F,DS
X)

(see the LSGAN formulation in (4)). Please note that this loss
requires similar dimensions for the instances in both datasets
(i.e., the resolutions have to match), and we will elaborate our
preprocessing steps in Section IV. Specifically, the discriminator
DS

X takes the concatenation of all three representations to em-
phasize the correlation between them, as the representations are
calculated from the same instance masks. This design also avoids
using three independent discriminators that increase the system
complexity. The architecture of DS

X is almost identical to the
image discriminators except for the number of input channels.
In summary, the structural consistency loss and segmentation-
based adversarial losses provided additional supervision in the
absence of paired labels for IY .

Our method is connected to semi-supervised learning as we
incorporate unlabeled images in optimization using losses with-
out paired labels. We can also choose other semi-supervised
objectives, e.g., augmentation consistency [29], when the model
takes images in the unlabeled domain as inputs. Our work
emphasizes the concept of leveraging unlabeled images in a
unified translation-segmentation framework, while the specific
design choices can vary.

4For example, SUSAN [14] applies the supervised segmentation losses for
2D semantic masks with pixel-wise class annotations.



LAUENBURG et al.: 3D DOMAIN ADAPTIVE INSTANCE SEGMENTATION VIA CYCLIC SEGMENTATION GANS 4023

Fig. 4. Restore augmented regions with an adapted cycle-consistency strategy. We show four consecutive slices of (a) augmented real IY input,
(b) synthesized IX volume, (c) reconstructed IY volume and (d) real IY volume w/o augmentations. By forcing the cycle consistency of (c) to (d),
the model learns to restore corrupted regions with 3D context.

D. Implementation

1) Full Objective: The full objective (L) of CySGAN is the
sum of losses in Sections III-B and III-C, which is

L = LGAN (F,DI
Y ) + LGAN (G,DI

X) + Lcyc(F,G)︸ ︷︷ ︸
image-to-image translation

+ Lseg(F ) + Lseg(G)︸ ︷︷ ︸
supervised segmentation

+ Lsc(F,G) + LGAN (G,DS
X) + LGAN (F,DS

X)︸ ︷︷ ︸
semi-supervised segmentation

(7)

We assign a uniform weight for all losses without tweaking. In
the ablation studies, we also test a CySGAN model without the
semi-supervised segmentation loss to demonstrate its effective-
ness to the framework.

2) Augmentation-Aware Cycle Consistency: The U3D-
BCD [5] model uses multiple training augmentations like ran-
dom missing, blurry and noisy regions (Fig. 4(a)). We keep
them in CySGAN for better segmentation quality. However, the
image discriminator can easily distinguish synthesized images
from real ones if the augmentations are clearly noticeable in the
translated ones, breaking the balance in GAN training. There-
fore, we propose an upgraded cycle consistency (3) by streaming
the training images for X and Y in both augmented and clean
(unaugmented) forms. As shown in Fig. 4 (each subfigure shows
consecutive slices of a 3D volume), G transfers augmented yi to
x̂i, andF reconstructs x̂i to ŷi. Instead of calculatingLcyc(F,G)
of ŷi to yi, we enforce its similarity to the clean y∗i (Fig. 4(d)). By
using the augmentation-aware cycle consistency strategy, both
generators learn to restore corrupted regions using 3D context5

in addition to image translation. We show in the ablation studies
that this strategy has a significant impact on the domain-adaptive
segmentation performance.

3) Network Details and Optimization: We use 3D U-Nets [7]
for F and G. They have identical architectures, but the parame-
ters are not shared, which is similar to CycleGAN. Each network

5The strong missing-region augmentation is not applied to successive sections
to facilitate using 3D context in translation and segmentation.

has one input channel and four output channels for the translated
image and BCD segmentation representations (Fig. 2). For
the GAN objectives, we use 3D convolutional discriminators,
where the image discriminators DI

X and DI
Y have a single input

channel for the gray-scale images, while the segmentation-based
discriminators DS

X has three input channels for the BCD repre-
sentations. Each discriminator has five layers, where each one
consists of a strided convolution, a batch normalization, and a
non-linear activation. Following PatchGAN [16], the final layer
outputs a single-channel feature map representing the realness
of corresponding input patches. The idea is to evaluate the
generator’s performance at the level of local image patches
rather than applying a coarse global penalty. As discussed in
Section III-B, we optimize the LSGAN objective (4) instead of
the BCE GAN loss (2) for training stability. When calculating
the segmentation losses, we detach the synthesized image to
avoid the segmentation objectives affecting the image translation
results.

We train the CySGAN model for 106 iterations using the
AdamW [30] optimizer with an initial learning rate of 2× 10−3

(decreased with cosine annealing) and batch size of 8 using
4 NVIDIA V100 GPUs. Our implementation of the proposed
CySGAN framework is based on the PyTorch Connectomics [31]
open-source framework.

IV. DATASETS

As discussed in related works, existing domain-adaptive seg-
mentation models are mainly developed for 2D segmentation
and semantic segmentation. To alleviate the lack of bench-
mark datasets for 3D domain-adaptive instance segmentation
in microscopy image analysis, we also release a fully annotated
dataset with dense 3D neuronal nuclei instances (Fig. 5).

A. NucExM Dataset (Target)

We curated the saturated nuclei segmentation annotation
for two expansion microscopy (ExM) [8] volumes by two
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TABLE I
NUCEXM DATASET METADATA. WE CURATED AND DENSELY ANNOTATED A NEURONAL NUCLEI SEGMENTATION DATASET WITH TWO EXM VOLUMES OF

ZEBRAFISH. THE TISSUE WAS EXPANDED BY ABOUT 7× TO INCREASE RESOLUTION

Fig. 5. Visualization of the NucExM dataset. We sample a sub-volume
of size (1024, 1024, 100) from the V1 volume of NucExM. (Left) The
expansion microscopy (ExM) image volume visualized using Napari.
(Right) The corresponding 3D segmentation masks visualized using
Neuroglancer.

neuroscience experts from a day 7 post-fertilization (dpf) ze-
brafish brain,6 imaged with confocal microscopy. These volumes
have an anisotropic resolution of 0.325 × 0.325 × 2.5 µm in
(x, y, z) order, with an approximate tissue expansion factor of
7.0. Thus the effective resolution becomes 0.046× 0.046×
0.357 µm. The two volumes are of size 2048 × 2048× 255
voxels with 9.6 K and 8.8 K nuclei, respectively (Table I).
We downsample the volumes by ×4 along x and y axes to
512× 512× 255 to save computational cost during training and
inference.

1) Source Dataset: We use the NucMM-Z electron mi-
croscopy (EM) volume from the NucMM dataset [5] as the
source data (IX and SX in Fig. 1(a)). The original NucMM-Z
covers nearly a whole zebrafish brain at a resolution of 0.48 ×
0.48 × 0.48µm. Considering the different resolutions of the
source and target datasets, we crop a 200× 200× 255 subvol-
ume from NucMM-Z and upsample it to 512× 512× 255 to
(roughly) match the resolution. The processed volume contains
12 K neuronal nuclei instances. We also apply Gaussian filtering
and thresholding of the instance masks after nearest-neighbor
upsampling to smooth the boundaries.

2) Datasets Comparison: Fig. 6 shows the comparison be-
tween the source (EM) and target (ExM) datasets. After down-
sampling of the target dataset and upsampling of the source
dataset, the instance size (Fig. 6(a)) and nearest-neighbor dis-
tance between nuclei centers (Fig. 6(b)) roughly match, which
is expected to help the model learn to segment 3D neuronal
nuclei instances in a domain-adaptive setting. The domain gap

6All procedures involving animals at the Massachusetts Institute of Technol-
ogy (MIT) were conducted in accordance with the US National Institutes of
Health Guide for the Care and Use of Laboratory Animals and approved by the
MIT Committee on Animal Care. The IACUC protocol number is 1221-100-24,
which was approved on 12/23/2021.

is mainly characterized by the different intensity and contrast of
object and non-object voxels (Fig. 6(c)). We show in experiments
that the difference in appearance can hardly be solved by tra-
ditional appearance-level adaptation approaches like histogram
matching.

3) Evaluation Metric: Following common practice in in-
stance segmentation [32], [33], we choose average precision
(AP) as the evaluation metric. Specifically, for our 3D volumetric
data, we choose AP-50 (i.e., AP with an IoU threshold of 0.5) and
use the existing public implementation with improved efficiency
for 3D volumes [21].

V. EXPERIMENTS

A. Methods in Comparison

We compare CySGAN with three types of models targeting
the segmentation of a new domain without any in-domain anno-
tation, including generalist models, appearance-level adaptation
models, and feature-level adaptation models.

1) Generalist Models: We compare with Cellpose [3] and
StarDist [4] models using their official implementation. Cell-
pose predicts the flow-field representations for instances us-
ing neural networks, while StarDist predicts 3D star-convex
polyhedra representations. Those models are pretrained on
various training datasets covering different imaging modal-
ities and species (e.g., the Cellpose model was pretrained
on datasets with over 70 k segmented objects). To im-
prove the fairness in performance comparison, we conducted
hyper-parameter tuning of the algorithms (e.g., the esti-
mated diameters of the objects) to ensure the quality of the
predictions.

2) Appearance-Level Adaptation: Appearance-level adapta-
tion approaches are the models that first translate images to the
target appearance for training a segmentation model. Since exist-
ing approaches are mainly developed for 2D semantic segmenta-
tion [10], [11], [13] but rarely explore 3D instance segmentation,
we implemented two kinds of baseline models that conduct
translation and 3D instance segmentation sequentially. Specif-
ically, we test both histogram matching (a traditional method)
and CycleGAN [9] (a deep learning-based method) as the trans-
lation module. We use U3D-BCD [5] for segmentation, which is
consistent with the CySGAN generators but without the output
channel for translated images. Moreover, we test the IX → IY
version that transfers IX to IY ′ and trains a model in the target
domain using synthesized images, and IY → IX that transfers
IY to IX ′ and predicts the segmentation using a model trained in
the source. Note that IX → IY adaptation is usually preferred
as the IY → IX approach needs to run the image translation
module as inference time, introducing additional computational
cost.
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Fig. 6. Statistics of the source (EM) and target (ExM) datasets. We show the distribution of (a) instance size (in terms of voxels) and (b) nearest-
neighbor distance between nuclei centers. The density plots are normalized by the total number of instances in each volume. We also show
(c) the voxel intensity distribution in object (foreground) and non-object (background) regions for both volumes. The domain gap is characterized by
different intensity distributions and contrast.

TABLE II
BENCHMARK RESULTS ON THE NUCEXM DATASET

3) Feature-Level Adaptation: Appearance-level adaptation
models described before first translates images between the
source and target domains. In comparison, feature-level do-
main adaptation models commonly map the source and target
distributions in the model embedding space. For feature-level
domain adaptation, we implemented a model sharing a simi-
lar high-level idea as Tsai et al. [27]. Specifically, based on
the same U3D-BCD model in the appearance-level adaptation
models and our CySGAN, we apply the first GAN loss to match
the distribution of source and target predictions (i.e., the BCD
segmentation representations) and the second GAN loss to align
the target features to the source features in the embedding space
of the 3D U-Net model. Other training details, including data
augmentations, are the same as the segmentation modules in the
appearance-level adaptation models.

B. Results

Since there are two volumes in the NucExM dataset, we
only use one volume (V1) to optimize the model while running
inference on V1 and V2. The inference results of V2, therefore,
demonstrate the model’s generalization ability. Note that since
the setting is unsupervised domain-adaptation, only the ExM
images of V1 are used in training without any annotations.
Table II summarizes the results. Our CySGAN outperforms
pretrained generalist models, feature-level adaptation models,
and appearance-level adaptation models with either histogram
matching or CycleGAN for image translation. Specifically, CyS-
GAN outperforms the second-best model (CycleGAN+Segm,

IX → IY ) by absolutely 5.7%, demonstrating the effectiveness
of our proposed framework. The results also show that IX → IY
versions generally perform better than IY → IX ones in se-
quential models. Please note that, although the models are not
optimized on V2, all methods generally perform better on V2 as
the volume is relatively easier to segment.

The visual results in Fig. 7 show that Cellpose’s segmentation
has obvious false negatives, as highlighted by the red arrows.
From our hyperparameter search for Cellpose, we found that the
challenging contrast of the ExM data causes missing foreground
predictions. StarDist’s masks, on the other hand, tend not to
align well with instance boundaries and overlap with each other,
which are also highlighted using red arrows. We empirically find
that the strong star-convex shape prior often overlooks other
features like boundaries and thus struggles with non-spherical
shapes. Our CySGAN model that combines three predicted
mask representations Fig. 7(f)–(h) yields favorable 3D instance
segmentation results.

C. Ablation Studies

We further validate three important design choices of
CySGAN, including the data augmentations (Fig. 4), semi-
supervised segmentation losses for the unlabeled domain (7),
and learning the BCD [5] representation.

Table III shows the results when removing those components
from the CySGAN model on the V1 NucExM image volume.
First, without data augmentations and the corresponding cycle-
consistency loss to restore corrupted regions, the performance
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Fig. 7. Visual comparisons of segmentation results. (a) ExM image, (b) ground-truth instances, (c) Cellpose [3], (d) StarDist [4] and (e) CySGAN
results. The red arrows highlight false negatives in Cellpose predictions and overlapping masks from StarDist. We also show (f)–(h) the predicted
segmentation representations of U3D-BCD used in CySGAN. Note that all the nuclei instances are 3D as shown in Fig. 5. We present representative
2D slices in this visualization to demonstrate the model performance.

TABLE III
ABLATION STUDIES OF CYSGAN

is significantly degraded by 16.6%. We also observe that the
model is prone to model collapse (i.e., the generator tends
to generate a single pattern during the optimization) without
data augmentations. Therefore our training strategy can im-
prove both the performance and robustness of the domain-
adaptive segmentation model. Second, CySGAN without the
semi-supervised segmentation losses (which can be regarded
as a 3D instance segmentation version of SUSAN [14]), the
performance is decreased by 4.9% and similar to the result
of the model sequentially conducting image translation and
segmentation (CycleGAN + Segm in Table II). Third, we also
test a model that only learns the binary foreground mask and
contour map (BC), as in Wei et al. [21], without the signed
distance map in the BCD representation [5]. The discriminator
for the segmentation-based GAN loss is updated accordingly
to have two input channels without modifying other training
protocols. The BC version is worse than the default CySGAN
model by 8.4%, validating the importance of the signed distance
map in segmenting closely-touching 3D instances. Those results
demonstrate the essentiality of those components in CySGAN
and also provide informative data points to quantify the impor-
tance of those designs.

VI. CONCLUSION

In this work, we present CySGAN, a unified domain-
adaptive segmentation framework optimized with image trans-
lation losses as well as supervised and semi-supervised instance
segmentation losses to tackle an unlabeled imaging modal-
ity. CySGAN outperforms and simplifies models that conduct

translation and segmentation using separate networks. We also
publicly release the NucExM dataset as a testbed for future
domain-adaptive 3D instance segmentation models. In our ap-
plication scenario, the morphology of the source and target
objects are relatively close. Thus, important future directions
include segmenting modalities where the instance structures
differ significantly from those in the source domain.
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