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Background
The nematode Caenorhabditis elegans (C. elegans) is among the most-studied animals 
in neuroscience, and remains the only multicellular organism with a fully mapped con-
nectome. Capable of exhibiting complex behaviors despite having only several hundred 
neurons, it has provided an abundance of neuroscientific insights. The goal of this paper 
is to further improve the scientific utility of C. elegans by enabling more accurate and 
automated identification of its neurons, that are either unlabeled, or have been labeled 
by one or more colors that encode information regarding identity.

Abstract 

Background: Determining cell identity in volumetric images of tagged neuronal 
nuclei is an ongoing challenge in contemporary neuroscience. Frequently, cell identity 
is determined by aligning and matching tags to an “atlas” of labeled neuronal positions 
and other identifying characteristics. Previous analyses of such C. elegans datasets have 
been hampered by the limited accuracy of such atlases, especially for neurons present 
in the ventral nerve cord, and also by time-consuming manual elements of the align-
ment process.

Results: We present a novel automated alignment method for sparse and incomplete 
point clouds of the sort resulting from typical C. elegans fluorescence microscopy 
datasets. This method involves a tunable learning parameter and a kernel that enforces 
biologically realistic deformation. We also present a pipeline for creating alignment 
atlases from datasets of the recently developed NeuroPAL transgene. In combination, 
these advances allow us to label neurons in volumetric images with confidence much 
higher than previous methods.

Conclusions: We release, to the best of our knowledge, the most complete full-body 
C. elegans 3D positional neuron atlas, incorporating positional variability derived from 
at least 7 animals per neuron, for the purposes of cell-type identity prediction for 
myriad applications (e.g., imaging neuronal activity, gene expression, and cell-fate).

Keywords: Caenorhabditis elegans, Neuron identification, Point-cloud alignment, Cell 
atlas
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Limitations of the original C. elegans connectome

The electron micrograph (EM) reconstruction of the C. elegans nervous system and 
its connectome were first fully described in a seminal 1986 paper [1]. This was an 
invaluable technical achievement requiring a decade of work to hand-trace every 
neuron and connection from the EM sections. Due to technical limitations involved 
with preparing worm samples, this nervous system reconstruction was derived from a 
mosaic of overlapping sections from five individual worms. These five worms consist 
of three adult hermaphrodites, a fourth larval stage (L4) animal, and one adult male. 
Thus, in combination, this reconstruction provides a generalized view of the worm’s 
nervous system.

While a generalized view of the worm’s nervous system has proven valuable to the 
field, it lacks representation for the idiosyncrasies found among individual worms. 
Moreover, preparations for EM imaging can introduce non-linear distortions. Prepar-
ing worms for EM imaging requires that they be first physically sliced open so that 
the fixative may bypass the impermeable cuticle [2, 3]. As the worm interior is under 
a higher pressure, breaching the cuticle results in morphological changes, and the 
commonly used EM fixative osmium tetroxide has also been shown to alter morphol-
ogy [4]. In the original reconstruction of the worm nervous system, animals were seri-
ally sectioned into approximately 50 nm thick slices. The combination of these steps 
yielded distortions that required correction when unifying worm sections into a gen-
eral visual representation of its nervous system. As a result, substantial manual cor-
rection was introduced when generating this canonical nervous system illustration. 
These corrections and the multi-animal synthesis thus present a generalized view of 
the worm’s nervous system, albeit one that lacks quantification of neuron positions 
and measurements of their variability to recapitulate individual idiosyncrasies present 
within the population.

Existing C. elegans atlases

This illustrative 1986 worm atlas has often been treated as canon, or at least as an 
atlas of sufficient quality to compare with contemporary data from modern and more 
reproducible measurement techniques. This is in large part due to it being the only 
atlas of its kind up until very recently [5, 6]. For example, Scholz et al. [7] aligns this 
atlas to fluorescent imaging data to assign neuron identity. Unfortunately, using this 
generalized illustrative atlas for neural identification purposes can lead to unlabeled 
and even mislabeled neurons. This is largely due to the density of neurons in various 
ganglia and ambiguities in atlas matching that are present as a result. In addition to 
these limitations and those listed in the previous section, a 2004 version of this atlas, 
commonly used in papers that make use of C. elegans neuron positions, was produced 
by further processing the original version so as to translate the 1986 illustration into 
semi-quantifiable measurements. This version was produced by Choe et al. [8, 9] and 
popularized by Kaiser et al. [10]. It tabulates neural positions that were measured by 
directly scanning and tracing the physical 1986 paper. The 2004 atlas (Fig. 1) consists 
of only 277 of the 302 neurons found in adult hermaphrodites. Crucially, due to the 
2D geometry of the scanned and processed original paper, the 2004 atlas is also 2D. 
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The third dimension in modern 3D datasets is therefore typically discarded before 
matching against this 2D atlas and may further increase the misidentification rate. 
In total, these limitations motivate the creation of a representative 3D atlas of C. ele-
gans neuron positions and their variability.

In the decades since the original EM connectome was published [1], many individ-
ual C.  elegans  neurons have been further studied and characterized. Their updated 
information has been incorporated into the widely used C. elegans Atlas [11], and the 
contents of this reference text have been artistically assembled into the popular and 
influential OpenWorm project [12, 13]. OpenWorm presents information for individ-
ual neurons and their connectivity, assembled into a 3D approximation of an adult 
hermaphrodite worm. However, the inherent positional variability of neurons in the 
head and tail is now readily apparent from multicolor C. elegans strains, designed for 
neural identification, that were used to measure neuron positions and their variability 
across multiple animals [5, 6, 14]. These strains and concurrent algorithmic advances 
demonstrate how fluorescent-protein barcodes can be used to accurately determine 
neuron identities in volumetric images [15–20].

The strong interest in C. elegans research coupled with great recent progress in all 
aspects of C.  elegans  imaging makes it timely to develop improved tools for whole-
nervous-system C.  elegans  neuron identification and make them available to the 
community. This is the goal of the present paper. The rest of this paper is organ-
ized as follows: we present our improved alignment method in “Methods” together 
with a pipeline for creating improved atlases of whole-worm neuron positions. We 
then compare the neuron identification accuracies of various methods in “Results”, 

Fig. 1 C. elegans atlases from White et al. (red) and OpenWorm (blue), after straightening and uniform scaling 
using a corrected version of [21], with axial projections, unequal scaling
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applying them to simulated data and then to our new atlas. We then summarize these 
results in our “Conclusion”.

Methods
New NeuroPAL‑derived atlas

Our construction of the NeuroPAL atlas consists of three steps: 

1. Preparing and imaging NeuroPAL worms and turning each image into a pair of 
measured quantities as in “Preparing and imaging the NeuroPAL worms”: a point 
cloud (a position vector and optional color information for each neuron) and a hull 
outline (a smooth closed 2D curve).

2. Canonicalizing each pair by normalizing the hull into a standard straightened hull, 
along with the point cloud in the associated canonical 3D space.

3. Combining point clouds from multiple worms into a single point cloud atlas (Fig. 2).

Preparing and imaging the NeuroPAL worms

Brainbow [22] is a stochastic technique that has been used to differentiate individual 
neurons from neighboring ones by expressing unique ratios of red, green, and blue fluo-
rescent proteins. Unfortunately, Brainbow coloring is generated randomly and thus the 
colors cannot be used to identify neuron types. In contrast, the recent NeuroPAL C. ele-
gans transgene introduces an alternative deterministic technique that reveals the unique 
identity of each individual neuron, at all larval stages of both worm sexes (hermaphro-
dites and males) [6, 23]. NeuroPAL worms have an identical and invariant colormap by 
way of the stereotyped expression of four distinguishable fluorophores. These four fluo-
rophores leave the green channel free, and thus it can be used to map gene expression 
using the common GFP, CFP, or YFP based gene reporters, or to measure dynamic neu-
ral activity using the GCaMP reporter.

A complicating factor in position-derived identification is that individual neuron posi-
tions are known to be locally variable between different worms [5, 6, 11]. This is caused 
partly by C. elegans size and shape differences, and partly because of inherent positional 
variance that may be so extreme as to have nearby neurons switch relative positions.

Adult C. elegans were imaged in accordance with the methods as described in [6], and 
the images were processed with a semiautomatic method using accompanying software 

Fig. 2 Diagram of our NeuroPAL atlas construction and alignment pipeline, with each algorithm labeled. The 
* denotes the neuron positions after canonicalization
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of [6]. Neuron positions were detected by the software, and any required corrections 
were made manually. The software predicted neuron identities for the head and tail of 
each worm, and these were manually checked and relabeled as needed. Since there were 
no prior statistical atlases for neurons in the worm midbody, the identities of these neu-
rons were manually annotated for each worm. The result was a labeled point cloud for 
each individual corresponding to the neuron positions.

The original 1986 nervous system reconstruction [1] was assembled using a mosaic of 
5 overlapping image sections, each corresponding to part of the worm, that when pieced 
together would represent entire nervous system. Each section was taken from one of 5 
worms representing a mixture of age and sex: 3 adult hermaphrodites, 1 L4, and 1 adult 
male. In our atlas, to maintain a generalized representation of the nervous system we 
used 7 worms: 1 adult hermaphrodite, 4 young-adult hermaphrodites, 1 L4 hermaph-
rodite, and 1 adult male. Here, each individual worm has neuron positional informa-
tion represented for its whole body, rather than only a body section, thus contributing 
a holistic representation of the nervous system from each of these animals. All 7 worms 
were positioned on an agar pad for imaging such that their left-right axis extended 
between the glass coverslip and slide. As a result, the worm samples and representative 
left-right axis may have been slightly compressed between these two surfaces. Similarly, 
the dorsal-ventral and potentially the anterior-posterior axes may have been slightly 
elongated as a result of this compression.

Straightening method

For successful alignment, canonicalization is essential in ensuring that the neuron point 
clouds from different worms, that were imaged in different postures, orientations, and 
morphology, lie in the same canonical space to provide a reasonable starting point for 
neuron matching. Mathematically, canonicalization corresponds to a continuous and 
invertible 3D mapping that that gives all imaged worm hulls the same shape regardless 
of the proportions and bending state of the worms.

Several methods have been previously used for this problem of straightening worm 
hulls for eventual canonicalization [24, 25]. Because worms are imaged under a cover-
slip and thus lie in a 2D plane, such methods customarily model the 3D mapping as a 
2D mapping, leaving the vertical dimension unchanged. We make the same simplifica-
tion, because our current data does not provide sufficiently accurate 3D hull determina-
tion (worm edges are too blurred in less-focused horizontal slices far above or below the 
midplane).

Most previous methods do not attempt to preserve volume, and pose challenges 
related to distorted straightening at the head and tail. This is unfortunate, since these 
dense areas, presumably responsible for a majority of the worm’s information process-
ing, are the most important to get right for scientifically-relevant neuron identification. 
For example, we originally tested a simple 2D canonicalization where the new x-coor-
dinate was defined as the distance along the worm midline estimated by skeletonizing 
the hull image, and the new y-coordinate was defined as the perpendicular distance 
to this midline. This scheme unfortunately resulted in problematic volume distortions 
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associated with the contorted morphology of an unrestrained worm, and produced rela-
tively poor neuron matching accuracy.

We therefore propose a worm canonicalization method which produces more con-
sistent and biologically realistic point clouds. As explained below, the 2D mapping can 
be geometrically interpreted by filling the worm with inscribed circles as illustrated in 
Fig. 3. We first make a hull map for each worm, by binarizing the slice from the C. ele-
gans z-stack that represents the largest-area 2D hull of the worm (Fig. 3, middle panel).

We then split the worm hull boundary into two parameterized curves representing 
opposite edges, r−(s) and r+(s′) , where s ∈ [0, 1] and r−(s) runs clockwise from head to 
tail as s increases. We define these curves by cubic spline fits to the binarized hull image. 
As illustrated in Fig. 3 (right panel), the distance from the point r+(s′) on one edge of the 
worm to a circle of radius t tangent to r−(s) on the other edge is then given by

where n̂−(s) ≡ (−ṙy(s), ṙx(s))/|ṙ(s)| is the unit inward tangent vector at r−(s) , the vector 
r−(s)+ n̂−(s)t is the center of the aforementioned circle, and dots denote derivatives 
with respect to s. By numerically minimizing over s′ , we find the distance d(s, t) from the 
circle to the opposite worm edge:

We numerically solve the equation d(s, t) = 0 to determine the radius t(s) where the cir-
cle is tangent to both worm edges. The variable s ∈ [0, 1] thus parametrizes a continuous 
family of circles of radius t(s) centered at

Finally, these circles are used to remap the C. elegans neurons using the methods illus-
trated in Fig.  3. For each worm, 1000 equally spaced circles are inscribed. All worm-
inscribed circles are then translated so that their midpoints lie on the x-axis, retaining 
the distances between adjacent circle midpoints, and rotated so that the worm midline 
corresponds to the x-axis (Fig.  3, bottom). Each circle thus defines an affine transfor-
mation into the canonical space. Each neuron is mapped into this canonical space by 
applying the affine transformation for each of the circles that inscribe it, and averaging 
the result. Finally, the straightened group of neurons are isotropically rescaled so as to 
occupy x ∈ [0µm, 800µm].

Atlas construction

After applying our canonicalization procedure to each individual worm and obtaining 
corresponding 3D neuron point clouds for each one, we combine these point clouds 
into a single NeuroPAL-derived whole worm atlas by using the median position coordi-
nates for each neuron. We use the median rather than the mean since it is more robust 
to outliers and resistant to overall shrinking. To further improve the atlas quality in 
the neuron-dense head and tail regions, which are relatively rigid compared to highly 
deformable midbody, we rigidly align the high resolution head and tail atlases from [6]

(1)d(s, s′, t) ≡
∣

∣r−(s)+ n̂−(s)t − r+(s
′)
∣

∣− t,

(2)d(s, t) ≡ min
s′

d(s, s′, t).

(3)r0(s) ≡ r−(s)+ n̂−(s)t(s).
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(which were based on 10 worms) to the two point clouds consisting of their correspond-
ing neurons taken from our straightened 7-worm whole-body atlas, and finally combine 
these neuron positions with the original midbody positions to obtain our final atlas.

This resultant atlas is illustrated in Figs.  4 and 5, and the 300 canonicalized neuron 
position coordinates are listed in Additional file  1: S2 Appendix. We do not provide 
data for the two CAN cells in our dataset, as previous broad investigations of pan-
neuronal markers found none that solely express in neurons and also express in CAN 
[26]. All panneuronal markers that expressed in CAN also expressed in non-neuronal 
tissues such as epithelium, intestine, glands, or muscle. Non-neuronal tissues are often 
larger than neurons and fluorescent expression within them can can occlude neuronal 

Fig. 3 Starting with a worm image (top left), we first determine the hull (top center). Our algorithm then 
inscribes 1,000 tangent circles (top right) in the hull (for clarity, only 50 circles are shown here). Finally, the 
circle sequence is straightened, which defines the canonicalization mapping of their inscribed neuron 
positions (bottom)

Fig. 4 Sagittal view of our NeuroPal-derived atlas

Fig. 5 Transverse view of our NeuroPal-derived atlas
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imaging. Thus, to date, all whole-brain activity imaging as well as neural identification 
strains have used panneuronal markers that exclude CAN and, accordingly, these two 
cells are not represented in our dataset.

New alignment technique

We now turn to the challenge of aligning the neuron point cloud from an observed worm to 
a known atlas, so as to determine the likely identity of each observed neuron.

Existing coherent point drift alignment

Coherent Point Drift [27] (CPD) is a probabilistic alignment method for sparse point clouds 
that has been extensively used to align C. elegans neuron positions [5, 7, 19]. CPD repre-
sents the first point set by Gaussian mixture model (GMM) centroids and aligns to a second 
point set by maximizing the likelihood while forcing the points to move coherently as a 
group. In the non-rigid case, this is implemented as a motion over time guided by a veloc-
ity field determined by maximizing the GMM likelihood penalized by motion incoherence. 
CPD performs well on our C. elegans problem when the two point clouds undergo rigid-
body rotation, translation and scaling, but as we will show below, has limited robustness in 
cases of cropping, size imbalance, and realistic biological deformation.

Colors

Since NeuroPAL is a fluorescent-labeling transgene that improves neuron distinguishability 
using several colors, it is highly desirable to exploit this color information to improve neu-
ron matching. This begs the question: how many colors are needed for accurate alignment? 
With better alignment methods, are fewer colors sufficient? To quantify the relationship 
between color and accuracy, we report below a series of simulation results where each neu-
ron is randomly assigned a simulated color.

Novel generalized‑mean alignment

To improve the robustness of the alignment and address the issues in CPD, we intro-
duce a novel Generalized-Mean (GM) alignment algorithm. For labeled neuron positions 
r(1) = {r

(1)
i }

n1
i=1 from reference worm 1 and unlabeled neuron positions r(2) = {r

(2)
j }

n2
j=1

 
from worm 2 ( nk denotes the number of neurons in the kth worm), and optionally provided 
indexed colors c(1) = {c

(1)
i }

n1
i=1 and c(2) = {c

(2)
j }

n2
j=1

 , we introduce the following loss func-
tion to minimize by way of gradient descent on the r(2) positions:

where |r(1)i − r
(2)
j | is the Euclidean distance between r(1)i  and r(2)j  , and the Kronecker delta 

δ
c
(1)
i c

(2)
j

= 1 if the two colors are equal, vanishing otherwise. The generalized mean is 

defined by the hyperparameter γ < 0 which, as explained in [28], encourages pairing. 
More specifically, for each unlabeled neuron positions r(2)j  , we have a generalized-mean 
of its distance to all the labeled neuron positions r(1)i  that have the same color (as 

(4)ℓGM(r(1), r(2), c(1), c(2)) =

n2
�

j=1







�n1
i=1

δ
c
(1)
i c

(2)
j
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enforced by δ
c
(1)
i c

(2)
j

 ). When γ < 0 , the smaller the distance, the larger 
∣

∣

∣
r
(1)
i − r

(2)
j

∣

∣

∣

γ

 is. 

Furthermore, as proved in [28], this generalized-mean loss has the property that the 
smaller 

∣

∣

∣r
(1)
i − r

(2)
j

∣

∣

∣ is among all the r(1) , the larger the gradient is to drive them closer. 

Here γ tunes how much the algorithm is focusing on the smaller distances. For example, 
when γ → −∞ , Eq. (4) reduces to 

∑n2
j=1

minδ
c
(1)
i

c
(2)
j

=1

∣

∣

∣r
(1)
i − r

(2)
j

∣

∣

∣ where each unlabeled 

r
(2)
j  only focuses on the nearest labeled r(1)i  which can easily fall into a local minimum. 

However, allowing a finite negative γ also allows consideration of other potential parings 
that are not as near. In this paper, we set γ = −6 , which we experimentally found to 
achieve a good balance between the aforementioned pairing effect and the desire for 
error correction whereby neurons at slightly larger distance produce enough of a gradi-
ent to be pushed together, which is crucial for avoiding getting trapped in suboptimal 
local minimal during the initial stages of training. In contrast, γ = 2 would correspond 
to ℓ being minus two times the log-likelihood of a Gaussian mixture model, making the 
loss similar to that of CPD with a Gaussian kernel.

Algorithm testing framework

To identify unknown neurons, our pipeline proceeds as illustrated in  Fig.  2. It first 
canonicalizes the unlabeled neurons, then aligns them with the canonicalized atlas as 
described above. The alignment function takes as input an unlabeled point cloud of 
neuron positions, an atlas point cloud with known neuron IDs (with optional neuron 
colors), and returns transformed positions for the unlabeled point cloud (step 2). Finally, 
in step 3, each neuron with transformed position is assigned an ID by the following pro-
cedure: for the n2 × n1 matrix of pairwise Euclidean distances between the n2 neurons 
in the unlabeled point cloud and the n1 neurons in the atlas, find the smallest element in 
the matrix, assign the corresponding ID, then delete this row and column in the matrix, 
and repeat. If colors are provided, each unlabeled neuron can only be assigned to a neu-
ron in the atlas with the same color, so we choose the smallest element with unlabeled 
colors at each iteration.

We quantify the accuracy of all algorithms by testing them on simulated data where 
the ground truth is known. For these simulations, we use the OpenWorm dataset as the 
ground truth point cloud, distort it with simulated noise and biological deformations 
as described below, and finally measure which algorithms provide the most accurately 
reconstructed neuron identifications.

Parameterizing more realistic worm deformation

Working in the above-defined canonical space, we express the relation between the neu-
ron positions r(1)i  in reference worm 1 (our atlas, say) and observed neuron positions r(2)i  
for a worm 2 as

for a deformation function f(r) that may include a random component. A very easy-
to-simulate type of deformation is to simply add independent Gaussian noise to all 

(5)r
(2)
i = r

(1)
i + f

(

r
(1)
i

)

,



Page 10 of 18Skuhersky et al. BMC Bioinformatics          (2022) 23:195 

coordinates of all neurons. This corresponds to treating all neuron positions r(2)j  as inde-
pendent parameters, and is tantamount to ignoring all biological constraints on tissue 
stretching.

We wish to regularize the problem to limit our analysis to more biologically plausi-
ble deformations, reflecting the known fact that positional variation between organ-
isms exhibits correlation, whereby the deformation vector f  is typically similar in 
direction and magnitude for adjacent neurons. In other words, we wish the defor-
mation function f(r) to be relatively smooth, corresponding to nearby parts of the 
worm mainly shifting together as a coherent unit. We model the deformation field as 
a Gaussian mixture:

Here the deformation function is parametrized by a vector p of 6N + 1 parameters: the 
number σ , the components of the displacement vectors dn , and the displacement centers 
rn . A sample deformation field is visualized in Fig. 6. For better numerical stability, we 
add three redundant parameters in the form of an overall global displacement vector s 
added to rn . This deformation field is added as a term in our GM loss function, to create 
our “GM Realistic” algorithm.

Hyperparameter tuning

The performance of all tested alignment algorithms is highly hyperparameter 
dependent. To make a robust comparison of methods, we must ensure that for each 

(6)f(r) =

N
∑

n=1

dne
−

|r−rn|
2

2σ2

Fig. 6 Illustration of simulated biological noise simulated with the “bio-realistic” deformation field
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algorithm we are using the optimal parameters for our use case. Therefore, we submit 
each algorithm to parallelized hyperparameter optimization.

Using the “Random Search” followed by the “Local Search” algorithms in the Sherpa 
[29] parameter tuning package, input parameters were tuned until alignment accu-
racy did not improve further. Here, alignment accuracy was defined as the average of 
performance per method in the tests “Robustness to Cropping”, “Robustness to Drop-
out”, and “Robustness to Biological Noise”. The determined optimal parameters (Addi-
tional file 1: S1 Appendix) for each algorithm were used in all subsequent testing.

Results
We now compare the performance of our atlas and alignment methods with existing 
techniques. We designed experiments to answer the following questions: Firstly, how 
does our alignment method compare with existing methods against various types of 
adverse point cloud distortions? This is answered in Alignment performance on simu-
lated data. Secondly, how does the new atlas perform compared to existing atlases? We 
answer this question in Testing alignment methods - Real Data by comparing the accu-
racy of aligning unlabeled neurons to existing and new atlases. Thirdly, since NeuroPAL 
and other labelling schemes use multiple colors to reveal identification, how many colors 
are necessary to achieve acceptable accuracy? In Testing alignment methods - Real Data, 
we also examine the effects of multiple colors on identification accuracy.

The following tests were devised: the point cloud positions of the 302 Openworm 
neurons were taken as a test set, as it can be assumed that these positions are reason-
ably representative of the morphology of actual C. elegans neurons [13]. Then, a copy of 
this point cloud was made, and selected perturbations, designed to simulate real world 
experimental conditions were performed. Finally, the group of points was randomly 
perturbed by a single vector drawn from a uniform distribution between ±5 microns in 
each of the x, y, and z directions. The alignment algorithms were then used to align the 
perturbed neuron point cloud to the original one. We test alignment with GM Realistic 
(GM with Gaussian deformation centers as defined in Eq. (6), to account for group neu-
ron movement), CPD Rigid (CPD with rigid transformation, as defined in Fig. 2 of [27]), 
and CPD Deformable (CPD with deformable transformation, as defined in Fig. 4 of [27]).

This procedure was repeated 40 times at each perturbation setting, with resulting 
accuracies averaged together to provide a final metric of accuracy.

Alignment performance on simulated data

To simulate point clouds data similar in structure to those from real C. elegans images, 
we start with the OpenWorm atlas [13] and generate a point cloud of neuron positions 
with the ground-truth neuron IDs hidden from the alignment methods. A good align-
ment and identification pipeline should be robust to the above scenarios; therefore we 
sought to test the robustness of our alignment algorithm when deforming the Open-
worm point cloud dataset in these ways. In the following plots, results for optimally 
tuned parameters are shown.
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Robustness to cropping

Commonly, C. elegans activity research focuses on the head of the worm, due to micro-
scope field of view or resolution reasons, or hypotheses aimed at the nerve ring. Dur-
ing alignment, the head neurons are usually matched to a larger atlas. Therefore, a good 
identification method must perform well when aligning a dataset of unlabeled neurons 
that may reference a cropped subset of the comparison atlas.

For the first test, we start with a full Openworm point cloud that has been isotropically 
rescaled so as to occupy x ∈ [−600µm, 200µm] . We choose all head neurons (located 
at x > 0µm ) as the unlabeled neuron set, and also create copies of the Openworm point 
cloud with various x cropping thresholds to act as the comparison atlas. We perturb the 
larger atlas as a rigid group away from the head neurons by a single vector drawn from a 
uniform distribution between ±5 microns in each of the x, y, and z directions. Then we 
use the alignment algorithms to align the unlabeled head neurons to the various crop-
pings of the larger atlas, to test how different algorithms are robust to the imbalance of 
the two neuron sets.

Fig. 7 shows the resulting alignment accuracy for GM Realistic, CPD Rigid, and CPD 
Deformable. We can see that the GM Realistic algorithm performs perfectly across all 
levels of imbalance, while the CPD methods’ accuracy drops quickly when the atlas 
extends beyond −100µm . The robustness of our GM method comes from the fact that 
the loss in Eq. (4) has the soft “clamping” effect that is able to focus on well-matched 
pairs of neurons while ignoring pairs that are matched poorly. The CPD methods, in 
contrast, are more sensitive to those badly-matched pairs, so the performance quickly 
drops when the two neuron sets are imbalanced. We also became aware of differences in 
alignment performance when aligning two sets of head neurons, from aligning two sets 
of whole-body neurons. The whole-body neurons take up space that is elongated along 
one axis, whereas head neurons occupy a relatively tight spherical volume. Because of 
this, head-head alignments were found to be more likely to fail by getting stuck in false 
local minima with the CPD methods.

Fig. 7 Cropping Performance (40 run average): Alignment accuracy after aligning OpenWorm data cropped 
to the head to OpenWorm data cropped at various x-coordinates and perturbed as a group in a random 
direction in x, y, and z each at up to 5 microns. At x = 0 , the atlas cropping isolates the head
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Robustness to dropout

Fluorescent-protein expression that is used to identify neurons can at times be too dim 
to resolve. As a result of their dimness, these neurons cannot be detected or definitively 
identified. Such situations can occur due to many reasons, for example fast volumetric 
imaging methods that necessitate a tradeoff between speed and imaging quality. More 
generally, dimness is often found due to optical anisotropy present in various volumetric 
imaging techniques. A good identification method must therefore be robust to various 
levels of neural dropout.

For this, we start with a full OpenWorm point cloud. Then, we randomly remove a set 
number of neurons, and set the result as our unlabeled point cloud, with another copy 
of the OpenWorm point cloud as the comparison atlas. We perturb the larger atlas as a 
rigid group away from the head neurons by a single vector drawn from a uniform disti-
bution between ±5 microns in each of the x, y, and z directions. Then we use the align-
ment algorithms to align the unlabeled set to the complete atlas.

Fig. 8 shows the resulting alignment accuracy for GM Realistic, CPD Rigid, and CPD 
Deformable. We can see that the GM Realistic algorithm performs the best in all cases of 
neuron removal, plateauing to 100% accuracy with only 80 out of 300 neurons remain-
ing. The CPD methods are more prone to misidentification by getting stuck in subopti-
mal local minima.

Robustness to biological noise

Imaged C. elegans individuals do not typically exhibit identical morphology. For exam-
ple, an individual that has consumed more food may be larger than another individual of 
the same age. These morphological differences are not isotropic, but their effects on dis-
tortion of adjacent neurons present as collective positional shift, so a good identification 
method must be robust to such local translation. We simulate such “biological noise” as 
follows.

We randomly generate N deformation points rn within the volume of the neuron point 
cloud, and a corresponding displacement vector dn drawn from a 3D Gaussian distri-
bution of standard deviation σ , characterizing the “influence radius” of a deformation 

Fig. 8 Dropout Performance (40 run average): Alignment accuracy after aligning the OpenWorm atlas to the 
OpenWorm atlas with random points removed and perturbed as a group in a random direction in x, y, and z 
each at up to 5 microns
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center, as illustrated in Fig.  6. In other words, each neuron is perturbed according to 
equation (6), with the only difference that now each pn and rn are randomly generated 
instead of learnable parameters.

This biological noise was applied to our test point cloud according to our realistic noise 
operation Parameterizing more realistic worm deformation, with N = 100 deformation 
centers, amplitude |dn| = 6.1 and varying influence radius σ . We then perturb the larger 
atlas as a rigid group away from the head neurons by a single vector drawn from a uni-
form distribution between ±5 microns in each of the x, y, and z directions. Then we use 
the alignment algorithms to align the unlabeled set to the complete atlas.

In Fig. 9, we can see that the accuracy of CPD Rigid drops rapidly for biological noise 
influence radius beyond 15µm . This may be because CPD Rigid assumes that all the 
neurons move as a rigid body that only allows rotation and translation as a whole, which 
is insufficient to model the realistic biological noise with relative expansion and contrac-
tion between neurons. On the other hand, while CPD Deformable performs much better 
than CPD Rigid, it underperforms GM Realistic across all the tested influence radii of 
the biological noise.

Testing alignment methods—real data

Atlas performance tests

We now test our NeuroPAL-based identification pipeline against previous atlas-based 
methods, in order to quantify their comparative performance, and also address the 
question of how many identification-assisting colors are necessary to achieve accept-
able accuracy. Consider, for example, the case of aligning two point clouds, each consist-
ing of the same 302 neurons. If every neuron in one point cloud was assigned the same 
unique distinguishable color as its corresponding neuron in the other (so that there are 
302 distinct colors in all), any reasonable alignment algorithm exploiting color informa-
tion should be able to produce 100% accurate alignment, since there is only one pos-
sible assignment for each neuron (its color twin). However, if we assigned 151 colors, 
each would correspond to two possible neuron identities. If we only assigned one single 
color to all neurons in each point cloud, an alignment algorithm would have 302 possible 

Fig. 9 Biological Noise Performance (40 run average): Alignment accuracy after aligning OpenWorm data to 
OpenWorm data that has been deformed with our biological noise method at various influence radius σ and 
perturbed as a group in a random direction in x, y, and z each at up to 5 microns
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assignments for each neuron, and would have to rely on positional information alone. In 
Figs. 10, 11 and 12, we plot the performance of the three tested algorithms on our candi-
date atlases across a range of numbers of colors.

In addition, we include a version of the NeuroPAL atlas that has been straightened in 
a basic way as described by [24]. In these tests, all atlases were isotropically rescaled so 
as to occupy x ∈ [0µm, 800µm] , and to isolate the midbody the atlases were cropped at 
x ∈ [200µm, 700µm] . Then, alignments were performed using the same parameters as 
identified in Alignment performance on simulated data.

From the results, we have the following observations. Firstly, the NeuroPAL atlas out-
performs the OpenWorm and White et al. atlases by a large margin, for all alignment 
methods, on mid-body data. This suggests that our NeuroPAL atlas combined with the 
circle straightening method enables more accurate identification. Secondly, comparing 
Figs. 12 and 10, we see that the GM Realistic method outperforms CPD methods across 

Fig. 10 CPD Rigid Alignment: CPD Rigid was used to align each of the 7 manually labeled NeuroPAL 
individual worm point clouds to the tested atlases, after cropping of the heads and tails. The figure shows 
how the median accuracy for these 7 worms depends on the number of unique colors used. For each 
number of colors n > 1 , the colors were randomized and assigned to each neuron in both of the tested point 
clouds according to neuron identity, and CPD Rigid was run for each color such that it was only able to take 
into account the points that corresponded to the currently analyzed color

Fig. 11 CGM Realistic Alignment: Same as previous figure, but for CPD Deformable alignment
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all colors and atlases, again demonstrating that our alignment method allows more accu-
rate neuron identification. Thirdly, as the number of colors increases, the performance of 
all atlases increases, emphasizing the important role that NeuroPAL can play in enabling 
more accurate automated neuron identification for atlas creation.

Conclusion
The main contributions of this paper are 

1 a pipeline for constructing a 3D C. elegans  atlas based on optically imaged neuron 
data,

2 an alignment method for identification of unlabeled C. elegans neurons using such 
an atlas, and

3 to the best of our knowledge, the most complete full-body C. elegans 3D positional 
neuron atlas, encapsulating positional variability derived from at least 7 animals per 
neuron.

We have presented tests suggesting that both our alignment algorithm and our pipeline-
produced 3D atlas achieve higher identification accuracy than existing alternatives.

Many groups around the world are in the process of producing better imaging datasets 
so as to enable more promising investigation of myriad aspects of C. elegans, from neu-
ronal activity to gene expression and cell-fate. We hope that, by delivering higher cell-
type identification confidence, our atlas and others created using this method will help 
maximize the scientific value enabled by such functional imaging work.

Abbreviations
C. elegans: Caenorhabditis elegans; EM: Electron micrograph; L4: Fourth larval stage; nm: Nanometer; 2D: Two-dimen-
sional; 3D: Three-dimensional; GFP: Green fluorescent protein; CFP: Cyan fluorescent protein; YFP: Yellow fluorescent 
protein; GMM: Gaussian mixture model; CPD: Coherent point drift; GM: Generalized-mean; ID: Identification; Eq: Equation.

Fig. 12 GM Realistic Alignment: Same as previous figure, but for GM Realistic alignment. Here the accuracy 
for the 7 worms is computed by averaging 40 runs each, and then the median is taken as in the two previous 
figures. For each number of colors n > 1 , the colors were randomized and assigned to each neuron in both 
of the tested point clouds according to neuron identity, and so GM Realistic now makes use of the c terms in 
Eq. (4)
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Supporting information
S1 Appendix. Hyperparameter settings. Here, we provide the hyperparam-

eters chosen for the GM Realistic and CPD Deformable algorithms, which have

been optimized on the experiments in Robustness to Cropping and applied to all

experiments. For GM Realistic, the exponent γ in Eq. (4) is set to −5. We train for

T = 5000 epochs with learning rate lr = 6.31 × 10−4 which is reduced by a factor

of 0.3 if the best validation loss does not improve for 100 consecutive epochs (30

epochs for the experiment in Robustness to Cropping). To prevent numerical errors

from division by near-zero during optimization when
∣∣∣r(1)i − r

(2)
j

∣∣∣ is small (so that∣∣∣r(1)i − r
(2)
j

∣∣∣γ is large, since γ < 0), we clamp its value by replacing
∣∣∣r(1)i − r

(2)
j

∣∣∣γ
with min

(∣∣∣r(1)i − r
(2)
j + ϵ

∣∣∣γ , 1020) with ϵ = 10−10. Moreover, we add a small regu-

larization term that encourages the unlabeled point cloud to keep its original shape,

by regularizing Eq. (4) as follows:

ℓGM ({r(1)i }, {r(2)j }, {c(1)i }, {c(2)j })

=

n2∑
j=1


∑n1

i=1 δc(1)i c
(2)
j

min
(∣∣∣r(1)i − r

(2)
j + ϵ

∣∣∣γ , 1020)∑n1

i=1 δc(1)i c
(2)
j


1
γ

+ λ
∣∣∣∣A(1) −A

(1)
0

∣∣∣∣2
F

(7)

Here A(1) is the matrix containing pairwise distances between each neuron pair

in r(1), and A
(1)
0 is A(1) at the start of training.

∣∣∣∣ · ∣∣∣∣
F

denotes Frobenius norm.

For λ, we use an annealing procedure of λ(τ) = λ0 + (λm − λ0) ·max(1, τ
T ·η ) where

τ is the epoch number, and λ0, λm, η are hyperparameters. In the experiment at

Testing alignment methods - Real Data, we use N = 200 deformation centers, with

σ = 0.2 and initial amplitude |d0| of d being 0.015. In experiment at Robustness to

Cropping, we use N = 50 deformation centers, with σ = 50 and initial amplitude

|d0| of 0.1, due to different scenario and units. The detailed hyperparameters that

we tuned, including search range and the chosen value, is provided in Table 1.

Table 1 below provides the hyperparameter setting. The parameters α and β

are defined in [25]. For other hyperparameters, we use the default setting as in its

implementation at https://github.com/siavashk/pycpd (as of Aug 1, 2020).

Hyperparameter Value Search Range
γ -5 {-1,-2,-3,-4,-5,-6,-7,-8}
lr 3.19× 10−3 [1× 10−6, 0.5]
T 5000 {1000,5000}
λ0 0.443019 [0, 1]
λm 0.241575 [0, 1]
η 0.766147 [0, 1]
α 0.0771160 [0, 10]
β 191.03671 [0, 200]

Table 1: Hyperparameters for the GM Realistic method (first group) and CPD

Deformable method (α, β).

S2 Appendix. The NeuroPAL atlas, tabulated. Here, we provide the neuron

coordinates for the NeuroPAL atlas that we generated over the course of this work.

The coordinates of these 300 neurons can also be downloaded at https://github.

https://github.com/siavashk/pycpd
https://github.com/bluevex/elegans-atlas
https://github.com/bluevex/elegans-atlas
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com/bluevex/elegans-atlas. As explained in the text, the two CAN cells are not

included in our atlas.

Table 2: Positions of aggregated NeuroPAL atlas, in microns.
Neuron x y z
ADAL 94.34 0.03 10.31
ADAR 91.22 -1.43 -11.64
ADEL 87.97 -0.12 10.50
ADER 83.23 -0.58 -11.47
ADFL 54.18 8.48 7.00
ADFR 54.63 7.15 -8.88
ADLL 59.13 12.05 3.86
ADLR 58.80 11.38 -6.34
AFDL 53.37 5.99 7.49
AFDR 53.11 5.71 -9.19
AIAL 66.74 -4.67 0.66
AIAR 67.33 -4.73 -0.99
AIBL 55.49 2.53 5.95
AIBR 55.94 2.61 -6.63
AIML 79.31 -6.77 2.87
AIMR 70.59 -5.01 -3.48
AINL 68.22 6.62 9.69
AINR 67.38 7.01 -10.84
AIYL 71.42 -4.40 5.34
AIYR 59.43 -1.49 -1.12
AIZL 68.92 2.53 7.98
AIZR 67.51 1.72 -8.68
ALA 51.26 15.36 -2.16
ALML 337.49 11.79 -11.86
ALMR 313.28 19.99 10.89
ALNL 784.36 12.09 3.51
ALNR 786.60 12.15 -4.00
AQR 87.59 -3.56 -10.65
AS1 125.47 -9.54 1.86
AS10 656.89 -9.97 -1.18
AS11 721.64 -5.19 0.47
AS2 178.62 -14.41 2.54
AS3 241.85 -13.12 1.37
AS4 314.15 -15.93 0.51
AS5 373.84 -16.51 0.11
AS6 416.50 -13.72 0.36
AS7 480.05 -12.86 1.70
AS8 535.33 -13.19 -0.11
AS9 598.95 -11.42 -0.09
ASEL 61.30 5.43 8.57
ASER 60.94 5.42 -10.37
ASGL 59.98 8.66 7.01
ASGR 60.15 8.00 -8.22
ASHL 58.42 4.21 8.35
ASHR 57.83 3.81 -10.20
ASIL 63.34 10.14 5.80
ASIR 63.42 9.72 -7.16
ASJL 64.06 -0.02 5.64
ASJR 64.01 -1.08 -5.99
ASKL 54.73 12.00 4.44
ASKR 54.43 11.18 -6.32
AUAL 60.91 0.84 8.36
AUAR 60.76 0.22 -9.63
AVAL 50.20 6.70 8.41
AVAR 50.99 4.79 -9.13
AVBL 63.74 5.10 7.12
AVBR 62.69 4.83 -9.41
AVDL 65.34 5.35 9.11
AVDR 65.45 5.14 -10.59
AVEL 51.08 4.58 5.98
AVER 52.03 3.63 -6.09
AVFL 94.37 -7.80 3.49
AVFR 95.54 -8.59 0.49
AVG 121.12 -9.44 -1.76

https://github.com/bluevex/elegans-atlas
https://github.com/bluevex/elegans-atlas
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Table 2 – continued
Neuron x y z
AVHL 62.68 9.65 7.85
AVHR 62.82 8.96 -9.77
AVJL 65.08 7.13 8.47
AVJR 65.13 7.55 -9.59
AVKL 87.39 -5.94 3.82
AVKR 75.68 -5.64 -3.17
AVL 70.82 -4.87 0.37
AVM 286.36 -1.16 10.16
AWAL 57.58 6.57 5.85
AWAR 57.24 6.53 -7.97
AWBL 57.36 8.30 8.52
AWBR 57.40 8.10 -10.25
AWCL 55.82 3.00 9.03
AWCR 56.43 1.74 -9.51
BAGL 38.69 5.69 8.54
BAGR 39.43 4.06 -8.24
BDUL 186.23 7.64 -10.13
BDUR 185.33 11.51 7.87
CEPDL 49.58 13.62 3.70
CEPDR 50.28 12.90 -7.07
CEPVL 39.34 1.03 4.58
CEPVR 40.68 1.01 -4.42
DA1 129.53 -9.48 -1.52
DA2 190.41 -14.38 -0.02
DA3 266.33 -14.92 -0.37
DA4 347.38 -17.97 -0.59
DA5 460.64 -14.18 1.56
DA6 546.48 -13.87 -0.03
DA7 656.94 -9.31 -0.37
DA8 745.92 -0.22 -1.35
DA9 743.47 -1.67 -2.51
DB1 121.18 -10.32 -1.02
DB2 99.22 -9.21 0.23
DB3 178.69 -14.50 -0.77
DB4 304.79 -16.26 -0.36
DB5 413.08 -14.18 0.87
DB6 532.94 -14.57 -0.14
DB7 650.43 -9.69 -0.78
DD1 124.58 -9.32 0.77
DD2 224.86 -13.53 1.26
DD3 351.57 -15.60 1.38
DD4 476.91 -14.26 2.44
DD5 591.74 -11.87 -0.19
DD6 736.31 -1.72 -0.59
DVA 770.84 10.96 -1.61
DVB 769.29 11.37 0.98
DVC 772.86 11.85 1.55
FLPL 81.11 0.02 10.58
FLPR 74.92 0.23 -11.36
HSNL 462.53 -1.78 -9.81
HSNR 452.01 -3.33 10.54
I1L 0.71 7.43 4.12
I1R 0.00 6.00 -2.71
I2L 13.08 4.85 7.23
I2R 13.82 3.39 -6.00
I3 18.92 13.57 -0.96
I4 71.62 10.84 -0.58
I5 72.18 -2.79 -2.56
I6 75.59 10.21 4.19
IL1DL 32.71 13.12 2.18
IL1DR 33.88 12.22 -4.59
IL1L 30.48 7.23 6.98
IL1R 30.97 5.64 -6.96
IL1VL 28.94 1.64 3.72
IL1VR 29.64 0.96 -1.72
IL2DL 24.21 12.34 4.34
IL2DR 26.43 12.45 -6.68
IL2L 29.90 7.93 9.15
IL2R 30.16 6.61 -8.80
IL2VL 25.35 2.14 5.06
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Table 2 – continued
Neuron x y z
IL2VR 28.36 0.63 -4.16
LUAL 774.32 6.28 5.16
LUAR 773.38 6.23 -5.35
M1 75.48 13.67 -6.40
M2L 69.41 2.97 3.49
M2R 69.57 4.17 -5.89
M3L 22.36 5.63 4.81
M3R 22.75 5.14 -2.91
M4 23.55 12.29 -0.69
M5 86.79 9.68 7.12
MCL 14.37 5.92 4.27
MCR 14.19 5.25 -3.51
MI 16.72 14.61 -1.03
NSML 15.78 4.53 7.54
NSMR 16.66 4.10 -5.46
OLLL 31.34 10.05 6.06
OLLR 32.56 8.59 -7.21
OLQDL 37.55 14.22 2.16
OLQDR 38.70 13.39 -5.63
OLQVL 36.66 3.93 6.16
OLQVR 37.26 3.11 -5.90
PDA 754.21 0.20 -2.03
PDB 748.26 -0.57 -3.40
PDEL 561.79 12.14 -7.53
PDER 555.40 11.49 10.46
PHAL 770.37 3.83 5.96
PHAR 770.06 4.14 -5.70
PHBL 773.56 5.55 6.00
PHBR 773.40 5.46 -6.33
PHCL 782.89 5.39 4.74
PHCR 782.27 5.49 -4.85
PLML 794.74 5.35 3.99
PLMR 795.65 5.12 -4.57
PLNL 770.37 3.83 5.29
PLNR 773.01 4.33 -4.55
PQR 776.96 4.86 5.20
PVCL 777.42 6.51 4.85
PVCR 776.14 5.98 -5.19
PVDL 555.97 12.66 -8.11
PVDR 540.27 11.60 7.00
PVM 556.10 9.96 -7.73
PVNL 794.35 6.90 3.24
PVNR 800.00 9.67 -2.87
PVPL 731.85 -3.27 1.07
PVPR 737.11 -1.81 -2.55
PVQL 766.78 6.02 6.41
PVQR 767.28 6.11 -5.59
PVR 786.71 8.07 -3.88
PVT 731.25 -2.90 -1.85
PVWL 782.97 7.52 4.18
PVWR 784.17 7.74 -4.13
RIAL 51.21 9.98 5.75
RIAR 51.66 9.13 -7.32
RIBL 62.04 3.07 6.02
RIBR 61.68 2.30 -6.76
RICL 70.85 0.28 8.03
RICR 69.97 -0.20 -8.23
RID 48.01 15.71 -2.99
RIFL 99.02 -8.14 2.31
RIFR 106.41 -9.05 -1.71
RIGL 114.67 -8.73 1.71
RIGR 117.71 -8.93 0.23
RIH 47.05 -0.69 -0.08
RIML 63.59 -0.63 4.45
RIMR 62.64 -1.99 -4.65
RIPL 35.30 7.97 6.37
RIPR 35.72 7.11 -6.56
RIR 54.10 0.76 1.40
RIS 87.93 -7.68 0.35
RIVL 64.03 11.92 4.43
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Table 2 – continued
Neuron x y z
RIVR 64.38 11.31 -7.21
RMDDL 55.78 0.20 3.91
RMDDR 56.06 -0.46 -2.32
RMDL 50.76 3.32 8.18
RMDR 52.31 1.87 -7.88
RMDVL 47.33 7.10 9.76
RMDVR 48.66 5.29 -10.21
RMED 40.14 15.50 -2.72
RMEL 38.03 8.71 7.36
RMER 38.76 7.16 -7.87
RMEV 44.66 -0.27 1.17
RMFL 58.12 -3.06 1.77
RMFR 57.51 -2.40 0.07
RMGL 98.07 -0.45 9.18
RMGR 96.44 -1.47 -10.33
RMHL 58.16 -0.78 3.15
RMHR 56.46 -1.22 -0.14
SAADL 53.44 -0.90 1.45
SAADR 50.27 -0.86 -0.39
SAAVL 49.05 9.73 6.88
SAAVR 49.34 8.24 -8.03
SABD 121.86 -9.41 -1.80
SABVL 86.35 -7.78 2.35
SABVR 80.61 -7.60 -2.17
SDQL 559.25 8.99 -7.45
SDQR 241.27 20.00 9.89
SIADL 55.68 -1.65 2.21
SIADR 53.27 -2.23 -1.59
SIAVL 66.79 -3.37 3.33
SIAVR 69.64 -4.92 -2.10
SIBDL 53.70 1.28 6.25
SIBDR 54.50 1.43 -6.72
SIBVL 59.54 -2.49 2.74
SIBVR 53.46 -1.56 -1.27
SMBDL 59.79 -1.85 2.44
SMBDR 60.22 -1.45 -1.90
SMBVL 62.73 -2.88 3.55
SMBVR 67.29 -4.46 -1.61
SMDDL 51.10 -0.48 2.46
SMDDR 54.10 0.01 -2.69
SMDVL 51.19 10.92 7.29
SMDVR 51.03 9.15 -9.28
URADL 30.69 12.53 4.50
URADR 31.32 11.24 -6.46
URAVL 33.57 2.35 4.74
URAVR 34.97 2.42 -3.85
URBL 34.05 7.53 8.41
URBR 34.27 6.21 -8.65
URXL 50.65 13.05 2.27
URXR 50.87 12.30 -5.18
URYDL 34.36 12.32 4.64
URYDR 35.22 10.80 -6.94
URYVL 32.70 5.12 6.71
URYVR 33.10 3.42 -6.05
VA1 108.33 -9.03 1.87
VA10 633.31 -10.82 -0.85
VA11 690.16 -7.21 0.31
VA12 737.02 -2.29 1.89
VA2 155.90 -12.66 0.30
VA3 209.48 -14.35 -0.15
VA4 274.69 -16.08 0.65
VA5 337.32 -16.96 1.41
VA6 407.98 -13.73 2.07
VA7 459.17 -14.93 2.93
VA8 505.74 -14.30 0.25
VA9 572.47 -13.18 -0.53
VB1 105.50 -8.78 1.39
VB10 581.55 -13.68 -0.70
VB11 640.50 -9.69 -0.66
VB2 85.76 -8.14 1.61
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Table 2 – continued
Neuron x y z
VB3 162.52 -13.05 0.50
VB4 217.31 -14.80 -0.10
VB5 287.47 -16.37 0.62
VB6 342.69 -16.78 1.46
VB7 405.49 -14.51 1.10
VB8 467.40 -15.05 2.99
VB9 524.97 -14.45 -0.04
VC1 224.54 -13.22 -0.14
VC2 294.26 -17.48 0.50
VC3 383.44 -16.60 1.40
VC4 441.76 -11.49 0.18
VC5 455.55 -8.49 0.58
VC6 530.44 -12.14 0.58
VD1 113.77 -8.15 1.06
VD10 602.94 -11.22 -0.04
VD11 660.86 -8.57 -0.53
VD12 727.56 -3.93 0.66
VD13 744.41 -0.35 -3.30
VD2 132.47 -9.95 -1.74
VD3 206.99 -13.59 -0.45
VD4 263.69 -14.60 1.18
VD5 319.93 -16.50 0.56
VD6 383.75 -15.85 0.96
VD7 431.61 -14.25 -1.05
VD8 482.54 -13.22 2.60
VD9 548.63 -13.48 -0.01
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