
268 | Nature | Vol 602 | 10 February 2022

Article

Autism genes converge on asynchronous 
development of shared neuron classes

    
Bruna Paulsen1,2,24, Silvia Velasco1,2,16,24 ✉, Amanda J. Kedaigle1,2,3,24, Martina Pigoni1,2,24, 
Giorgia Quadrato1,17, Anthony J. Deo1,2,18,19,20, Xian Adiconis2,3, Ana Uzquiano1,2, 
Rafaela Sartore1,2, Sung Min Yang1,2, Sean K. Simmons2,3, Panagiotis Symvoulidis4, 
Kwanho Kim1,2,3, Kalliopi Tsafou2, Archana Podury4,5, Catherine Abbate1,2, Ashley Tucewicz1,2, 
Samantha N. Smith1,2, Alexandre Albanese6, Lindy Barrett1,2, Neville E. Sanjana2,21,22, Xi Shi2, 
Kwanghun Chung6,7,21, Kasper Lage2,8, Edward S. Boyden4,5,9,10,11,12,13,14, Aviv Regev3,15,23, 
Joshua Z. Levin2,3 & Paola Arlotta1,2 ✉

Genetic risk for autism spectrum disorder (ASD) is associated with hundreds of genes 
spanning a wide range of biological functions1–6. The alterations in the human brain 
resulting from mutations in these genes remain unclear. Furthermore, their 
phenotypic manifestation varies across individuals7,8. Here we used organoid models 
of the human cerebral cortex to identify cell-type-specific developmental 
abnormalities that result from haploinsufficiency in three ASD risk genes—SUV420H1 
(also known as KMT5B), ARID1B and CHD8—in multiple cell lines from different donors, 
using single-cell RNA-sequencing (scRNA-seq) analysis of more than 745,000 cells and 
proteomic analysis of individual organoids, to identify phenotypic convergence. Each 
of the three mutations confers asynchronous development of two main cortical 
neuronal lineages—γ-aminobutyric-acid-releasing (GABAergic) neurons and 
deep-layer excitatory projection neurons—but acts through largely distinct molecular 
pathways. Although these phenotypes are consistent across cell lines, their 
expressivity is influenced by the individual genomic context, in a manner that is 
dependent on both the risk gene and the developmental defect. Calcium imaging in 
intact organoids shows that these early-stage developmental changes are followed by 
abnormal circuit activity. This research uncovers cell-type-specific 
neurodevelopmental abnormalities that are shared across ASD risk genes and are 
finely modulated by human genomic context, finding convergence in the 
neurobiological basis of how different risk genes contribute to ASD pathology.

ASD is a childhood-onset neurodevelopmental disorder that is char-
acterized by cognitive, motor and sensory deficits1. ASD has a strong 
genetic component, with risk contribution from hundreds of genes2–6. 
Furthermore, the same mutation can result in varied clinical manifes-
tations, probably reflecting a modulatory effect of the overall genetic 
and epigenetic background7,8. The shared developmental effects that 

cause this large and heterogeneous collection of genes to converge on 
the phenotypic features of ASD remain poorly understood.

Here we used reproducible organoid models of the developing human 
cerebral cortex9 to investigate the roles of three ASD risk genes across mul-
tiple human stem cell lines. SUV420H1, ARID1B and CHD8 have emerged 
repeatedly as top hits in studies of ASD genetic risk6,10–13. All three of these 
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genes are associated with severe neurodevelopmental abnormalities, 
including high frequencies of macrocephaly11,14–16. We show that muta-
tions in these genes converge on asynchronous development of shared 
neuronal classes, rather than on shared molecular mechanisms. The 
degree of expressivity varies depending on the risk gene and phenotype, 
highlighting the nuanced interactions between the genetic variants and 
the genomic contexts that produce the phenotypic manifestation of ASD.

Organoids as models of ASD risk genes
To investigate whether mutations in different ASD risk genes converge 
on shared phenotypes, we generated cortical organoids9 from different 
human induced pluripotent stem (iPS) cell lines (Methods) and profiled 
individual organoids using scRNA-seq at three stages: 1 month, when 
organoids contain mostly progenitors and neurogenesis is beginning; 
3 months, when progenitor diversity increases and multiple subtypes of 
cortical excitatory neurons emerge; and 6 months, when interneurons 
and astroglia are present. We first verified that these organoids initiate 
appropriate neurodevelopment and express known ASD risk genes6 
(Supplementary Notes and Extended Data Figs. 1 and 2).

We next selected three ASD risk genes, SUV420H1, ARID1B and 
CHD8 (Supplementary Notes), and engineered heterozygous 
protein-truncating indel mutations in multiple parental lines, targeting 
protein domains that are mutated in patients (Methods, Supplementary 
Table 1 and Extended Data Fig. 3a–c). Notably, for all genes, the different 
parental lines showed substantial differences in endogenous expres-
sion of the risk proteins, consistent with documented interindividual 
variability7,8, which in turn influenced the absolute amount of protein 
remaining in the heterozygote (Supplementary Notes and Extended 
Data Fig. 3d–f). These differences underscore the importance of inves-
tigating risk genes across multiple genomic contexts.

As all three genes are linked to macrocephaly and/or microcephaly in 
patients, we quantified organoid size in each background, at two weeks 
and 1 month (Supplementary Table 2). Mutant lines showed size defects 
resembling the abnormalities seen in patients, with varying sever-
ity between different genomic contexts (Supplementary Notes and 
Extended Data Figs. 3g–j and 4a). These data indicate that organoids 
can capture clinically relevant features of ASD pathology.

Asynchronous development in SUV420H1-mutant 
organoids
We profiled early stages of SUV420H1+/− and control Mito294 (30,733 
cells, 35 days in vitro (d.i.v.)), PGP1 (37,510 cells, 35 d.i.v.) and Mito210 
(two independent differentiations: 57,941 cells, 28 d.i.v.; and 33,313 
cells, 35 d.i.v.) organoids using scRNA-seq. Strikingly, mutants showed a 
consistent presence of GABAergic neurons in all backgrounds (Fig. 1a–c 
and Extended Data Fig. 4b–e), although these neurons are rare or absent 
in controls until approximately 3.5 months9. The GABAergic population 
in mutant organoids at 1 month expressed broad markers of GABAergic 
identity (hereafter, GABAergic neurons).

Despite the consistency of this phenotype across lines and differ-
entiations, there were noticeable differences in phenotypic sever-
ity (expressivity) across genomic contexts. Specifically, the Mito294 
SUV420H1 line showed the most substantial increase in GABAergic 
neurons, with over 50% of the cells in all of the mutant organoids 
belonging to the GABAergic lineage, and <5% belonging to the excita-
tory projection neuron lineage (n = 3 organoids per genotype, adjusted 
P = 0.002, logistic mixed models; Fig. 1a and Extended Data Fig. 4b, c). 
PGP1 SUV420H1 organoids showed intermediate severity, with up to 
35% of cells in the mutants belonging to the GABAergic lineage (n = 2–3 
organoids per genotype, adjusted P = 0.004, logistic mixed models; 
Fig. 1b and Extended Data Fig. 4d). Finally, Mito210 SUV420H1 orga-
noids showed the mildest phenotype, with no more than 5% of cells in 
the mutants belonging to the GABAergic lineage in one batch (28 d.i.v., 

n = 3 organoids per genotype, adjusted P = 0.017, logistic mixed mod-
els; Fig. 1c and Extended Data Fig. 4e) and no GABAergic neurons in a 
second differentiation batch at 35 d.i.v. (Extended Data Fig. 4f). This 
suggests that, although these cell lines converge on the same pheno-
type of premature generation of GABAergic neurons, the genetic and 
epigenetic context of each cell line modulates phenotypic expressivity.

We next investigated whether the increase in GABAergic neurons 
persisted at later stages. We profiled organoids from the two lines 
that showed the greatest difference in phenotypic severity (Mito294 
and Mito210) at 3 months in vitro. At 3 months and beyond, GABAe-
rgic populations expressed clear molecular features of cortical 
interneurons (therefore indicated as GABAergic interneurons). The 
Mito294 SUV420H1+/− organoids still showed a disproportionately 
large GABAergic population (32,276 cells, n = 3 single organoids per 
genotype; Extended Data Fig. 5a). However, two distinct batches of 
Mito210 SUV420H1 organoids showed no GABAergic interneurons in 
the mutant or control (Extended Data Fig. 5b, c). This indicates that, 
depending on its expressivity, the GABAergic phenotype can resolve 
over development (Mito210) or persist (Mito294).

We next sought to examine the changes in other cell types. Owing to 
the pronounced overgrowth of the GABAergic lineage in the Mito294 
SUV420H1+/− organoids, most other cell types had reduced propor-
tions (Fig. 1a and Extended Data Figs. 4c and 5a). However, in 1 month 
Mito210 SUV420H1+/− organoids, the milder GABAergic phenotype 
enabled us to detect an increase in immature deep-layer projection 
neurons, the first-born neurons of the cortical plate17,18, in two differ-
entiation batches (batch I, 28 d.i.v., adjusted P = 0.027; batch II, 35 d.i.v., 
adjusted P = 0.001; logistic mixed models, n = 3 single organoids per 
genotype; Fig. 1c and Extended Data Fig. 4e, f). Earlier cell types of 
the deep-layer projection neuron lineage (intermediate progenitor 
cells and early-postmitotic newborn deep-layer projection neurons) 
were also increased (Extended Data Fig. 4f). Similar to the transient 
GABAergic phenotype in this line, the deep-layer projection neuron 
phenotype was rescued after 3 months in vitro (two batches, 92 and 
90 d.i.v.; Extended Data Fig. 5b, c).

In the PGP1 background, although the GABAergic phenotype was 
consistently observed, we did not observe an increase in the num-
ber of deep-layer projection neurons at 1 month (35 d.i.v.; Fig. 1b and 
Extended Data Fig. 4d). However, genes that were upregulated in the 
deep-layer projection neuron lineage in mutants from both the PGP1 
and Mito210 lines were enriched in gene ontology (GO) terms related 
to neuronal differentiation and maturation (Methods, Supplementary 
Notes, Extended Data Fig. 4g and Supplementary Table 3), indicating 
a molecular profile that is consistent with more advanced neuronal 
maturation in both backgrounds. Interestingly, although the Mito210 
line showed a more severe phenotype for the deep-layer projection 
neurons compared with the PGP1 line, the PGP1 line showed a more 
severe phenotype for the GABAergic neurons, indicating that different 
features of the mutant phenotype can be differentially modulated by 
the same genomic context.

Accelerated maturation of neuron classes
We next examined the developmental dynamics of the affected cell 
types within a specific lineage. Owing to the low numbers of GABAergic 
neurons in the control lines at 1 month, we focused on the deep-layer 
projection neuron phenotype. We calculated pseudotime trajectories, 
and identified the portion of the trajectory corresponding to the devel-
opment of the affected cell types (the partition of interest; Methods and 
Extended Data Fig. 5d). The deep-layer projection neuron lineage in the 
combined 35 d.i.v. Mito210 SUV420H1+/− and control organoids (batch 
II) showed an increased distribution of mutant cells towards the end 
point of the trajectory (P < 2.2 × 10−16, one-sided Kolmogorov–Smirnov 
test; Fig. 1d, e), supporting accelerated development of these neu-
rons in the mutants. Co-expression analysis using WGCNA19 (Methods, 
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Supplementary Table 4 and Extended Data Fig. 5e) identified a module 
containing multiple genes associated with neuronal maturation and 
synapse formation that was positively correlated with pseudotime 
progression (Fig. 1f; Pearson correlation r = 0.94, P < 2.2 × 10−16), and 
was significantly upregulated in mutant organoids (adjusted P = 0.0017, 
linear mixed models; Fig. 1f). These results support an accelerated 
differentiation phenotype in deep-layer projection neurons induced 
by SUV420H1+/−.

We next examined the mechanisms for the premature expres-
sion of maturation-associated genes in this mutant. As SUV420H1 
is a histone-lysine N-methyltransferase20, we examined changes 
in chromatin accessibility. We performed a single-cell assay for 
transposase-accessible chromatin with high-throughput sequenc-
ing (scATAC-seq) on Mito210 SUV420H1 organoids at 1 and 3 months 
(31 d.i.v., 84,696 nuclei; 93 d.i.v., 23,669 nuclei; n = 3 single orga-
noids per genotype and timepoint). Co-embedding scATAC-seq and 
scRNA-seq data showed that chromatin accessibility captures most 
of the cell types identified by gene expression (Extended Data Fig. 6a).

At 1 month, most of the significant differentially accessible regions 
(DARs) between the mutant and control overlapped across cell types 
(Supplementary Table 5). We therefore combined all cells, and identi-
fied 414 DARs (Methods). The genes that were nearest (within 10 kb) to 
DARs with increased accessibility in mutant organoids were enriched 
for GO terms associated with synaptic transmission and neuronal 
maturation, whereas the genes that were nearest to DARs with reduced 
accessibility were enriched for negative regulation of neuronal matura-
tion and connectivity (Extended Data Fig. 6b–d and Supplementary 
Table 5), consistent with the phenotypes observed in the scRNA-seq 
analysis.

At a later developmental stage (93 d.i.v.), we detected only 43 
significant DARs (adjusted P < 0.1) across all cells (Supplementary 
Table 5). However, regions that were more accessible in the mutant 
were enriched for GO terms linked to synaptic function (Extended 
Data Fig. 6b), suggesting that differential regulation of genes that are 
important to neuronal maturation and function remains.

Regions with increased accessibility in the mutant were enriched for 
transcription factor (TF)-binding sites for regulators of neurogenesis 
and patterning of the developing nervous system, including multiple 
genes involved in the development of the GABAergic lineage (Methods, 
Supplementary Table 5 and Extended Data Fig. 6e).

Our results show that, in SUV420H1+/− organoids, both GABAergic 
and deep-layer projection neurons exhibit accelerated development, 
and that the genomic context can differentially modulate phenotypic 
abnormalities affecting distinct cell types.

Reduced spontaneous circuit activity
The early developmental abnormalities in GABAergic and deep-layer 
projection neurons, along with the changes in expression and acces-
sibility of synapse-associated genes, prompted us to investigate circuit 
activity.

We analysed spontaneous neuronal activity in a line with an inter-
mediate phenotype (PGP1 SUV420H1; Fig. 1b), using adeno-associated 
viruses driving GCaMP (Methods) to record intracellular calcium 
dynamics in intact 4 month organoids (128 d.i.v.; Fig. 1g, Extended Data 
Fig. 7a and Supplementary Video 1). The predominant form of activity 
was a tetrodotoxin (TTX)-sensitive calcium signal (n = 10/10 organoids; 
Extended Data Fig. 7b), of which the large amplitude, slow kinetics 
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Fig. 1 | The SUV420H1+/− genotype induces the asynchronous generation of 
GABAergic neurons and deep-layer projection neurons, and changes in 
circuit activity. a–c, Combined t-distributed stochastic neighbor embedding 
(t-SNE) analysis of all organoids (top left, with total cells per dataset) and the 
percentage of the indicated cell types per organoid (top right), colour-coded 
by cell type, for Mito294 (a; 35 d.i.v.), PGP1 (b; 35 d.i.v.) and Mito210 batch I  
(c; 28 d.i.v.) organoids. Adjusted P values were determined using logistic mixed 
models, comparing the difference in cell-type proportions between genotypes 
(Methods). Bottom, t-SNE analysis of individual organoids; cell types of interest 
are coloured. d, e, Pseudotime uniform manifold approximation and 
projection (UMAP) analysis of the Mito210 organoids (batch II, 35 d.i.v.), 
colour-coded by cell type (d), pseudotime (early, blue; late, yellow; e, left) or 
genotype (e, right). Insets: cells indicated by the dotted boxes, separated by 
genotype. f, Neuronal maturation and synapse formation module of highly 
correlated genes in Mito210 batch II cells from d and e, showing a UMAP plot of 
module scores (left) and the score distribution across the genotypes (right). 
The horizontal bars show the median scores, and the dots show the average 

score per organoid. Adjusted P values were determined using linear mixed 
models, comparing differences between the control and mutant organoids 
(Methods). g–i, Calcium imaging of neuronal activity in intact PGP1 organoids 
(128 d.i.v.). g, Left, representative organoid transduced with SomaGCaMP6f2. 
Scale bar, 100 μm. Insets: high-magnification image of individual cells (1–3). 
Scale bar, 10 μm. Right, spontaneous calcium signal for each example cell as 
ΔF/F (top) and a pseudocolour heat map (bottom). Scale bars, 10% (vertical), 
30 s (horizontal). h, Representative heat maps of calcium signal for each 
condition (left). Right, spontaneous network burst frequency. The dots show 
the average values per organoid and the bars show the mean across all 
organoids. i, The population-averaged calcium transients (top left) and heat 
map for individual cells (bottom left). Scale bars, 2% (vertical), 5 s (horizontal). 
Right, spontaneous network burst duration. The dots show the average values 
per organoid and the bars show the mean across all organoids. aRG, apical 
radial glia; DL, deep layer; GABA, GABAergic; IPC, intermediate progenitor 
cells; N, neurons; NP, neuron progenitors; PN, projection neurons; SUV, 
SUV420H1+/−.
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and multipeak structure suggested that it was mediated by trains of 
action potentials (Extended Data Fig. 7c); this result was confirmed 
by extracellular single-unit recordings using a multielectrode array 
(MEA) (Extended Data Fig. 7d). These large calcium spikes occurred 
in periodic, synchronized bursts across most neurons (Extended Data 
Fig. 7e, f), resembling early network activity observed in the develop-
ing brain21,22. Network bursting was abolished after bath application of 
NBQX, an antagonist of non-NMDA glutamate receptors (Methods and 
Extended Data Fig. 7g), suggesting that coordinated network activity 
was driven by excitatory synaptic transmission.

Notably, after blockade of excitatory synapses with NBQX, only con-
trols displayed calcium transients (Extended Data Fig. 7g, h), indicating 
that the control cells were more excitable, and probably more immature 
compared with the mutants. This is consistent with the accelerated 
molecular differentiation observed in SUV420H1+/− organoids.

Mutants showed a relative reduction in both frequency (P = 0.032, 
t-test; Fig. 1h) and duration (P = 0.026, t-test; Fig. 1i) of network bursts 
(Extended Data Fig. 7i, j), indicating that SUV420H1+/− organoids 
have reduced spontaneous activity, consistent with mouse models23. 
These data suggest that, beyond the molecular and cellular changes 
observed in mutant organoids, the SUV420H1+/− genotype can also 
induce long-term abnormalities in circuit activity.

ARID1B and SUV420H1 share target populations
We next investigated whether changes in the production of neuronal 
classes were a shared feature of ASD risk genes. We profiled individual 
Mito210 ARID1B+/− and control organoids from two independent dif-
ferentiations at 1 month (35 d.i.v.) using scRNA-seq (batch I: 43,556 
cells; batch II: 35,000 cells; Fig. 2a, b and Extended Data Fig. 8a–c).

Although the controls had few or no GABAergic lineage cells at this 
age, Mito210 ARID1B+/− organoids showed a consistent increase in the 
proportions of GABAergic neurons and their progenitors (batch I and 
II, respectively; GABAergic neurons: adjusted P = 0.0057, P = 0.0076; 
GABAergic neuron progenitors: adjusted P = 0.0004, P = 0.0128; cycling 
GABAergic neuron progenitors: adjusted P = 0.0004, P = 0.0001; 

logistic mixed models, n = 3 single organoids per genotype; Fig. 2a, 
b and Extended Data Fig. 8b, c). In the first batch, GABAergic neurons 
constituted up to 50% of the profiled cells, making it difficult to draw 
conclusions about other cell types (Fig. 2a and Extended Data Fig. 8b). In 
the second batch, the GABAergic phenotype was less severe, enabling us 
to detect a significant reduction in newborn deep-layer projection neu-
rons (adjusted P = 0.001, logistic mixed models; Fig. 2b and Extended 
Data Fig. 8c). Notably, these are the same two neuron populations 
that are affected in SUV420H1+/− organoids. Although the ARID1B+/− 
genotype had an opposite effect on the deep-layer projection neuron 
lineage, the data show convergence of two previously unrelated risk 
genes in the classes of cells that they affect. This phenotype of increased 
GABAergic populations was still detectable at a later developmental 
stage, 3 months, although it was less severe (Extended Data Fig. 8d–f).

To test the effect of genomic context, we generated control and 
ARID1B+/− organoids in the Mito294 background, and profiled 50,081 
cells at 35 d.i.v. (n = 3 per genotype). Consistent with the Mito210 ARID1B 
phenotype, there was a decreased number of newborn deep-layer projec-
tion neurons in the mutant (P = 0.025, logistic mixed models; Extended 
Data Fig. 8g). However, there was no significant increase in the GABAergic 
population in this background (P = 0.24, logistic mixed models; Extended 
Data Fig. 8g). This line, Mito294, had the most pronounced increase in 
GABAergic neurons in SUV420H1+/− organoids, showing that the genomic 
context modifies the expressivity of each mutation differently.

Pseudotime analysis (Extended Data Fig. 8h) showed a decreased 
distribution of cells towards the end point of the trajectory, progressing 
from progenitors to deep-layer projection neurons in Mito210 ARID1B+/− 
organoids at 1 month (35 d.i.v., batch II; P < 2.2 × 10−16, one-sided Kol-
mogorov–Smirnov test; Fig. 2c, d). Gene module analysis (Extended 
Data Fig. 8i) identified a module containing multiple DNA-replication 
and cell-cycle genes (Supplementary Table 3) that was enriched in pro-
genitor cells and was significantly upregulated in mutants (adjusted 
P = 0.018, linear mixed models; Fig. 2e). These data indicate delayed 
differentiation of deep-layer projection neurons in ARID1B+/− organoids.

In sum, similarly to SUV420H1+/− organoids, ARID1B+/− organoids 
exhibit both a phenotype of premature expansion of the GABAergic 
neuron lineage, and asynchronous development of deep-layer projec-
tion neurons. Notably, as in SUV420H1+/− organoids, these two pheno-
types were differentially modulated in distinct parental lines in the 
ARID1B+/− organoids.

CHD8+/− genotype promotes interneuron development
To further examine the hypothesis of convergent phenotypes among 
ASD risk genes, we profiled HUES66 CHD8+/− and control organoids at 
3.5 months (109 d.i.v., 67,024 cells, n = 3 single organoids per genotype; 
Fig. 3a and Extended Data Fig. 9a). Mutants had an increased number of 
GABAergic interneurons and their progenitors (GABAergic interneurons: 
adjusted P = 0.079; cycling GABAergic interneuron progenitors: adjusted 
P = 0.031; GABAergic interneuron progenitors: adjusted P = 0.0012, logis-
tic mixed models; Fig. 3a and Extended Data Fig. 9a). A second independ-
ent batch of HUES66 CHD8 organoids showed an even more substantial 
increase (n = 2–3 single organoids per genotype; cycling GABAergic 
interneuron progenitors: adjusted P = 7.2 × 10−5; GABAergic interneuron 
progenitors: adjusted P = 1.8 × 10−5; GABAergic interneurons: adjusted 
P = 8.9 × 10−6, logistic mixed models; Fig. 3b and Extended Data Fig. 9b–d). 
Notably, at 6 months (190 d.i.v., 39,285 cells, n = 3 individual organoids 
per genotype), the GABAergic interneuron phenotype was still present 
(adjusted P = 0.002, logistic mixed models; Extended Data Fig. 9d–f).

This increase in GABAergic populations is consistent with two recent 
reports showing that CHD8+/− affects the expression of GABAergic 
interneuron marker genes in two additional human parental lines24,25. 
However, as we found for SUV420H1+/− and ARID1B+/− organoids, the 
genomic context was able to modulate the expressivity of the CHD8+/− 
phenotype. We compared CHD8+/− and control organoids generated 
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from four different parental lines spanning different basal levels of 
CHD8 protein expression (Extended Data Fig. 3c, f and Supplemen-
tary Table 1). Bulk RNA-seq analysis of 35 d.i.v. organoids showed that, 
although differentially expressed genes (DEG) between the mutant 
and control did not significantly overlap between lines, DEGs from 
three out of the four lines (HUES66, GM08330 and H1) shared GO terms 
related to neurodevelopment and neuronal maturation (Extended 
Data Fig. 10a and Supplementary Table 6). However, scRNA-seq analy-
sis of CHD8+/− and control organoids from GM08330 and H1 lines at 
3.5 months showed no significant difference in the number of GABAe-
rgic interneurons (105–108 d.i.v., n = 3 individual organoids per geno-
type, 107,490 cells; Extended Data Fig. 10b–d).

Pseudotime analysis of the GABAergic lineage (progressing from 
radial glia to GABAergic interneurons) in 3.5 month HUES66 CHD8+/− 
and control organoids showed an increased distribution of mutant cells 
towards the end point of the developmental trajectory (P < 2.2 × 10−16, 
one-sided Kolmogorov–Smirnov test; Fig. 3c, d and Extended Data 
Fig. 9g). Gene module analysis of the GABAergic lineage (Extended Data 
Fig. 9h and Supplementary Table 4) identified a module of interneu-
ron differentiation genes that was upregulated in HUES66 CHD8+/− 
organoids (adjusted P = 0.019, linear mixed models; Fig. 3e), and two 
modules related to progenitor biology that were downregulated in the 
mutant (Extended Data Fig. 9h).

Thus, similar to the SUV420H1+/− and ARID1B+/− genotypes, the CHD8+/− 
genotype leads to an accelerated development of the GABAergic lineage 
that, for CHD8, leads to a persistent increase in the proportion of these 
cell types. For all three risk genes, this phenotype occurs in multiple 
parental lines, but with different degrees of phenotypic expressivity.

Convergence through distinct mechanisms
We next investigated whether SUV420H1+/−, ARID1B+/− and CHD8+/− orga-
noids converged on asynchronous development of the same neuronal 
lineages by acting through common molecular pathways. We com-
pared gene expression changes across the three ASD risk genes in cell 
lines that showed a strong phenotype (Mito210 SUV420H1, Mito210 
ARID1B and HUES66 CHD8). Although mutations shared enrichment 

for GO categories, DEGs from bulk or pseudobulk RNA-seq analysis 
showed little overlap (Supplementary Notes, Supplementary Table 7 
and Extended Data Fig. 11a–d). Similarly, although related cell types 
within the same mutation shared overlapping DEGs, DEGs caused by 
different mutations rarely overlapped, even for identical or closely 
related cell types (Fig. 4, Supplementary Notes and Supplementary 
Table 7). Thus, although these three mutants share a degree of con-
vergence in altered neurodevelopmental processes, they affect largely 
distinct genes.

Whole-proteome mass spectrometry (MS) analysis of mutant and 
control single organoids (Methods) identified 233 significantly differ-
entially expressed proteins (DEPs; false-discovery rate (FDR) < 0.1) for 
SUV420H1+/– (≥4,000 proteins detected per sample), 24 for ARID1B+/– 
(≥900 proteins) and 34 for CHD8+/– (≥2,800 proteins; Extended Data 
Fig. 12a–c and Supplementary Table 8) organoids. DEPs had a very 
low overlap between mutations, with only five proteins significantly 
dysregulated in at least two mutations (Supplementary Table 8). DEPs 
and enriched biological processes (gene set enrichment) for all muta-
tions resembled the gene modules that were identified by scRNA-seq 
analysis (Supplementary Notes and Extended Data Fig. 12d–f).

To evaluate whether the affected proteins in the three mutants were 
predicted to interact with one another, or with shared target proteins, 
the top 50 DEPs (adjusted P) for each mutation were used to create a 
network of interacting proteins26,27, followed by clustering to identify 
subnetworks (Methods). Each subnetwork contained DEPs from mul-
tiple mutations (Supplementary Notes and Extended Data Fig. 12g–i), 
indicating that these three risk genes affect shared processes, albeit 
by dysregulating different proteins.

Discussion
The process by which mutations in ASD risk genes converge on the 
neurobiology of this multifaceted disorder remains unclear. Our results 
define two neuronal classes of the local cortical circuit (GABAergic 
and deep-layer projection neurons) as specifically affected popula-
tions. Excitatory/inhibitory imbalance of the cortical microcircuit is 
a major hypothesis for the aetiology of ASD28–30, and previous studies 
have implicated the dysregulation of GABAergic and glutamatergic 
cortical neurons in ASD patients and experimental models31–37. Notably, 
we show that different human genomic contexts modulate phenotypic 
expressivity, based on both the risk gene and the specific abnormali-
ties caused by each mutation. This is interesting, as many ASD risk 
gene mutations show variable clinical manifestations in humans7,8,14,38.

Our finding that different ASD risk genes converge on a phenotype 
of asynchronous neuronal development but mostly diverge at the level 
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of molecular targets suggests that a shared clinical pathology of these 
genes may derive from higher-order processes of neuronal differentia-
tion and circuit wiring. These results encourage future investigation of 
therapeutic approaches aimed at the modulation of shared dysfunc-
tional circuit properties in addition to shared molecular pathways.
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Methods

PS cell culture
The HUES66 CHD8 parental hESC line39 and CHD8 mutant line 
(HUES66 AC2), a clone that has a heterozygous 13-nucleotide dele-
tion, resulting in a stop codon at amino acid 1248 (CHD8 gRNA: 
5′-TTCTTACTGTGTACCCGGGC-3′ (TGG)), were provided by N. San-
jana, X. Shi, J. Pan and F. Zhang (Broad Institute of MIT and Harvard). 
The psychiatric control Mito210 and Mito294 parental iPS cell lines 
were provided by B. Cohen (McLean Hospital); the parental PGP1 iPS 
cell line by G. Church (Harvard University)40; the GM08330 iPS cell line 
(also known as GM8330-8) by M. Talkowski (MGH) and was originally 
from Coriell Institute; and the H1 parental hESC line (also known as 
WA01) was purchased from WiCell. Cell lines were cultured as previ-
ously described9,41. Among these cell lines, we included iPS cell lines 
from individuals with no known history of ASD or other psychiatric 
condition (Mito210 and Mito294 confirmed by structured psychiatric 
interview, PGP1 with publicly available records). All human pluripotent 
stem (PS) cell lines were maintained below passage 50, were negative 
for mycoplasma (assayed with MycoAlert PLUS Mycoplasma Detec-
tion Kit, Lonza) and karyotypically normal (G-banded karyotype test 
performed by WiCell Research Institute). The HUES66 and PGP1 lines 
were authenticated using STR analysis completed by GlobalStem (in 
2008) and TRIPath (in 2018), respectively. The Mito210 and Mito294 
lines were authenticated by genotyping analysis (Fluidigm FPV5 chip) 
performed by the Broad Institute Genomics Platform (in 2017). The H1 
and GM08330 lines were authenticated using STR analysis completed 
by WiCell (in 2021). In the Mito294 ARID1B control line, a CNV smaller 
than 0.5 Mb on chromosome 19 was detected by single-nucleotide poly-
morphism array analysis. The GM08330 parental line and edited lines all 
have an interstitial duplication in the long (q) arm of chromosome 20. 
All of the experiments involving human cells were performed according 
to ISSCR 2021 guidelines42, and approved by the Harvard University 
IRB and ESCRO committees.

CRISPR guide design
The CRISPR guides for SUV420H1 and ARID1B were designed using the 
Benchling CRISPR Guide Design Tool (Benchling Biology Software, 
2017). The guides were designed to maximize on-target efficiency and 
minimize off-target sites in intragenic regions43,44. For SUV420H1, a guide 
was designed to target the N-terminal domain to create a protein trun-
cation early in the translated protein in all known protein coding tran-
scripts (SUV420H1 gRNA: 5′-CAAGAACCAAACTGGTTGCT-3′ (AGG)). The 
ARID1B guide was chosen to induce a stop codon immediately before 
the ARID domain (ARID1B gRNA: 5′-CTCTAGCCTGATGAACACGC-3′ 
(AGG)). For CHD8, all of the mutant lines were generated using the same 
gRNA previously used for the generation of the HUES66 AC2 (CHD8 
gRNA: 5′-TTCTTACTGTGTACCCGGGC-3′ (TGG)).

CRISPR-mediated gene editing
Mutations in SUV420H1 were introduced in the Mito210, Mito294 and 
PGP1 iPS cell lines. For the Mito210 and Mito294 SUV420H1 mutant 
lines, nanoblades that were generated as previously described45 were 
mixed with 300 μl of mTeSR1 and 4 μg ml−1 of polybrene and added to 
80% confluent cells. For selection of the edited clones, cells were enzy-
matically detached and plated at a ratio of ~5,000 cells per 60 mm dish 
with 10 μM of ROCK inhibitor (Y-27632, Millipore-Sigma) to increase 
single-cell survival. When the colonies started to appear, each clone 
was manually collected and transferred into a single well of a 96-well 
plate. During colony picking, some of the cells were reserved for DNA 
extraction and clonal screening. The PGP1 SUV420H1-mutant line was 
generated in collaboration with the Harvard Stem Cell Institute (HSCI) 
iPS Core Facility. In brief, parental cells were transfected using the Neon 
system (1,000 V, 1,100 V or 1,200 V, 30 ms, 1 pulse). For 100,000 cells, 
6.25 pmol TrueCut Cas9 Protein v2 (Thermo Fisher Scientific, A36496) 

and 12.5 pmol of sgRNA (Synthego) were used. After transfection, the 
pools of cells were collected to test knock-out efficiency. The best pool 
was then selected for low-density plating (600 to 2,000 cells per 10 cm 
dish). A week later, colonies were picked into one 96-well plate. Clones 
were screened by PCR and Sanger sequencing. Heterozygous clones 
were expanded and the genotypes were reconfirmed after expansion.

Mito210 and Mito294 ARID1B-edited lines were generated by the 
Broad Institute Stem Cell Facility. The guide RNA and Cas9 (EnGen 
Cas9 NLS from New England Biolabs) were transfected by using the 
NEON transfection system (Thermo Fisher Scientific, 1,050 V, 30 ms, 
2 pulses and 2.5 × 105 cells).

Mutations in CHD8 were introduced in the Mito210 and Mito294 
lines using the Amaxa 4D-Nucleofector (Lonza), using the protocol 
optimized for PS cell lines. Parental cell lines were transfected with 
gRNA-CHD8-Cas92APuro and immediately plated in mTeSR1 for 24 h. 
Selection of transfected cells was performed by adding 0.25–0.5 μg ml−1 
of puromycin after 48 h of transfection, for 2 days. Selection of the 
edited clones was performed according to the protocol described 
for the Mito210 and Mito294 SUV420H1 clones. The H1 and GM08330 
CHD8-mutant lines were generated in collaboration with the HSCI iPS 
Core Facility according to the protocol that was used to generate the 
PGP1 SUV420H1-mutant line.

Sequence confirmation of edits
Insertions and deletions in individual clones were screened by PCR 
amplification using primers flanking the guide. Further details about 
the insertions/deletions are provided in Supplementary Table 1.

Organoid differentiation
Cortical organoids were generated as previously described9,41. Embry-
oid bodies were formed in the same pluripotent medium in which they 
were maintained for 1–2 days to better enable the formation of embry-
oid bodies from each line (except for the lines Mito210 SUV420H1 and 
HUES66 CHD8 where cells were plated directly in CDM 1 as previously 
described9,41).

Immunohistochemistry
Samples were prepared as previously described9. Cryosection thick-
ness varied from 14 μm to 18 μm. A list of the primary and secondary 
antibodies is provided in Supplementary Table 9.

Whole-organoid imaging
Organoids in Extended Data Fig. 4a were processed using the SHIELD 
protocol46. In brief, organoids were fixed for 30 min in 4% paraform-
aldehyde (PFA) at room temperature and were then treated with 3% 
(w/v) polyglycerol-3-polyglycidyl ether (P3PE) for 48 h in ice cold 0.1 M 
phosphate buffer (pH 7.2) at 4 °C then transferred to 0.3% P3PE in 0.1 M 
sodium carbonate (pH 10) for 24 h at 37 °C. The samples were rinsed 
and cleared in 0.2 M SDS in 50 mM phosphate-buffered saline (pH 7.3) 
for 48 h at 55 °C. Organoids were stained with Syto16 (Thermo Fisher 
Scientific, S7578) and anti-SOX2 antibodies using the SmartLabel 
system (Lifecanvas). A list of the primary antibodies is provided in 
Supplementary Table 9. Tissues were washed extensively for 24 h in 
phosphate-buffered saline + 0.1% Triton X-100 and antibodies were fixed 
to the tissue using a 4% PFA solution overnight at room temperature. 
Tissues were refractive-index-matched in PROTOS solution (RI = 1.519) 
and imaged using a SmartSPIM axially swept light-sheet microscope 
(LifeCanvas Technologies). 3D image datasets were acquired using a 
×15/0.4 NA objective (ASI-Special Optics, 54-10-12). Optical sections 
from whole-organoid datasets are shown in Extended Data Fig. 4a.

Microscopy and organoid size analysis
Images of organoids in culture were taken with an EVOS FL microscope 
(Invitrogen), Lionheart FX Automated Microscope (BioTek Instru-
ments), or with an Axio Imager.Z2 (Zeiss). Immunofluorescence images 



were acquired with the latter two and analysed with the Gen5 (BioTek 
Instruments) or Zen Blue (ZEN 2.6 – blue edition, Zeiss) image pro-
cessing software. ImageJ47 (v.2.0) was used to quantify organoid size. 
Area values were obtained by tracing individual organoids on ImageJ, 
which measured area pixels. Measurements were plotted as a ratio to 
the average value for control organoids of each experimental batch. 
A summary of the number of organoids and differentiations used for 
the measurements is provided in Supplementary Table 2.

Western blotting
Proteins were extracted from iPS cells using N-PER Neuronal Protein 
Extraction Reagent (Thermo Fisher Scientific) supplemented with 
protease (cOmplete Mini Protease Inhibitor Cocktail, Roche) and 
phosphatase (PhosSTOP, Sigma-Aldrich) inhibitors. Lysates were cen-
trifuged for 10 min at 13,500 rpm at 4 °C. Protein concentration was 
quantified using the Pierce BCA Protein Assay Kit (Thermo Fisher Sci-
entific). Protein lysates (15–20 μg) were separated on a NuPAGE 4–12%, 
Bis-Tris Gel (Invitrogen) or Mini-PROTEAN 4–15% Gels (Bio-Rad) and 
transferred onto a polyvinylidene difluoride membrane. Blots were 
blocked with 5% non-fat dry milk (Bio-Rad) and incubated with primary 
antibodies overnight (Supplementary Table 9). The blots were then 
washed and incubated at room temperature with secondary horserad-
ish peroxidase-conjugated antibodies (Abcam) for 1 h. The blots were 
developed using SuperSignal West Femto Maximum Sensitivity Sub-
strate (Thermo Fisher Scientific) or ECL Prime Western Blotting System 
(Millipore), and the ChemiDoc System (Bio-Rad). Densitometry band 
quantification was performed using Fiji software48 v.2.0 and normalized 
to housekeeping genes (GAPDH or ACTB). The bands used for quantifica-
tion are marked with an asterisk in Extended Data Fig. 3d–f. Uncropped 
gel images of western blots are provided in Supplementary Fig. 1.

Calcium imaging
Organoids were transduced with pAAV-CAG-SomaGCaMP6f2 (Addgene, 
158757) by pipetting 0.2 μl of stock virus into 500 μl Cortical Differentia-
tion Medium IV (CDMIV, without Matrigel) in a 24-well plate containing 
a single organoid. The next day, each organoid was transferred to a 
6-well plate filled with 2 ml of fresh medium. On the third day after 
transduction, organoids were transferred to low-attachment 10 cm 
plates and, on the seventh day, the medium was switched to BrainPhys 
(5790, STEMCELL Technologies) supplemented with 1% N2 (17502-048, 
Thermo Fisher Scientific), 1% B27 (17504044, Thermo Fisher Scientific), 
GDNF (20 ng ml−1, 78139, STEMCELL Technologies), BDNF (20 ng ml−1, 
450-02, Peprotech), cAMP (1 mM, 100-0244, STEMCELL Technologies), 
ascorbic acid (200 nM, 72132, STEMCELL Technologies) and laminin 
(1 μg ml−1, 23017015, Life Technologies). The organoids were cultured 
in BrainPhys for at least 2 weeks before imaging.

Brain organoids were randomly selected and transferred to a 
recording chamber containing BrainPhys. Imaging was performed 
using a confocal scanner (CSU-W1, Andor confocal unit attached on an 
inverted microscope (Ti-Eclipse and NIS-elements imaging software 
(NIS-Elements Advance Research (v.4.51.01)), both from Nikon)), while 
the organoids were kept at 37 °C using a heating platform and a control-
ler (TC-324C, Warner Instruments). The use of a ×10 objective (Plan Apo 
λ, ×10/0.45 NA) resulted in a field of view of 1.3 × 1.3 mm2 and a pixel size 
of 0.6 μm. Imaging took place in fast-time-lapse mode, with an exposure 
time of 100 ms, resulting in an acquisition rate of 8 f.p.s. Spontaneous 
activity was recorded in three different z planes, for at least 22 min of 
baseline activity in total (with no pharmacology treatment).

Stock solutions of 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]
quinoxaline-7-sulfonamide disodium salt (NBQX disodium salt, Abcam; 
100 mM) and tetrodotoxin citrate (TTX, Abcam; 10 mM) were prepared 
in double-distilled H2O. Bath application of NBQX (antagonist of AMPA/
kainate glutamate receptors) and TTX (voltage-gated sodium-channel 
antagonist) was applied to achieve a final bath concentration of 20 μM 
and 2 μM, respectively.

Data were converted from nd2 format to tiff, and automated motion 
correction and cell segmentation were performed using Suite2p49, 
followed by manual curation of segmented cells (we examined the 
spatial footprint and temporal characteristics of each candidate cells, 
as well as manually adding neurons with clear cell body morphology; 
Fig. 1g). The mean raw fluorescence for each cell was then measured 
as a function of time.

Analysis of calcium imaging data
Analysis was performed using custom MATLAB scripts. Raw calcium 
signals for each cell, F(t), were converted to represent changes from 
the baseline level, ΔF/F(t) defined as (F(t) – F0(t))/F0(t). The time varying 
baseline fluorescence, F0(t), for each cell was a smoothed fluorescence 
trace obtained after applying a 10-s-order median filter centred at t. 
Calcium events elicited by action potentials were detected based on 
a threshold value given by their peak amplitude (5 times the s.d. of 
the noise value) and their first time derivative (2.5 times the s.d. of the 
noise value).

The analysis of network bursting was performed on the basis of the 
population-averaged calcium signal along all of the segmented cells. 
A peak in the population signal was considered to be a network burst 
if it met the following criteria: (1) the peak amplitude was greater than 
10 times the s.d. of the noise value; (2) a set of bursting cells composed 
of at least 20% of total cells were active during that population calcium 
transient; and (3) a cell was considered part of the set of bursting cells 
only if it participated in at least 50% of the network bursts. Under these 
criteria, 89.3 ± 14% (range from 60.5% to 100%) and 95.5 ± 6.8% (range 
from 77.6% to 100%) of segmented cells participated in network burst-
ing in control and mutant organoids, respectively.

The peaks of the network bursts were used to measure the interspike 
interval (ISI), and the burst frequency was obtained from the average ISI. 
The burst half-width was also measured from the population-averaged 
calcium signal by calculating the width of the transient at 50% of the 
burst peak amplitude.

For analyses of the synchronicity, the ΔF/F(t) signal was used to 
calculate the cross-correlation between all pairs of cells at zero lag 
(Extended Data Fig. 7e) as well as the cross-correlogram between a 
reference cell and the rest of the cells (Extended Data Fig. 7f). Along 
with the original signal, we randomly selected ten active cells, circularly 
shifted their ΔF/F(t) signal by random phases (keeping their internal 
temporal structure but altering their temporal relationship with the 
network) and used them as control.

Multi-electrode array
Extracellular neurophysiological signals were recorded using the Max-
well Biosystems CMOS-HD-MEA system50 (MaxOne System, MaxWell 
Biosystems). The MaxOne chip contains 26,400 platinum electrodes 
in a sensing area of 3.85 × 2.10 mm2 with 17.5 μm centre-to-centre 
pitch, 3,265 electrodes per mm2 density, and 1,024 configurable 
low-noise readout channels (2.4 μV root mean square (r.m.s.) in the 
300 Hz–10 kHz band) with a sampling rate of 20 kHz s−1 at 10-bit reso-
lution. Acute recordings were performed at room temperature, with 
the intact organoid in fresh BrainPhys.

For the recordings, we used MaxLab Live Software (v.20.1.6. MaxWell 
Biosystems). In brief, spontaneous activity of neurons was measured 
using the Activity Scan Assay whereby the whole chip area was scanned 
with a sparse recording (30 s per configuration, seven configurations). 
Active neurons were automatically identified on the basis of the firing 
rate and spike amplitude obtained from the Activity Scan. On the basis 
of the activity of the neurons, the most active electrodes were routed 
for the creation of the network configuration based on units of 4 × 3 
electrodes each, with 1,024 recording electrodes in total (Extended Data 
Fig. 7d (top)). Selected electrodes were then simultaneously recorded 
using the network assay to investigate the spontaneous neuronal net-
work activity.
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For spike detection, the software used a finite impulse response 

bandpass filter between 300–3,000 Hz to preprocess the raw data 
(Extended Data Fig. 7d (middle)). The r.m.s. noise per electrode was 
calculated and every negative peak larger than 6 r.m.s. was considered 
to be a spike.

When extracting the waveform of the electrodes in a single unit (set 
of neighboring 4 × 3 electrodes; Extended Data Fig. 7d (bottom)), we 
used the spike time of one selected electrode as a reference to extract 
the simultaneous signal across the different electrodes (instead of 
using their individual spike times).

All descriptive statistics and statistical tests were performed in MAT-
LAB (v.9.5, R2018b, MathWorks), using the Statistics Toolbox (v.11.4, 
R2018b, MathWorks). The Lilliefors test was used to test for normality 
of data distributions. All datasets met the assumptions of the applied 
statistical tests. When comparing groups, the equality of the variance 
was tested at the 5% significance level using a two-tailed squared-rank 
test. All statistical tests applied to the electrophysiological data were 
two-tailed, with a 5% significance level.

Cell lysis and filter-aided sample preparation digestion for MS
For SUV420H1, 4 mutant and 4 control organoids were used; for 
CHD8, 3 mutant and 3 control organoids were used; and, for ARID1B, 
5 mutant and 4 control organoids were used. Cells were placed into 
microTUBE-15 (Covaris) microtubes with TPP buffer (truXTRAC Pro-
tein Extraction Buffer TP, Covaris, 520103) and lysed using a S220 
Focused-ultrasonicator instrument (Covaris) with 125 W power over 
180 s at 10% max peak power. After precipitation with chloroform/
methanol, extracted proteins were weighed and digested according 
to the filter-aided sample preparation protocol51,52 (100 μg for ARID1B 
and CHD8; 150 μg for SUV420H1). In brief, the 10 kDa filter was washed 
with 100 μl of 50 mM triethylammonium bicarbonate (TEAB). Each 
sample was added, centrifuged and the supernatant was discarded. 
Then, 100 μl of 20 mM Tris (2-carboxyethyl) phosphine at 37 °C was 
added for 1 h, centrifuged and the supernatant was discarded. While 
shielding from light, 100 μl of 10 mM IAcNH2 was added for 1 h followed 
by spinning and discarding the supernatant. Next, 150 μl of 50 mM 
TEAB + 3 μg of Sequencing Grade Trypsin (Promega) was added to each 
sample and left overnight at 38 °C. The samples were then centrifuged 
and the supernatants were collected. Finally, 50 μl of 50 mM TEAB was 
added to the samples, followed by spinning and supernatant collection. 
The samples were then transferred to HPLC.

TMT mass tagging protocol peptide labelling
Tandem mass tag (TMT) label reagents (TMTPro, Thermo Fisher Sci-
entific, 16plex Label Reagent Set, A44521) were equilibrated to room 
temperature and resuspended in anhydrous acetonitrile or ethanol (for 
the 0.8 mg and 5 mg vials, 41 μl and 256 μl were added, respectively). 
The reagent was dissolved for 5 min with occasional vortexing. TMT 
label reagent (41 μl, equivalent to 0.8 mg) was added to each 100–150 μg 
sample. The reaction was incubated for 1 h at room temperature. The 
reaction was quenched after adding 8 μl of 5% hydroxylamine to the 
sample and incubating for 15 min. The samples were combined, dried 
in a speedvac (Eppendorf) and stored at −80 °C.

Hi-pH separation and MS analysis
Before submission to liquid chromatography with tandem MS (LC–
MS/MS), each experiment sample was separated on a Hi-pH column 
(Thermo Fisher Scientific) according to the vendor’s instructions. 
After separation into 40 (20 for the ARID1B experiment) fractions, 
each fraction was submitted for a single LC–MS/MS experiment per-
formed on a Lumos Tribrid (Thermo Fisher Scientific) system equipped 
with 3000 Ultima Dual nanoHPLC pump (Thermo Fisher Scientific). 
The peptides were separated onto a microcapillary trapping column 
(inner diameter, 150 μm) packed first with approximately 3 cm of C18 
Reprosil resin (5 μm, 100 Å, Dr. Maisch) followed by PharmaFluidics 

micropack analytical 50 cm column. Separation was achieved by apply-
ing a gradient of 5–27% acetonitrile in 0.1% formic acid over 90 min at 
200 nl min−1. Electrospray ionization was enabled by applying a volt-
age of 1.8 kV using a custom-made electrode junction at the end of the 
microcapillary column and sprayed from stainless-steel tips (PepSep). 
The Lumos Orbitrap was operated in data-dependent mode for the 
MS methods. The MS survey scan was performed in the Orbitrap in 
the range of 400–1,800 m/z at a resolution of 6 × 104, followed by the 
selection of the 20 most intense ions (TOP20) for CID-MS2 fragmenta-
tion in the Ion trap using a precursor isolation width window of 2 m/z, 
AGC setting of 10,000 and a maximum ion accumulation of 50 ms. 
Singly charged ion species were not subjected to CID fragmentation. 
Normalized collision energy was set to 35 V and an activation time of 
10 ms. Ions in a 10 ppm m/z window around ions selected for MS2 were 
excluded from further selection for fragmentation for 90 s. The same 
TOP20 ions were subjected to HCD MS2 events in the Orbitrap part of 
the instrument. The fragment ion isolation width was set to 0.8 m/z, 
AGC was set to 50,000, the maximum ion time was 150 ms, normalized 
collision energy was set to 34 V and an activation time of 1 ms for each 
HCD MS2 scan.

MS data generation
Raw data were submitted for analysis in Proteome Discoverer 2.4 
(Thermo Fisher Scientific). Assignment of MS/MS spectra was per-
formed using the Sequest HT algorithm by searching the data against 
a protein sequence database including all entries from the Human 
UniProt database53,54 and other known contaminants such as human 
keratins and common laboratory contaminants. Sequest HT searches 
were performed using a 10 ppm precursor ion tolerance and requir-
ing the N/C termini of each peptide to adhere with Trypsin protease 
specificity, while allowing up to two missed cleavages. 16-plex TMTpro 
tags on peptide N termini and lysine residues (+304.207 Da) were set 
as static modifications while methionine oxidation (+15.99492 Da) was 
set as a variable modification. A MS2 spectra assignment FDR of 1% on 
the protein level was achieved by applying the target–decoy database 
search. Filtering was performed using a Percolator (64 bit version)55. For 
quantification, a 0.02 m/z window centred on the theoretical m/z value 
of each of the 6 reporter ions and the intensity of the signal closest to 
the theoretical m/z value was recorded. Reporter ion intensities were 
exported in the result file of Proteome Discoverer 2.4 search engine 
as Excel tables. The total signal intensity across all peptides quanti-
fied was summed for each TMT channel, and all intensity values were 
normalized to account for potentially uneven TMT labelling and/or 
sample handling variance for each labelled channel.

MS data analysis
Potential contaminants were filtered out and proteins supported by at 
least two unique peptides for the SUV420H1 and CHD8 experiment and 
at least one for the ARID1B experiment were used for further analysis. 
We retained proteins that were missing in at most one sample per condi-
tion. Data were transformed and normalized using variance stabilizing 
normalization using the DEP package of Bioconductor56. To perform 
statistical analysis, data were imputed for missing values using random 
draws from a Gaussian distribution with 0.3 width and a mean that 
was down-shifted from the sample mean by 1.8. To detect statistically 
significant differential protein abundance between conditions, we per-
formed a moderated t-test using the LIMMA package of Bioconductor57, 
using an FDR threshold of 0.1. Gene set enrichment analysis (GSEA) was 
performed using the GSEA software58. GO and KEGG pathway annota-
tion were used to perform functional annotation of the significantly 
regulated proteins. GO terms and KEGG pathways with FDR-adjusted 
q < 0.05 were considered to be statistically significant.

To build protein interaction networks, we used the prize-collecting 
Steiner forest algorithm26,59 using the top 50 DEPs (ranked by adjusted 
P value) from each mutation as terminals, with the absolute value of 



their log-transformed fold change as prizes. This algorithm optimizes 
the network to include high-confidence protein interactions between 
protein nodes with large prizes. We used the PCSF R package (v.0.99.1)60 
to calculate networks, with the STRING database as a background pro-
tein–protein interactome27, using the parameters n = 10, r = 0.1, w = 2, 
b = 40 and mu = 0.01. As by default in that package, the network was 
subclustered using the edge-betweenness clustering algorithm from 
the igraph package, and functional enrichment was performed on each 
cluster using the ENRICHR API. Cytoscape software (v.3.8.2) was used for 
network visualization61. To assess relationships between the three sets 
of differential proteins, a protein–protein interaction (PPI)-weighted 
gene distance (pMM)62 was calculated between each pair of protein sets. 
A background distribution was calculated by drawing size-matched ran-
dom lists of proteins from all of the detected proteins in each dataset and 
calculating the pMM between these sets. This was repeated 1,000 times, 
and an empirical P value was calculated by evaluating the number of times 
randomized pMMs were lower than the value calculated using DEPs.

Dissociation of brain organoids and scRNA-seq
Organoids were dissociated as previously described41,63. Volumes of 
reagents were scaled down 25× for one-month-old organoids. Cells were 
loaded onto either a Chromium Single Cell B or G Chip (10x Genomics, 
PN-1000153, PN-1000120), and processed through the Chromium 
Controller to generate single-cell gel beads in emulsion. scRNA-seq 
libraries were generated using the Chromium Single Cell 3′ Library & 
Gel Bead Kit v3 or v3.1 (10x Genomics, PN-1000075, PN-1000121), with 
the exception of a few libraries in the earlier experiments that were 
prepared using the v2 kit (10x Genomics, PN-120237). Information 
on the estimated number of cells loaded and the version of kit used is 
provided in Supplementary Table 10. Libraries were pooled from differ-
ent samples based on molar concentrations and sequenced them on a 
NextSeq 500 or NovaSeq instrument (Illumina) with 28 bases for read 1 
(26 bases for v2 libraries), 55 bases for read 2 (57 bases for v2 libraries) 
and 8 bases for index 1. If necessary, after the first round of sequenc-
ing, libraries were repooled on the basis of the actual number of cells 
in each and resequenced with the goal of producing an approximately 
equal number of reads per cell for each sample.

scRNA-seq data analysis
Reads from scRNA-seq were aligned to the GRCh38 human reference 
genome and the cell-by-gene count matrices were produced using 
the Cell Ranger pipeline (10x Genomics)64. Cell Ranger v.2.0.1 was 
used for experiments using the GM08330 control ‘single cell map’ 
and for HUES66 CHD8-mutant and control organoids at 3.5 months, 
batch I, while v.3.0.2 was used for all of the other experiments. The 
default parameters were used, except for the ‘--cells’ argument. Data 
were analysed using the Seurat R package v.3.1.565 using R v.3.6. Cells 
expressing a minimum of 500 genes were retained, and UMI counts were 
normalized for each cell by the total expression multiplied by 106 and 
log-transformed. Variable genes were found using the mean.var.plot 
method, and the ScaleData function was used to regress out variation 
due to differences in total UMIs per cell. Principal component analysis 
(PCA) was performed on the scaled data for the variable genes, and the 
top principal components were chosen based on Seurat’s ElbowPlots 
(at least 15 PCs were used in all cases). Cells were clustered in PCA space 
using Seurat’s FindNeighbors on top principal components, followed 
by FindClusters with resolution = 1.0 (in brief, a 20-nearest-neighbor 
graph was constructed and modularity optimization using the Louvain 
algorithm was performed to identify clusters). Variation in the cells was 
visualized by t-SNE analysis of the top principal c om po ne nts.

In the case of the GM08330 1 month organoids (single-cell map), cells 
were demultiplexed using genotype clustering from cells from a differ-
ent experiment that were sequenced in the same lane. To demultiplex, 
SNPs were called from CellRanger BAM files using the cellSNP tool 
v.0.1.5, and then the vireo function was used with the default parameters 

and n_donor = 2, from the cardelino R library (v.0.4.0)66,67 to assign cells 
to each genotype.

In two cases, one organoid was excluded from the analysis as outliers. 
See the ‘Statistics and reproducibility’ section for details.

For each dataset, upregulated genes in each cluster were identified 
using the VeniceMarker tool from the Signac package v.0.0.7 from Bio-
Turing (https://github.com/bioturing/signac). Cell types were assigned 
to each cluster by looking at the top most significant upregulated genes. 
In a few cases, clusters were further subclustered to assign identities at 
higher resolution. At 1 month, the excitatory projection neurons included 
a gradient of immature neurons, which were split into two clusters: we 
labelled the cluster representing the earlier developmental stage ‘new-
born deep-layer projection neurons’ and the cluster representing the 
later stage ‘immature deep-layer projection neurons’. At 3 months and 
beyond, excitatory projection neuron clusters could be identified as 
deep-layer corticofugal neurons and upper-layer callosal projection 
neurons. For the GABAergic populations, 1 month organoids included 
neurons expressing broad markers of GABAergic identity (labelled 
GABAergic neurons), progenitor cells expressing markers of GABAe-
rgic lineage identity (GABAergic neuron progenitors) and progenitor 
cells with high expression of cell cycle markers in addition to the pro-
genitor identity markers (cycling GABAergic neuron progenitors). At 
3 months and beyond, GABAergic neurons expressed more specific 
markers of cortical interneurons (thus labelled GABAergic interneu-
rons), and GABAergic lineage progenitors at these ages were divided into 
‘GABAergic interneuron progenitors’ and ‘cycling GABAergic interneuron 
progenitors’ on the basis of the level of expression of cell cycle markers.

To assess gene expression of ASD risk genes in GM08330 and Mito210 
control organoids across timepoints, datasets from 1, 3 and 6 months 
were merged using Seurat v.3.1.5, and then batch-corrected using 
Harmony v.1.0 with the default parameters68. As the 1 month data are 
dominated by cell cycle signal, the ScaleData function was used to 
regress out variation due to both total UMI count per cell and cell cycle 
stage differences, calculated using Seurat’s CellCycleScore. Variation 
was visualized using t-SNE on the first 30 harmony dimensions. Broad 
cell types were assigned as described above, and mutual information 
was calculated between cell type assignments and individual orga-
noids using the mpmi R package69. Expression of the 102 ASD risk genes 
identified in the Satterstrom et. al.6 study was evaluated using Seurat’s 
AddModuleScore function using the default parameters. This function 
calculates the average expression level per cell of the set of genes (based 
on log-normalized, unscaled data), and then subtracts the average 
expression of a randomly selected expression-matched control set of 
genes. A resulting score of greater than zero indicates that the ASD risk 
gene set is expressed more highly in that cell than would be expected, 
given the average expression of the gene set across the dataset.

To compare cell type proportions between control and mutant orga-
noids, for each cell type present in a dataset, the glmer function from 
the R package lme4 (v.1.1-23)70 was used to estimate a mixed-effect logis-
tic regression model71. The output was a binary indicator of whether 
cells belong to this cell type, the control or mutant state of the cell was a 
fixed predictor, and the organoid that the cell belonged to was a random 
intercept. Another model was fit without the control-versus-mutant pre-
dictor, and the ANOVA function was used to compare the two model fits. 
P values for each cell type were then adjusted for multiple-hypothesis 
testing using Benjamini–Hochberg correction.

Pseudotime, gene module and differential expression analysis
Pseudotime analysis was performed using the Monocle3 v.0.2.0 soft-
ware package72 with the default parameters. The cells were first subset 
to contain an equal amount from control and mutant. A starting point 
for the trajectory was chosen manually by finding an endpoint of the 
tree located in the earliest developmental cell type (generally, cycling 
progenitors). In cases in which the cells were split into more than one 
partition, the starting point was chosen within the partition of interest, 

https://github.com/bioturing/signac
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and a new UMAP was calculated using just these cells. To test whether 
mutant trajectories were accelerated compared with the control, a 
one-sided Kolmogorov–Smirnov test was applied comparing the dis-
tribution of psuedotime values of control versus mutant cells, using 
the stats R package.

To learn patterns of coordinated gene regulation across the cells, 
we applied WGCNA19 to each dataset. In cases in which cells were split 
into partitions in the above pseudotime analysis, only cells belonging 
to the partition of interest were used. Normalized gene expression 
data were further filtered to remove outlying genes, mitochondrial and 
ribosomal genes. Outliers were identified by setting the upper (>9) and 
lower (<0.15) thresholds to the average normalized expression per gene. 
After processing, blockwiseModules function from the WGCNA v.1.69 
library was performed in R with the parameters networkType=“signed”, 
minModuleSize=4, corType=“Bicor”, maxPOutliers=0.1, deepSplit=3, 
trapErrors=T and randomSeed=59069. Other than power, the remain-
ing parameters were left as the default setting. To pick an adequate 
power for each dataset, we used the pickSoftThreshold function from 
WGCNA to test values from 1 to 30. The final resolution was determined 
by choosing the resolution that captured most variation in the fewest 
total number of modules— this resulted in a power of 3 for SUV420H1 
35 d.i.v., 9 for ARID1B 35 d.i.v. and 12 for CHD8 109 d.i.v.

To calculate differential expression of modules, Seurat objects were 
downsampled to have an equal number of cells per organoid, and then 
the AddModuleScore function was used, using gene lists from WGCNA 
results. For each module, linear mixed-effect models were fit to the data, 
with the modules scores as the output, the organoid the cell belongs to 
as a random intercept, and with or without the control-versus-mutant 
state as a predictor. The ANOVA function was used to compare the 
models, and P values were then adjusted across modules using Benja-
mini–Hochberg correction.

DEGs between control and mutant organoids were assessed after 
datasets were subset to the cells from the partition of interest in the 
above pseudotime analysis, to the cells from each individual cell type, 
or not subset at all for pseudobulk analysis. Reads were then summed 
across cells in each organoid. Genes with less than 10 total reads were 
excluded, and DESeq2 (ref. 73) was used to calculate DEGs, with each 
organoid as a sample74. The clusterProfiler75 R package was used to find 
enriched biological processes in these gene sets, with the enrichGO 
function and the compareCluster function to highlight processes the 
gene sets might have in common.

Single-nucleus isolation and single-cell ATAC-seq
Nuclei from 1 month and 3 month organoids were extracted with two 
types of procedures according to their size differences. For the 1 month 
organoids, nuclei were extracted according to a protocol provided 
by 10x Genomics76 to minimize material loss, while a sucrose-based 
nucleus isolation protocol77 was used for the 3 month organoids to 
better remove debris. Single-nucleus ATAC-seq libraries were prepared 
using the Chromium Single Cell ATAC Library & Gel Bead v1 Kit (10x 
Genomics, PN-1000110) and around 15,300 nuclei per channel were 
loaded to give an estimated recovery of 10,000 nuclei per channel. 
Libraries from different samples were pooled on the basis of molar 
concentrations and sequenced with 1% PhiX spike-in on the NextSeq 
500 instrument (Illumina) with 33 bases each for read 1 and read 2, 8 
bases for index 1 and 16 bases for index 2.

Single-cell ATAC-seq data analysis
Reads from scATAC-seq were aligned to the GRCh38 human reference 
genome and the cell-by-peak count matrices were produced using the 
Cell Ranger ATAC pipeline v.2.0.0 (10x Genomics) with the default 
parameters. Data were analysed using the Signac R package (v.1.2.1)78 
using R v.4.0. Annotations from the EnsDb.Hsapiens.v86 package79 were 
added to the object. After consideration of the quality control metrics 
recommended in that package, cells with 1,500–20,000 fragments in 

peak regions, at least 35% of reads in peaks, a nucleosome signal of 
less than 4 and a TSS enrichment score of greater than 2 were retained 
for further analysis. Latent semantic indexing (LSI) was performed 
to reduce data dimensionality (counts were normalized using term 
frequency inverse document frequency, all features were set as top 
features, and singular value decomposition was performed). The top 
LSI component was discarded as it correlated strongly with sequencing 
depth, and components 2–30 were used for downstream analysis. Cells 
were clustered using Seurat’s FindNeighbors, followed by FindClusters 
with the SLM algorithm (a 20-nearest-neighbor graph was constructed 
and modularity optimization using the smart local moving algorithm 
was performed to identify clusters). Variation in the cells was visualized 
using UMAP analysis of the top LSI components.

scATAC-seq data were integrated with scRNA-seq data from the 
corresponding Mito210 dataset for each timepoint, using Seurat’s 
TransferData to predict cell type labels for the ATAC profiles. Concur-
rently, differentially accessible (DA) peaks per cluster were called using 
FindMarkers using the logistic regression framework with the number 
of fragments in peak regions as a latent variable. These DA peaks were 
mapped to the closest genes. The top genes per cluster were used to 
confirm and refine cluster cell type assignments from those based on 
transferring RNA labels.

DA peaks between control and SUV420H1-mutant organoids were 
calculated per cell type, using the same method as described above. 
We noticed that most cell types had very few significantly DARs (range 
6–34, except for apical radial glia cells, the most prevalent and, there-
fore, the most powered cell type at this time point, which had 515 DARs), 
and that the DARs were almost entirely overlapping in all cell types. 
Therefore, DARs were calculated using all cells together to improve 
power. DARs were visualized using Signac’s CoveragePlot function 
with the default parameters.

To find transcription factor motifs enriched in DARs, the top 400 
up- and downregulated peaks for each time point differentially acces-
sible peaks were supplied to the HOMER software (v.4.11.1)80, using a 
300 bp fragment size and masking repeats. In the case of upregulated 
regions in 3 month mutant organoids, only 341 regions were supplied, 
as that was the total number of regions with log[FC] > 0.1 and P > 0.1. 
The top 5 de novo motifs per cell type found by HOMER with P ≤ 10−10 
are reported, along with all TFs of which the known binding sites match 
that motif with a score of ≥0.59.

Statistics and reproducibility
Organoid size analysis. Information about the number of organoids 
used is provided in Supplementary Table 2. In summary, for SUV420H1: 
n = 132 for total control organoids, n = 132 for total mutant organoids, 
from 6 experimental batches. For ARID1B: n = 109 for total control orga-
noids, n = 122 for total mutant organoids, from 4 experimental batches. 
For CHD8: n = 472 for total control organoids, n = 482 for total mutant 
organoids, from 7 experimental batches. P values were calculated us-
ing two-sided t-tests and then adjusted using Bonferroni correction.

Proteomic analysis. Four mutant and four control organoids were used 
for SUV420H1. Three mutant and three control, and five mutant and 
four control organoids were used for CHD8 and ARID1B, respectively. To 
detect statistically significant differential protein abundance between 
conditions, moderated t-tests were performed as described in ‘MS data 
analysis’ (FDR threshold of 0.1; Extended Data Fig. 12a–c). GO terms and 
KEGG pathways were calculated using the GSEA software (Extended 
Data Fig. 12d–f) and FDR-adjusted q < 0.05 was considered to be statisti-
cally significant. For each pair of protein set distances between pairs of 
DEP sets (Extended Data Fig. 12h, i), a PPI-weighted protein set distance 
was calculated between all significant DEPs (FDR < 0.1). To determine 
whether this distance was smaller than would be expected by chance, 
size-matched sets were randomly chosen from the proteins detected 
in each experiment, and the distance between these random sets was 



calculated 1,000 times per pair. P values were assigned by counting the 
fractions of times that this random distance was less than the actual 
distance value between differential sets.

scATAC-seq analysis. Detailed information is provided in Supplemen-
tary Table 10. In summary, three SUV420H1 mutant and three control 
organoids were used for each of the 1 month and 3 month timepoints, 
for a total of twelve individually sequenced organoids. The total number 
of cells sequenced was 45,988.

scRNA-seq analysis. Detailed information is provided in Supplemen-
tary Table 10. In summary, in each dataset, three individual organoids 
per genotype were profiled. In two cases, one organoid was excluded 
from the analysis as an outlier; in PGP1 SUV420H1 organoids at 1 month, 
a mutant organoid was excluded due to very low average nUMI and 
nGene in that sequencing lane, and in the HUES66 CHD8 organoids at 3.5 
months batch II, a mutant organoid was excluded because it contained 
mostly interneuron lineage cells, with very few projection neuron cells. 
Although an increase in interneuron-lineage cells was seen in all mutant 
organoids, this organoid was excluded to be conservative. This left a 
total of 112 single organoids that passed quality control and were con-
sidered in downstream analysis, with a total of 749,370 cells. Adjusted 
P values for differences in cell type proportions between control and 
mutant organoids (Figs. 1a–c, 2a, b and Fig. 3a, b and Extended Data 
Figs. 4c–f, 5a–c; 8b, c, e, g, 9a, b, e and 10b–d) were based on logistic 
mixed models (see the ‘scRNA-seq data analysis’ section). Adjusted P 
values for differences in the distribution of module scores between 
control and mutants (Figs. 1f, 2e and 3e and Extended Data Figs. 5e, 8i 
and 9h) were based on linear mixed models (see the ‘Pseudotime, gene 
module and differential expression analysis’ section). In Fig. 4, for each 
comparison of two gene lists, the circles inside the box are coloured 
and sized according to the significance of the number of overlapping 
genes in those two lists, reported as the Bonferroni-adjusted P value 
determined using a hypergeometric test.

Bulk RNA-seq analysis. Three organoids were sequenced per genotype 
for a total of 30 individual organoids.

Calcium imaging analysis. Five organoids were analysed per genotype. 
Spontaneous activity was recorded in three different z planes (120 ± 803 
neurons per plane (range from 25 to 294 neurons per plane) in control 
organoids, and 107 ± 75 neurons per plane (range from 32 to 255 neu-
rons per plane) in SUV420H1+/− organoids). P values were calculated 
from two-tailed t-tests (Fig. 1h, i). P values for cumulative frequency 
distribution (Extended Data Fig. 7j) of ISI for control and SUV420H1+/− 
organoids were determined using two-sided Kolmogorov–Smirnov 
tests. Representative images in Fig. 1g and Extended Data Fig. 7a show 
one control organoid out of five control and five SUV420H1+/− organoids.

Immunohistochemistry. At least three organoids of each condition 
were used for verifying the expression of the indicated markers in Ex-
tended Data Figs. 1a–c, 3g, 4a, b, 8a, d, f and 9c, d, f.

Western blotting. Each control and mutant protein lysate was blotted 
at least twice in Extended Data Fig. 3d–f.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Read-level data from scRNA-seq and scATAC-seq, along with proteom-
ics data, supporting the findings of this study have been deposited in a 
controlled access repository at https://www.synapse.org with accession 

number project ID syn26346373 Count-level data and metadata have 
been deposited at the Single Cell Portal (https://singlecell.broadinsti-
tute.org/single_cell/study/SCP1129). The electrophysiology materials 
and data are available from the corresponding authors on request. 
Public data used in this paper include the GRCh38 human reference 
genome and the EnsDb.Hsapiens.v86 annotation package.

Code availability
The code used for data analysis is available at GitHub (https://github.
com/AmandaKedaigle/mutated-brain-organoids).
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Extended Data Fig. 1 | Cortical organoids cultured for one, three and six 
months generate the cellular diversity of the human cerebral cortex with 
high organoid-to-organoid reproducibility. a, scRNA-seq and 
immunohistochemistry analysis of organoids cultured for one month 
(32 d.i.v.), three months (98 d.i.v.), and six months (190 d.i.v.). Left, t-SNE plots (n 
= 3 organoids per timepoint, co-clustered). Cells are coloured by cell-type. 
Right, immunohistochemistry for specific markers. Neural progenitor marker 
SOX2 (magenta) and postmitotic neuronal marker TBR1 (green) are shown at 
one month. CPN marker SATB2 (magenta) and CFuPN marker CTIP2 (green) are 
shown at three months. The astroglia markers S100B (magenta) and GFAP 
(green) are shown at six months. Below, schematic images of brain organoids in 
each timepoint. Scale bars are 100 μm. b, Immunohistochemistry for neuronal 
(MAP2), dorsal forebrain neural progenitor (EMX1, SOX2), CFuPN (CTIP2), and 
CPN (SATB2) markers in GM08330 organoids at one, three, and six months. 
Scale bars: whole organoids (leftmost column), 200 μm; others, 50 μm. c, 
Immunohistochemistry for cell-type specific markers in Mito210 organoids, as 
in b. d, Top, t-SNE plots of the scRNA-seq data from individual replicates from 
three organoids at one month, three organoids at three months, and three 
organoids at six months from the GM08330 cell line shown in b. Bottom, bar 

charts showing the cell-type composition of each individual organoid. On top 
of the bar charts, mutual information (MI) scores between cell-type 
proportions and organoid identities are displayed. A MI score of 0 would 
indicate identical cell type proportions between organoids, while a score of 1 
would indicate completely divergent profiles. In previous work, MI scores for 
endogenous brain datasets were reported to range from 0.008 to 0.0649. e, 
scRNA-seq data of organoids from the Mito210 cell line at one month (35 d.i.v.), 
three months (92 d.i.v.), and six months (178 d.i.v.), as in d. Organoids for the 
one and three month timepoints are the same as the control organoids in 
Extended Data Fig. 4f and Extended Data Fig. 5b. f, Expression of selected 
marker genes used in cell-type identification. Violin plots show distribution of 
normalized expression in cells from GM08330 organoids at one, three and six 
months (n = 3 individual organoids per timepoint). g, Expression of marker 
genes in Mito210 organoids, as in f. Number of organoids used for each analysis 
can be found in the Methods under “Statistics and reproducibility”. aRG, apical 
radial glia; DL, deep layer; UL, upper layer; PN, projection neurons; oRG, outer 
radial glia; IPC, intermediate progenitor cells; CPN, callosal projection 
neurons; CFuPN, corticofugal projection neurons; GABA INP, GABAergic 
interneuron progenitors; GABA IN, GABAergic interneurons.
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Extended Data Fig. 2 | Expression of selected ASD risk genes in cortical 
organoids cultured for one, three, and six months. a, t-SNE plots of 58,568 
cells from nine organoids from the GM08330 cell line, shown in Extended Data 
Fig. 1d, after Harmony batch correction. Cells are coloured according to cell-
type (left) and timepoint (right). b, Gene set expression scores for a set of 102 
genes associated with ASD risk6 across cell-types, in cells from a. Scores above 
0 indicate enriched expression over similar sets of randomly chosen genes.  
c, t-SNE plots showing normalized expression of selected ASD risk genes in cells 
from a. d, Average expression of 102 genes associated with ASD risk across cell-
types and timepoints in the GM08330 cell line. e, t-SNE plots of nine organoids 

from the Mito210 cell line, shown in Extended Data Fig. 1e, after Harmony batch 
correction. Cells are coloured according to cell-type (left) or timepoint (right). 
f, Gene set scores for the set of ASD risk genes as in b, in cells from e. Scores 
above 0 indicate higher expression than similar modules of randomly chosen 
genes. g, t-SNE plots showing normalized expression of selected ASD risk genes 
in cells from e. h, Expression of 102 genes associated with ASD risk across cell-
types and timepoints in Mito210 cell line. RG, radial glia (aRG, oRG, and oRG/
Astroglia), IPC, intermediate progenitor cells; CPN, callosal projection 
neurons; CFuPN, corticofugal projection neurons; EN, Excitatory neurons 
(CPN, CFuPN and PN); GABA IN, GABAergic interneurons.
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Extended Data Fig. 3 | Generation and characterization of SUV420H1, 
ARID1B, and CHD8 mutant organoids. a, Protein domain structure of 
SUV420H1. Arrow indicates the region (N-domain) mutated in the Mito210, 
PGP1 and Mito294 parental lines (bottom). b, Protein domain structure of 
ARID1B. Arrow indicates the region before the ARID domain mutated in the 
Mito210 and Mito294 parental lines (bottom). c, Protein domain structure of 
CHD8. Arrows indicates the helicase C-terminal (HELC) domain mutated in the 
HUES66, H1, GM08330, Mito294 and Mito210 lines (bottom). d–f, Western blot 
analysis showing presence of SUV420H1 (d), ARID1B (e) and CHD8 (f) protein 
expression in control lines, and its reduction in the mutant lines. Molecular 
weight in kDa is shown on the left of the gel. H4K20me3, a hallmark of SUV420H1 
activity, and total levels of histone H4 were also detected in control and in 
SUV420H1+/− lines (d). ARID1B was not detectable in Mito294 even with a longer 
exposure of the blotted membrane (e, right). Asterisks indicate the bands used 
for quantification. Bottom, protein levels in control and mutant lines were 
quantified and normalized for housekeeping genes β-Actin or GAPDH. For gel 

source data, see Supplementary Fig. 1. g, Immunohistochemistry for neuronal 
(MAP2), dorsal forebrain neural progenitor (EMX1, SOX2) and CFuPN (CTIP2) 
markers in organoids at 35 d.i.v. derived from the Mito210 SUV420H1+/−, Mito210 
ARID1B+/− and HUES66 CHD8+/− and isogenic control cell lines. Scale bar, 300 μm. 
h–j, Size quantification of control and SUV420H1+/− (h), ARID1B1+/− (i) and CHD8+/− 
( j) organoids across lines and at different timepoints. The ratio of organoid size 
compared to the average of control organoids in each batch is plotted. 
Differentiation batch (b.) is indicated by the shade of the points. Lower and 
upper hinges correspond to the first and third quartiles (the 25th and 75th 
percentiles) and middle hinge is the median (50th). Both whiskers extends from 
the hinge to the largest or smallest value no further than 1.5 * IQR from the hinge 
(where IQR is the inter-quartile range, or distance between the first and third 
quartiles). P-values from a two-sided t-test, after Bonferroni adjustment within 
each mutation. Number of organoids and differentiations used for the 
measurement are summarized in Supplementary Table 2 and in the Methods 
under “Statistics and reproducibility”.
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Extended Data Fig. 4 | Cell-type composition of SUV420H1+/− and isogenic 
control organoids. a, Immunohistochemistry of Mito210 SUV420H1+/− and 
control organoids cultured for one month (35 d.i.v.). Optical section from the 
middle of whole-organoid dataset. Scale bars are 500 μm. SOX2, a marker of 
neuronal progenitors, is shown in red, and nuclei (Syto16) are shown in blue.  
b, Immunohistochemistry for the postmitotic excitatory neuronal marker 
TBR1 and GABAergic marker DLX2 in Mito294 control and SUV420H1+/− 
organoids at one month (35 d.i.v.). Scale bars: 200 μm. c–e, scRNA-seq data 
from one month (Mito294 35d.i.v. (c), PGP1 35 d.i.v. (d) and Mito210 28 d.i.v., 
batch I (e)) control and SUV420H1+/− organoids. Bar charts show the percentage 
of cells for all the cell populations in each control and mutant organoid. 
Adjusted p-values for a difference in cell type proportions between control and 
mutant, based on logistic mixed models (see Methods) are shown. f, scRNA-seq 
data from Mito210 35 d.i.v. (batch II) control and SUV420H1+/− organoids. Left 
top shows combined t-SNE plots of control and mutant organoids (n = 3 single 
organoids per genotype). Cells are coloured by cell-type, and the total number 
of cells per plot is indicated. Left bottom, t-SNE plots for control and mutant 

individual organoids. Immature deep-layer projection neuron populations are 
highlighted in colour. Right, bar charts show the percentage of cells for all the 
cell populations in each control and mutant organoid, as in c–e. g, Enriched GO 
terms for genes upregulated and downregulated in SUV420H1+/− vs. control 
across lines. Genes were calculated using cells from the partition of interest. 
The top 5 most significant terms per dataset are shown. Size of dot indicates 
the proportion of genes belonging to each term found in the list of 
dysregulated genes (“GeneRatio”). Colour indicates enrichment adjusted p-
value. Numbers in parentheses along the y axis indicate the number of DEGs in 
that dataset. As control, we calculated GO term enrichment for 100 random 
gene sets of the same size sampled from genes expressed in each dataset, and 
found no significant enrichment of these terms (see Methods). Number of 
organoids used for each analysis can be found in the Methods under “Statistics 
and reproducibility”. aRG, apical radial glia; DL, deep layer; UL, upper layer; PN, 
projection neurons; oRG, outer radial glia; IPC, intermediate progenitor cells; 
CPN, callosal projection neurons; CFuPN, corticofugal projection neurons; 
GABA N, GABAergic neurons.
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Extended Data Fig. 5 | Cell-type composition, full pseudotime trajectories, 
and gene modules in SUV420H1+/− and isogenic control organoids. a–c, 
scRNA-seq data from three month Mito294 89 d.i.v. (a), Mito210 92 d.i.v. batch I 
(b), and 90 d.i.v. batch II (c) control and SUV420H1+/− organoids. Left top shows 
combined t-SNE plots of control and mutant organoids (n = 3 single organoids 
per genotype). Cells are coloured by cell type, and the number of cells per plot 
is indicated. Left bottom, t-SNE plots for control and mutant individual 
organoids. Cell-types of interest are highlighted in colour. Right, bar charts 
show the percentage of cells for all the cell populations in each control and 
mutant organoid. Adjusted p-values for a difference in cell type proportions 
between control and mutant, based on logistic mixed models (see Methods) 
are shown. d, Pseudotime trajectory from the full dataset of Mito210 
SUV420H1+/− 35 d.i.v. (batch II) and control organoids, calculated with 
Monocle3. The partition highlighted by a box was subsetted and the trajectory 

is shown in Fig. 1d. e, Module scores (top) and their distribution across mutant 
and control cells (bottom) for all modules resulting from WGCNA analysis of 
the partition of interest from Mito210 SUV420H1+/− and control organoids at 
35 d.i.v. (batch II). Cells were downsampled to have an equal number of cells per 
organoid. Names were assigned to each module based on the known functions 
of the genes included in each one. Horizontal bars show median scores, and 
dots show average score per organoid. Adjusted p-values show differences 
between control and mutant based on linear mixed models (see Methods). aRG, 
apical radial glia; DL, deep layer; UL, upper layer; PN, projection neurons; CP/
CH, Choroid Plexus/Cortical Hem; oRG, outer radial glia; IPC, intermediate 
progenitor cells; CPN, callosal projection neurons; CFuPN, corticofugal 
projection neurons; GABA INP, GABAergic interneuron progenitors; GABA IN, 
GABAergic interneurons; GABA N, GABAergic neurons.
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Extended Data Fig. 6 | scATAC-seq analysis in SUV420H1+/− and isogenic 
control organoids. a, UMAPs of scATAC-seq data in Mito210 SUV420H1+/− and 
control organoids at one month (31 d.i.v., upper left) and three months 
(93 d.i.v., upper right), and coembedded UMAPs with scRNA-seq in Mito210 
SUV420H1+/− and control organoids at one month (28 d.i.v., middle bottom left) 
and three months (90 d.i.v., middle bottom right). Number of nuclei per plot is 
indicated. b, Enriched GO terms for the nearest genes to regions with increased 
and decreased accessibility in SUV420H1+/− compared to control organoids.  
c, Genome tracks showing read coverage for representative regions with 
increased accessibility between SUV420H1+/− and control organoids. Scales for 
the y axes (normalized counts) are displayed on the top right. d, Genome tracks 

showing read coverage for representative regions with increased accessibility 
between Mito210 SUV420H1+/− and control organoids, split by cell-type. Scales 
for the y axes (normalized counts) are displayed on the top right. e, Top 5 
de novo motifs enriched in the regions with altered accessibility in Mito210 
SUV420H1+/− compared to control organoids at one month (31 d.i.v.) and three 
months (93 d.i.v.), as calculated with HOMER (see Methods). Regions that 
showed increased accessibility in mutant compared to control organoids are in 
green and purple, while those with decreased accessibility are in red and blue. 
Transcription factors with known binding sites resembling the discovered 
motifs are shown.
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Extended Data Fig. 7 | Neuronal spontaneous activity in SUV420H1+/− and 
isogenic control organoids. a, Left, Representative image of a PGP1 SUV420H1 
organoid infected with SomaGCaMP6f2. Right, ΔF/F signal at the peak of a 
network burst. Scale bar: 100 μm. b, Heat map of calcium signal from individual 
cells (rows), showing the effect of 2 μM TTX. c, Top, representative trace of 
spontaneous calcium signal (corresponding to cell #3 in Fig. 1g). Bottom, high 
magnification traces of calcium transients, displaying the difference in 
amplitude between the isolated event and the network burst (top), and 
normalized traces (bottom) showing their kinetics and the multiple peaks of 
the burst signal. d, MEA recordings. Top, Spatial configuration of recording 
electrodes. Middle, example raw traces for the numbered electrodes shown at 
the top, and the effect upon 2 μM TTX application. Yellow columns indicate the 
network bursts. Right, individual (grey) and average (colour) spike waveforms 
for each electrode. High magnification of the trace #4 showing the individual 
spikes (asterisk) during a burst event. Bottom, average spike waveform (right) 
in a unit of electrodes (left), extracted at the time points determined by the 

spikes in electrode #4. e, f, Synchronous network activity in human brain 
organoids. Heat map of cross-correlation index (e) and cross-correlogram 
against a reference signal (cell #135) for a representative recording. As a 
control, the signal of 10 cells were circularly shifted by a random phase and the 
cross-correlation was then calculated. In f, the average value was plotted, and 
the synchronous activations as well as the periodic bursting can be seen (“All 
cells” in red). g, Effect of NBQX on neuronal activity. Representative traces for 
individual cells were normalized (3 traces for SUV420H1+/− are superimposed) 
and post-NBQX residual/isolated calcium transients are indicated by asterisks. 
h, Effect of NBQX on calcium signal. Heat map of ΔF/F signal for 15 
representative cells in control (top) and SUV420H1+/− (bottom) organoids.  
i, j, Inter-spike interval (ISI) analysis for the network bursting. Relative 
frequency (top) and cumulative frequency distribution (bottom) of ISI for 
control and SUV420H1+/− organoids. In j, two-sided Kolmogorov-Smirnov test (n 
= 5 organoids per genotype). Number of organoids used for each analysis can 
be found in the Methods under “Statistics and reproducibility”.
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Extended Data Fig. 8 | Cell-type composition, full pseudotime trajectories, 
and gene modules of ARID1B+/− and isogenic control organoids.  
a, Immunohistochemistry for the postmitotic excitatory neuronal marker 
TBR1 (magenta) and GABAergic marker DLX2 (green) in Mito210 control and 
ARID1B+/− organoids at one month (35 d.i.v.). Scale bars: 200 μm. b, c, scRNA-seq 
data from Mito210 one month (35 d.i.v. batch I in b, batch II in c) control and 
ARID1B+/− organoids. Bar charts show the percentage of cells for all the cell 
populations in each control and mutant organoid. Adjusted p-values for a 
difference in cell-type proportions between control and mutant, based on 
logistic mixed models (see Methods) are shown. d, Immunohistochemistry for 
TBR1 (magenta) and DLX2 (green) in Mito210 control and ARID1B+/− organoids 
at three months (90 d.i.v.). Scale bars: 100 μm. e, scRNA-seq data from Mito210 
three months (90 d.i.v.) control and ARID1B+/− organoids. Left top shows 
combined t-SNE plots of control and mutant organoids (n = 3 single organoids 
per genotype). Cells are coloured by cell-type, and the number of cells per plot 
is indicated. Left bottom, t-SNE plots for control and mutant individual 
organoids. GABAergic interneurons are highlighted in colour. Left, bar charts 
show the percentage of cells for all the cell populations in each control and 
mutant organoid, as shown in b, c. Two out of three mutant organoids show an 
increase in GABAergic interneurons, vs. zero out of three controls (adjusted  
p = 0.19, logistic mixed models). f, Immunohistochemistry for the postmitotic 
excitatory neuronal marker TBR1 (magenta) and GABAergic marker DLX2 
(green) in Mito210 control and ARID1B+/− organoids at three months (90 d.i.v.). 
Three out of four mutant organoids contain DLX2-positive cells, while no DLX2 
expression is detected in the four controls. Scale bars: 500 μm. g, scRNA-seq 
data from Mito294 one month (35 d.i.v.) ARID1B+/− and control organoids. Left 

top shows combined t-SNE plots of control and mutant organoids (n = 3 single 
organoids per genotype). Cells are coloured by cell type, and the number of 
cells per plot is indicated. Left bottom, t-SNE plots for control and mutant 
individual organoids. GABAergic neurons, newborn deep-layer projection 
neurons and immature deep-layer projection neuron populations are 
highlighted in colour. Right, bar charts show the percentage of cells for all the 
cell populations in each control and mutant organoid, as in b, c, e. 
 h, Pseudotime trajectories from the full dataset of Mito210 ARID1B+/− 35 d.i.v. 
batch II and control organoids, calculated with Monocle3. The partition 
highlighted by a box was subsetted and the trajectory is shown in Fig. 2c.  
i, Module scores (top) and their distribution across mutant and control cells 
(bottom) for all modules resulting from WGCNA analysis of the partition of 
interest from Mito210 ARID1B1+/− and control organoids at 35 d.i.v. Cells were 
downsampled to have an equal number of cells per organoid. Names were 
assigned to each module based on the known functions of the genes included 
in each one. Horizontal bars show median scores, and dots show average score 
per organoid. Adjusted p-values show differences between control and mutant 
based on linear mixed models (see Methods). Number of organoids used for 
each analysis can be found in the Methods under “Statistics and 
reproducibility”. aRG, apical radial glia; DL, deep layer; UL, upper layer; PN, 
projection neurons; CP/CH, Choroid Plexus/Cortical Hem; oRG, outer radial 
glia; IPC, intermediate progenitor cells; CPN, callosal projection neurons; 
CFuPN, corticofugal projection neurons; GABA NP, GABAergic neuron 
progenitors; GABA N, GABAergic neurons; GABA INP; GABAergic interneuron 
progenitors; GABA IN, GABAergic interneurons.
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Extended Data Fig. 9 | Cell-type composition, immunohistochemistry, and 
full pseudotime trajectories and gene modules of CHD8+/− and isogenic 
control HUES66 organoids. a, b, scRNA-seq data from HUES66 3.5-month 
(109 d.i.v. (a), batch I and 107 d.i.v. (b). batch II) CHD8+/− and control organoids. 
Bar charts show the percentage of cells for all the cell populations in each 
control and mutant organoid. Adjusted p-values for a difference in cell-type 
proportions between control and mutant, based on logistic mixed models 
(see Methods) are shown. c, Immunohistochemistry for the postmitotic 
excitatory neuronal marker TBR1 (magenta) and GABAergic marker DLX2 
(green) in HUES66 control and CHD8+/− organoids at 3.5 months (107 d.i.v.). Scale 
bars: 100 μm. d, Immunohistochemistry for neuronal (MAP2), dorsal forebrain 
neural progenitor (EMX1, SOX2) and CFuPN (CTIP2) markers in HUES66 CHD8+/− 
and control organoids at 3.5 months (107 d.i.v., top), and six months (190 d.i.v., 
bottom). Scale bars: whole organoids, 500 μm; others, 100 μm. e, scRNA-seq 
data from HUES66 CHD8+/− and control organoids at six months (190 d.i.v.).  
Top left shows combined t-SNE plots of control and mutant organoids (n = 3 
single organoids per genotype). Cells are coloured by cell-type, and the number 
of cells per plot is indicated. Top right, t-SNE plots for control and mutant 
individual organoids. GABAergic interneurons are highlighted in colour. 
Bottom, bar charts show the percentage of cells for all the cell populations in 

each control and mutant organoid, as in a, b. f, Immunohistochemistry for the 
post mitotic neuronal marker TBR1 (magenta) and GABAergic marker DLX2 
(green) in HUES66 control and CHD8+/− organoids at six months (190 d.i.v.).  
Scale bars: 100 μm. g, Pseudotime trajectories from the full dataset of HUES66 
batch I CHD8+/− and control organoids at 109 d.i.v., calculated with Monocle3.  
The partition highlighted by a box was subsetted and the trajectory is shown in 
Fig. 3c. h, Module scores (top) and their distribution across mutant and control 
cells (bottom) for all modules resulting from WGCNA analysis of the partition of 
interest from HUES66 CHD8+/− and control organoids at 109 d.i.v. Cells were 
downsampled to have an equal number of cells per organoid. Names were 
assigned to each module based on the known functions of the genes included in 
each one. Horizontal bars show median scores, and dots show average score per 
organoid. Adjusted p-values show differences between control and mutant 
based on linear mixed models (see Methods). Number of organoids used for 
each analysis can be found in the Methods under “Statistics and 
reproducibility”. aRG, apical radial glia; DL, deep layer; UL, upper layer; PN, 
projection neurons; oRG, outer radial glia; IPC, intermediate progenitor cells; 
CPN, callosal projection neurons; CFuPN, corticofugal projection neurons; 
GABA INP, GABAergic interneuron progenitors; GABA IN, GABAergic 
interneurons.



Extended Data Fig. 10 | Bulk RNA-seq and scRNA-seq of CHD8+/− and isogenic 
control organoids from multiple cell lines. a, Bulk RNA-seq data from 
HUES66, GM83330 and H1 35 d.i.v. organoids. Enriched GO terms for genes 
differentially expressed in CHD8+/− vs. control organoids. The top 5 most 
significant terms per dataset are shown. Size of dot indicates the proportion of 
genes belonging to each term found in the list of dysregulated genes 
(“GeneRatio”). Colour indicates enrichment adjusted p-value. Numbers in 
parentheses along the y axis indicate the number of DEGs in that dataset.  
b–d, scRNA-seq data from control and CHD8+/− organoids at 3.5 months 
(GM83330 108 d.i.v., batch I (b), GM83330 108 d.i.v., batch II (c) and H1 105 d.i.v. 
(d)). Left top shows combined t-SNE plots of control and mutant organoids  
(n = 3 single organoids per genotype). Cells are coloured by cell type, and the 

number of cells per plot is indicated. Left bottom, t-SNE plots for control and 
mutant individual organoids. GABAergic interneurons are highlighted in 
colour. Right, bar charts show the percentage of cells for all the cell populations 
in each control and mutant organoid. Adjusted p-values for a difference in 
cell-type proportions between control and mutant, based on logistic mixed 
models (see Methods) are shown. aRG, apical radial glia; DL, deep layer; UL, 
upper layer; PN, projection neurons; CP/CH, Choroid Plexus/Cortical Hem; 
oRG, outer radial glia; IPC, intermediate progenitor cells; CPN, callosal 
projection neurons; CFuPN, corticofugal projection neurons; GABA INP, 
GABAergic interneuron progenitors; GABA IN, GABAergic interneurons;  
GABA N, GABAergic neurons.
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Extended Data Fig. 11 | Convergent differential expressed genes for the 
three mutations. a, Log fold change of all genes which showed significant 
change (adjusted p < 0.05) in all three of the 1 month datasets: Mito210 
SUV420H1+/− 35 d.i.v., Mito210 ARID1B+/− 35 d.i.v., and HUES66 CHD8+/− 35 d.i.v. 
DEGs were calculated using all cells as a pseudobulk for Mito210 SUV420H1+/− 
and Mito210 ARID1B+/−. b, Differential expression of all 102 genes associated 
with ASD risk6 in the three datasets Mito210 SUV420H1+/− 35 d.i.v., Mito210 
ARID1B+/− 35 d.i.v. and in HUES66 CHD8+/− 35 d.i.v. compared to relative controls. 
Expression of risk genes was calculated using all cells (pseudobulk) for Mito210 
SUV420H1+/− and Mito210 ARID1B+/−. Boxes are coloured according to 

-log10(adjusted p value) according to whether they are upregulated (purple), or 
downregulated (turquoise) in mutant vs. control. Genes are ordered according 
to hierarchical clustering (using Euclidean distance) of those values. c, d, 
Enriched GO terms for genes upregulated (c) and downregulated (d) in mutant 
vs. control. Genes were calculated using the cells as in a, b. The top 5 most 
significant terms per dataset are shown. Size of dot indicates the proportion of 
genes belonging to each term found in the list of dysregulated genes 
(“GeneRatio”). Colour indicates enrichment adjusted p-value. Numbers in 
parentheses along the x axis indicate the number of DEGs in that dataset.
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Extended Data Fig. 12 | Convergent differentially expressed proteins for 
the three mutations. a–c, Volcano plot showing fold change versus adjusted  
p-value of measured proteins in MS experiments on Mito210 SUV420H1+/−  
(a), Mito210 ARID1B+/− (b), and HUES66 CHD8+/− (c) vs. control organoids at 
35 d.i.v. (n = 4 single organoids per genotype for SUV420H1, 4 controls and 5 
mutants for ARID1B, and n = 3 single organoids per genotype for CHD8). To 
detect statistically significant differential protein abundance between 
conditions a moderated t-test was performed (see Methods, FDR threshold of 
0.1). Significant DEPs are shown in red (FDR < 0.1). d–f, Selected enriched GO 
terms for DEPs in Mito210 SUV420H1+/− (d), Mito210 ARID1B+/− (e), and HUES66 
CHD8+/− (f) vs. control organoids cultured for 35 d.i.v. GO terms and KEGG 
pathways were calculated using the GSEA software (see Methods) and FDR 
q-values < 0.05 were considered statistically significant. g, Protein-protein 
interaction network using the top 50 DEPs from the three sets of mutant versus 
control organoids, created using the prize-collecting Steiner forest algorithm 
(see Methods). Protein nodes are coloured by the mutant in which they were 
differentially expressed. Gray nodes indicate “Steiner nodes”, proteins that did 
not result from any screen but were included by the algorithm to connect DEPs. 
Lines between nodes indicate physical protein-protein interactions from the 
STRING database, where line thickness correlates with interaction confidence. 

Subclusters of the network and significantly enriched terms for those 
subclusters are highlighted with gray rectangles and black text. h, Protein set 
distances between pairs of differentially expressed protein sets. For each pair 
of mutations, a PPI-weighted protein set distance was calculated between all 
significant DEPs (FDR < 0.1, pink diamond). To determine if this distance was 
smaller than would be expected by chance, size-matched sets were randomly 
chosen from the proteins detected in each experiment, and distance between 
these random sets was calculated 1000 times per pair. P-values were assigned 
by counting the fraction of times this random distance was less than the actual 
distance value between differential sets. Lower and upper hinges correspond 
to the first and third quartiles (the 25th and 75th percentiles) and middle hinge 
is the median (50th). Both whiskers extends from the hinge to the largest or 
smallest value no further than 1.5 * IQR from the hinge (where IQR is the inter-
quartile range, or distance between the first and third quartiles). i, Protein set 
distances between the top 50 DEPs per mutation. For each pair of mutations, a 
PPI-weighted protein set distance was calculated as in h. Number of organoids 
used for the analyses are summarized in the Methods under “Statistics and 
reproducibility”. DEPs: differentially expressed proteins. MS: mass 
spectrometry.



Extended Data Fig. 13 | Mutations in ASD risk genes in human brain organoids converge on asynchronous development of shared neuronal classes. 
Conceptual schematics highlighting main results.
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