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Non-invasive suppression of essential tremor via
phase-locked disruption of its temporal coherence
Sebastian R. Schreglmann 1,20, David Wang2,3,20, Robert L. Peach 4,5,6,20, Junheng Li 5,6,

Xu Zhang 7,8, Anna Latorre1, Edward Rhodes 5,6, Emanuele Panella9, Antonino M. Cassara 10,

Edward S. Boyden11,12,13,14,15,16,17, Mauricio Barahona 4, Sabato Santaniello 7,8, John Rothwell 1,

Kailash P. Bhatia 1✉ & Nir Grossman5,6,11,12,18,19✉

Aberrant neural oscillations hallmark numerous brain disorders. Here, we first report a

method to track the phase of neural oscillations in real-time via endpoint-corrected Hilbert

transform (ecHT) that mitigates the characteristic Gibbs distortion. We then used ecHT to

show that the aberrant neural oscillation that hallmarks essential tremor (ET) syndrome, the

most common adult movement disorder, can be transiently suppressed via transcranial

electrical stimulation of the cerebellum phase-locked to the tremor. The tremor suppression

is sustained shortly after the end of the stimulation and can be phenomenologically predicted.

Finally, we use feature-based statistical-learning and neurophysiological-modelling to show

that the suppression of ET is mechanistically attributed to a disruption of the temporal

coherence of the aberrant oscillations in the olivocerebellar loop, thus establishing its causal

role. The suppression of aberrant neural oscillation via phase-locked driven disruption of

temporal coherence may in the future represent a powerful neuromodulatory strategy to

treat brain disorders.
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Synchronous oscillatory firing in large populations of neu-
rons has diverse functional roles in the central nervous
system (CNS), including regulation of global functional

states, endowing connectivity during development, and providing
spatiotemporal reference frames for processing of sensory
input1,2. Aberrant synchronous oscillations have been associated
with numerous brain disorders3,4. A palpable manifestation of
such aberrant oscillation is pathological tremor in essential tre-
mor (ET) syndrome, the most prevalent movement disorder
affecting 0.4% of the general population5. While the biomolecular
origin of ET remains elusive, rendering pharmacological inter-
ventions unspecific and often inefficient6, its systems-level origin,
i.e. oscillatory activity in the cortico-cerebello-thalamo-cortical
(CCTC) network, is well established7. Invasive systems-level
interventions such as lesioning and high-frequency deep brain
stimulation (DBS) can successfully treat medication refractory
ET6,8, but their wide-scale application is limited due to the need
for brain surgery. However, such aberrant oscillations funda-
mentally require a delicate cascade of coherent activities across
the network components. We here explored whether such a
cascade of coherent activities in the CCTC under ET can be
disrupted non-invasively by perturbing the synchronous activity
of the cerebellum via stimulation that is phase-locked to the
tremor oscillation. To phase-lock the stimulation to the tremor
oscillation, we first present a strategy to mitigate the Gibbs phe-
nomenon distortion9 from the Hilbert transformation10 to
compute the instantaneous phase of an oscillatory signal in real-
time, a strategy that we called endpoint corrected Hilbert trans-
form (ecHT). We then demonstrate that if transcranial alternat-
ing current stimulation (tACS) of the cerebellum is phase-locked
to ET movement it can suppress its amplitude. Finally, we show
that the suppression of ET amplitude is attributed to a disruption
of the cascade of coherent activities in the olivocerebellar loop.

Results
Real-time computation of instantaneous phase via endpoint
corrected Hilbert transform. To enable phase-locking of sti-
mulation to oscillatory activity, we first developed a strategy to
compute in real-time the instantaneous phase of oscillatory sig-
nals. Traditionally, the instantaneous phase and envelope
amplitude, of a band-limited, time-varying oscillatory signal are
computed from a complexified version of the signal, known as the
analytic signal, in which the real part is the unmodified signal and
the imaginary part is the signal’s Hilbert transform10. The discrete
analytic signal is most accurately and efficiently computed in the
frequency domain11. However, the Gibbs phenomenon9 has
made it impossible to accurately compute the instantaneous
phase and amplitude at the ends of finite-length analytic signals12.
We hypothesised that by applying a causal bandpass filter to the
frequency domain representation of the analytic signal we would
mitigate the Gibbs phenomenon by establishing a continuity
between the two ends of the signal and remove the distortion
selectively from the end part of the signal—aka ecHT. See
Methods for a detailed description of the ecHT.
To assess whether the ecHT strategy could effectively mitigate

the Gibbs phenomenon at the endpoint of the analytic signal, we
computed the Hilbert transform of a test signal, i.e. a finite-length
discrete cosine waveform, and quantified the error at the
endpoint. Figure 1a, b show the Fourier spectra and the Hilbert
transforms without the endpoint correction when the signal
completed and did not complete full cycles within the sampled
time interval, respectively. At the endpoint of the signal without
ecHT, the maximal phase error was 179° (mean error 47 ± 50°
standard deviation, st.d.), and the maximal amplitude error was
191% (76 ± 69%), Fig. 1c. Fig. 1d shows the same as Fig. 1b but

with the endpoint correction. At the endpoint, the ecHT strategy
reduced the phase error by at least an order of magnitude
(maximal error 12°; mean error 9 ± 2° st.d.) and the amplitude
error by at least two orders of magnitude (8%; 4 ± 2%), Fig. 1e.
The effects of the filter bandwidth and filter order are shown in
Fig. 1f, g, respectively.

Cerebellar stimulation phase-locked to essential tremor
movement. Next, we deployed the ecHT to test whether stimu-
lation of the cerebellum phase-locked to the tremor movement can
perturb ET in a cohort of 11 human participants with ET (see
Supplementary Table 1 for demographic details). We measured
the tremor movement of the hand, computed its instantaneous
phase in real-time, generated eight different stimulating currents –
sinusoidal at six different phase lags (0°, 60°, 120°, 180°, 240°,
300°), a control sinusoidal at the tremor frequency without phase-
locking, and a sham, and applied them transcranially to the
ipsilateral cerebellum via scalp electrodes (mean current amplitude
2.7 ± 1 st.d. mA). Fig. 2a shows a schematic of the phase-locked
stimulation concept, Fig. 2b shows a schematic of the electrode
configuration and the theoretical distribution of the electric fields
in the brain, computed using finite element method (FEM)
modelling. Supplementary Movie 1 shows a representative video.
We applied each stimulation condition in a block of 60 s during
which the participants maintained a tremor evoking posture. Each
block consisted of a 30 s stimulation period (including 5 s of
ramp-up and 5 s of ramp-down) and 15 s stimulation-free periods
before and after. We repeated the stimulation conditions four
times in a double-blinded random order with a 30 s rest interval
between conditions and 5–10min rest interval between sessions of
eight stimulation conditions (see Fig. 2c for a schematic of the
study design and Methods).
To assess whether the stimulating currents were delivered at

accurate phase-lag, we computed, offline using Hilbert transform,
the lag between the instantaneous phase of the stimulation
waveforms and the instantaneous phase of the tremor movement
waveforms. We found that during the phase-locked stimulation,
the phase-lag distribution of each condition was narrow and
different from the other conditions throughout the stimulation
period (Fig. 2d(i)) and during the first and second halve periods
(Fig. 2d(ii)), (p < 10−8 for all periods; Fisher test; see Supple-
mentary Table 2 for full statistics). The difference between the
measured phase-lag and the set phase-lag was small, i.e. 3 ± 11°
(mean ± st.d), across all the phase-locked conditions. The mean
resultant vector length (quantifying the circular spread)13, was
close to one, i.e. 0.98 ± 0.01, across all the conditions, and did not
differ between conditions throughout the stimulation period
(Fig. 2e(i)), and during the first and second halve periods (Fig. 2e
(ii); p > 0.95 for all periods; one-way ANOVA, see Supplementary
Table 3 for full statistics). The mean resultant vector length was
slightly larger at stimulation blocks with higher tremor amplitude
(Fig. 2f(i)) and was slightly smaller at stimulation blocks with
higher tremor amplitude st.d. (Fig. 2f(ii)) higher tremor
frequency (Fig. 2g(i)) and higher tremor frequency st.d. (Fig. 2g
(ii)). In contrast, during the sinusoidal stimulation without phase-
locking, the phase-lag distribution was not different from a
uniform distribution (Fig. 2d(i-ii); p > 0.4 for all periods;
Omnibus test). The mean resultant vector length was small, i.e.
0.19 ± 0.071, and did not differ from sham stimulation (p= 0.37,
paired Wilcoxon signed-rank test), indicating that the stimulation
did not entrain the tremor phase (Fig. 2d, e and Supplementary
Table 3). Across all stimulation conditions, the mean resultant
vector length was not different in trials in which participants
reported sensation underneath the electrodes and trials in which
no sensation was reported (p= 0.3, Paired sign-rank test).
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Phase-dependent suppression of essential tremor amplitude.
After establishing that the stimulating currents were delivered at
the desired phase lags, we assessed whether they affected the
tremor amplitude. To quantify the stimulation effect relative to
the baseline period and relative to the effect of sham stimulation,
we computed, for each participant, the z-score of the tremor
amplitude relative to the mean and the st.d. of the tremor
amplitude during baseline in each stimulation condition, and
then subtracted the median z-score of the tremor amplitude
during sham stimulation (there was no significant difference in
the tremor frequency and amplitude during baseline between
conditions, see Supplementary Table 1 for full statistical details).
To examine the temporal dynamics of the effect we quantified the
z-score values during the first half and second half of the sti-
mulation period, as well as during the post-stimulation period.

We found that the stimulation at the tremor frequency without
phase-locking resulted in a tremor amplitude reduction, yet not
statistically significant (Fig. 3a). A significant tremor amplitude
change (reduction or increase) occurred in only a small number
of participants (Fig. 3b and Supplementary Table 4). Across these
subsets of participants, the change was statistically significant
only in those showing a reduction and only during the first half of
the stimulation (Fig. 3c, d). The corresponding percentage
reduction during the first half period of the stimulation was
−10.8 ± 3.0% (mean ± st.d.) relative to baseline. In contrast,
stimulation that was phase-locked to the tremor movement
resulted in a significant reduction in the tremor amplitude, that
increased throughout the stimulation period and sustained during
the post-stimulation period (Fig. 3e; see Supplementary Fig. 1 for
z-score values expressed relative to stimulation without phase-
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Fig. 1 Concept and simulation of real-time computation of instantaneous phase and amplitude via ecHT. a Hilbert transform (HT) of a finite, discrete,
oscillatory signal completing full cycles. (i) Test signal y1 in this example a cosine waveform with normalised amplitude, frequency f1= 2Hz, and phase delay
;1 ¼ 0; sampled at 256 equidistant time-points over 1 s. First and last data points are marked with black and blue circles, respectively. (ii) Fourier spectrum
(FS) Y1, grey trace, of y1, obtained via fast Fourier transform (FFT) of y1 (in this example using 256 equidistant frequency-points), and FS Z1, black trace, of
the analytic signal, obtained from Y1 by deleting the negative frequencies and doubling the amplitude of the positive frequencies; y-axis in log-scale. Y1 trace
at positive frequencies is overlaid by the Z1 trace. (iii) HT h1 obtained via inverse FFT of Z1; filled blue circle, computed endpoint; non-filled blue circle, actual
endpoint (in this case, overlaid by the filled circle). b HT of a finite, discrete, oscillatory signal not completing full cycles. Test signal y2 similar to y1 but with
f2= 2.25Hz. Showing the same as in (a), but with FS sampled using 2048 points to illustrate the formation of the sinc waveform; red ellipse, outlines the
Gibb phenomenon at the end of the signal. c Computation error of (i) phase and (ii) amplitude at the signal’s endpoint for different end phases, simulated
by varying f2 between 2Hz and 3 Hz. d Endpoint corrected Hilbert transformation (ecHT) of the same signal in (b), i.e. f3=f2. Showing the same as in (b),
but with the FS of the analytic signal multiplied by a response function of a causal bandpass (CBP) filter, in this example, 2nd order Butterworth bandpass
filter with centre frequency f3 and bandwidth f3

2; green ellipse, outlines the mitigation of the Gibb phenomenon at the end of the signal. e Computation error
of (i) phase and (ii) amplitude at the signal’s endpoint obtained via ecHT. Showing the same as in (c). f Effect of filter’s bandwidth on ecHT computation
error of (i) phase and (ii) amplitude at the endpoint. Shown values are mean ± st.d.; n= 180 phase intervals between 0 and 2π; filled black markers, error
computed as in (e) for different filter bandwidths normalised to the filter centre frequency (in this example f3); non-filled markers, error at the same data-
point introduced by the filter, obtained by simulating a signal with a twice time interval to shift the Gibbs phenomenon from the original endpoint. g Effect
of filter’s order on ecHT computation error at the endpoint. Showing the same as in (f).
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locking). The number of participants who showed a significant
reduction in the tremor amplitude was significant during the
second half of the stimulation and the post-stimulation period,
while the number of participants who showed a significant
increase in the tremor amplitude was not significant throughout
(Fig. 3f and Supplementary Table 4; p value threshold of
amplitude change was Bonferroni corrected for six phase-locked
conditions). Across these subsets of participants, the reduction/
increase in the tremor amplitude was statistically significant
throughout (Fig. 3g, h). The corresponding percentage reduction
(and increase) in tremor amplitude during the first half period of
the stimulation, second half period of the stimulation, and after
the stimulation period, was −18.1 ± 2.5% (8.3 ± 4.5%), −15.2 ±
2.2% (1.6 ± 2.0%), and −12.0 ± 2.3% (6.5 ± 3.3%), respectively,
relative to baseline. The change in tremor amplitude was not
different between sessions (p= 0.64, ANOVA; p= 0.32, linear
mixed effect model with sessions as a predictor variable). Across
all stimulation conditions, the z-score tremor amplitude was not
different in trials in which participants reported sensation
underneath the electrodes and trials in which no sensation was
reported (p= 0.54, paired t-test).
Comparing the phase-locked conditions, we found that the

reduction in tremor amplitude was close to significance (not

corrected) only at a phase-lag of 0° (Fig. 4a) but the number of
participants who showed a significant reduction in tremor
amplitude was not significant (Fig. 4b). However, if the phase
lags of individual participants were expressed relative to the phase
lag that resulted in the largest reduction of their tremor
amplitude, the reduction in tremor amplitude and the number
of participants who showed a significant reduction, were
statistically significant, indicating a narrow range of efficacious
phase that can vary between participants (Fig. 4c, d, see
Supplementary Table 5 for complete statistical details). The
corresponding percentage reduction during the second half
period of the stimulation at 0° phase-lag was −21.5 ± 4.2%
relative to baseline.
To test whether the effect of the stimulation on the tremor

amplitude is reproducible, we repeated the experiment in a subset
of participants (n= 6, including participants 1,2,3,6, and 11 who
showed a reduction in the tremor amplitude and participant 9
who did not; see Supplementary Table 1 for demographic and
clinical details during the repeated experiment) and analysed the
data in the same way as in the original experiment. We found that
in the repetition experiment the stimulation currents were
delivered at the same phase-lag accuracy as in the original
experiment (Supplementary Table 6). As before, stimulation at

Fig. 2 Stimulation of the cerebellum phase-locked to ET movement. a Neuromodulation concept. ET is suppressed by perturbing its pathologic synchrony
via cerebellar stimulation phase-locked to hand tremor oscillation. ET oscillation is measured via a motion sensor, instantaneous attributes of the oscillation
(i.e. amplitude A(t), phase ΦðtÞ), are computed in real-time using ecHT, and electric currents are delivered, transcranially, to the cerebellum at a fixed
phase lag. b Electrode configuration and cerebral electric fields distribution. (i) Stimulating currents were applied via a small skin electrode placed over the
cerebellar hemisphere ipsilateral to measured hand tremor (10% axial nasion-inion distance lateral to inion) and a larger electrode placed over the
contralateral frontal cortex (between F3 and F7 or F4 and F8 of the international 10–20 system). (ii) Finite element method (FEM) modelling of induced
electric field for current amplitude of 2 mA. c Experimental design. d Phase-lag between stimulating currents and tremor movement vs. set phase lag during
(i) whole stimulation period and (ii) 1st half (light blue) and 2nd half (dark blue) of the stimulation period. ‘No’, control sinusoidal current at the tremor
frequency but without phase-locking; shown are box, 25 and 75% percentile values; horizontal red line, median value; horizontal black lines, data range;
black markers, participants’ values; *p < 0.05, two-sided Omnibus test; n.s. non-significant; n= 11 participants. See Supplementary Table 2 for between
conditions statistics. e Mean phase resultant vector length vs. set phase lag during the same periods as in (d); shown are mean ± st.d.; markers show
participants’ values; ‘No’, stimulation with no phase locking; ‘Sh’, sham stimulation. two-sided ANOVA with post-hoc analysis using Wilcoxon signed-rank
test; n= 11 participants; See Supplementary Table 3 for full statistics. f Mean phase resultant vector length vs. (i) tremor amplitude, (ii) st.d. tremor
amplitude; shown black markers are trials’ mean values. Red line, linear regression, (i) line slope m= 0.59, p < 10−5, Pearson correlation test, (ii) m=
−0.49, p < 10−16. g Same as (f) but (i) tremor frequency, m=−0.33, p < 10−7; (ii) st.d. tremor frequency, m=−0.66, p < 10−32. Source data are provided
as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20581-7

4 NATURE COMMUNICATIONS |          (2021) 12:363 | https://doi.org/10.1038/s41467-020-20581-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the tremor frequency without phase-locking resulted in a tremor
amplitude reduction, yet not statistically significant (Fig. 4e),
however stimulation currents that were phase-locked to the
tremor movement resulted in a significant reduction in the
tremor amplitude that was sustained during the post-stimulation
period (Fig. 4f). The participants who showed a significant
reduction in the tremor amplitude during the stimulation period
in the original experiment also showed a significant reduction in
the tremor amplitude in the repetition experiment (see Supple-
mentary Table 7 for full statistics). The z-score reduction in the
tremor amplitude across those participants was not different from
the original experiment (Fig. 4g). Comparing the phase-locked
conditions, we found that across the cohort the reduction in the
tremor amplitude was smaller at phase-lags of 0° and 300°
(Fig. 4h, see also Supplementary Table 8 for full statistics). Within
individual participants the phase-lag values that reduced the
tremor amplitude were consistent in only 20% of the cases.

Prediction of participants’ response from distinct features of
the tremor movement. Next, we sought to explore whether the
variability in the participants’ response to the stimulation can be
attributed to certain characteristics of their ET condition. We
divided the participants into two groups, i.e. a ‘responder’ group
(n= 7, including participants 1, 2, 3, 6, 8, 9, and 11) and a ‘non-
responder’ group (n= 4, participants 4, 5, 7, and 10). A

participant was defined a ‘responder’ if his/her tremor amplitude
decreased in at least one of the tested stimulation phases relative
to sham and did not increase in any of the tested stimulation
phases relative to sham, and a ‘non-responders’ if his/her tremor
amplitude increased in at least one of the tested stimulation
phases relative to sham or did not change in any of the tested
stimulation phases relative to sham. We first assessed whether
certain clinical or demographic characteristics can distinguish
between responder and non-responder groups but found only
non-significant trends of younger age (p= 0.07, Wilcoxon rank-
sum test) and higher tremor frequency (p= 0.08) in responders
(see Supplementary Table 1 for full statistical details). In addition,
we did not find a difference between the groups in the amplitude
of the applied currents (p= 0.8).
We then explored whether certain characteristics of the tremor

movement can distinguish between the two groups. We deployed
a feature-based statistical learning strategy14 to extract 7873
different time-series features from a 10 s segment of the tremor
movement before the onset of the stimulation in all the trials with
phase-locked stimulation (301 trials in total, including 28 trials
per participant except participant 3 in which only 21 trials were
recorded); exemplary tremor traces are shown in Fig. 5a. We then
used the features and a support vector machine (SVM) with a
linear kernel to classify the tremor trials according to the subjects’
responsiveness to a phase-locked stimulation. We found that

Fig. 3 Characterisation of change in tremor amplitude induced by stimulation. a–d Stimulating currents were applied at the tremor frequency but without
phase-locking. a Change in tremor amplitude over time, shown are mean ± s.e.m. z-score computed using 10 s window every 1 s between 5 s and 55 s;
horizontal black bar outlines stimulation period. b Number of participants with significant reduction (turquoise bars) and increase (red bars) in tremor
amplitude during the first-half of stimulation period (‘1st stim half’), second half of stimulation period (‘2nd stim half’), and post-stimulation period (‘post
stim’); see Supplementary Table 4. c Change in tremor amplitude over time across participants with significant reduction (turquoise) and increase (red) in
tremor amplitude during 2nd stim half in (b), shown are mean ± s.e.m. z-score; horizontal turquoise and red lines show corresponding epochs with
significant z-score amplitude; horizontal black bar outlines stimulation period. d Change in tremor amplitude across the participants with significant
reduction (turquoise) and increase (red) in tremor amplitude in (b), box plot shows 25 and 75% percentile values; horizontal red line, median value;
horizontal black lines, data range, throughout the figure; from left-to-right n= 5,3,4,2,5,3 participants. e–l Stimulating currents were phase-locked to the
tremor movement. e Change in tremor amplitude over time, showing the same as in (a); horizontal black lines show epochs with significant z-score
amplitude. f Number of participants with statistically significant reduction and increase in tremor amplitude in (e), showing the same as in (b); *, from left-
to-right p= 0.0019, p= 3.4⋅10−5. g Change in tremor amplitude over time across participants with decreased and increased tremor amplitude during 2nd
stim half in (f), showing the same as (c). h Change in tremor amplitude in (f), showing the same as in (d); from left-to-right n= 5,5,9,4,10,3 participants.
Significance of z-score amplitude was analysed using unpaired two-sided t-test; Significance of number of participants was analysed using two-sided Fisher
exact test against the number of participants who did not show a significant change; * indicates p < 0.05, **p < 0.005, ***p < 0.0005, n.s. non-significant
throughout the figure. Source data are provided as a Source Data file.
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using all the features, the tremor trials could be classified
according to the participants’ response with an accuracy of 97%
(F-score of 96). However, even a small number of features was
sufficient for high accuracy classification, using the top 1, 5, 10,
and 40 features with highest single-feature classification accuracy,
the tremor trials could be classified with an accuracy of 83%, 81%,
86%, and 92% (F-score of 82, 80, 85, and 91), respectively
(Fig. 5b).
We then used a hierarchical cluster tree approach to search for

the most informative features among the 40 features with the
highest classification accuracy (Fig. 5c; feature values of individual
participants did not differ between trials, p > 0.5; ANOVA). We
identified 14 clusters of correlated features and extracted the
corresponding features at the centre of those clusters—the list of
the most informative features is given in Supplementary Table 9
and the magnitude probability density plots of exemplary features
are shown in Fig. 5d (the classification accuracy plateaued at ~14
features, Fig. 5e). The extracted features revealed that the tremor
movement in responders was smaller (Fig. 5dii), had a more
sinusoidal like regularity (Fig. 5diii and Fig. 5div), and had a
higher amplitude symmetry relative to zero (Fig. 5di). The
Euclidean distance between feature centroids of the responders
class and non-responders class was 0.55 (feature centroid of a
class was computed by averaging the features across the
corresponding samples). The feature centroids of individual
participants who responded to the stimulation located at a
distance <0.5 to the feature centroid of the responders class and

had a longer distance to the feature centroid of the non-
responders class (exception was participant 8; Fig. 5f; distance of
responders to responders’ class, mean 0.35 ± 0.2 st.d.; responders
to non-responders class, 0.6 ± 0.25; non-responders and respon-
ders class, 0.65 ± 0.15; non-responders and non-responders class,
0.35 ± 0.15).
To test whether these features of the tremor movement can

potentially help to predict the response of participants to the
stimulation, we repeated the experiment in a new cohort of seven
human participants with ET. We analysed the data in the same
way as in the original cohort and extracted the same 14 features
from the 10 s tremor movement before the stimulation onset (see
Supplementary Table 10 for demographic details, see Supple-
mentary Table 11 for phase-locking and Supplementary Table 12
tremor amplitude statistics). We found that three participants (i.e.
participants 2,3, and 7) responded to the stimulation based on the
aforementioned responding criterion. The feature centroids of
these participants, but not the rest of the cohort, were located at
≤0.5 distance to the feature centroid of the responders class from
the original cohort and had a longer distance to the feature
centroid of the non-responders class from that cohort (Fig. 5g)
indicating a consistency in the relationship between the features
of the tremor movement and the response to the stimulation.

Suppression of essential tremor amplitude is underpinned by
disruption of temporal coherence of movement. After estab-
lishing that participants who responded to stimulation had

Fig. 4 Characterisation of phasic dependency and reproducibility of induced change in tremor amplitude. a–d Effect of the phase lag of stimulation.
Shown values are for 2nd stim half. See Supplementary Table 5 for complete statistical data including 1st stim half and post-stimulation period. a Change
in tremor amplitude vs. stimulation phase lag; n= 11 participants. b Number of participants with significant reduced (turquoise bars) and increased
(red bars) tremor amplitude during 2nd stim half vs. stimulation phase lag. c Same as (a) but phase lags of each participant are expressed relative to
the phase lag showing the largest reduction in tremor amplitude and wrap to ±180°. d Same as (b) but phase lags of each participant are expressed as in
(c). e–h Characterisation of tremor amplitude during a repeated experiment in a subset of participants (participants 1,2,3,6, 9 and 11), see Supplementary
Table 6 for statistics. e Change in tremor amplitude over time when stimulating currents were applied at the tremor frequency but without phase-locking,
showing original experiment (blue) and repeated experiment (red); horizontal blue and red lines show epochs with significant z-score amplitude in original
and repeated experiments, respectively; horizontal black lines show epochs with a significant difference in z-score amplitude between original and repeated
experiments. f Same as (e) but stimulating currents were phase-locked to the tremor movement. g Change in tremor amplitude across the participants
with significant in tremor amplitude in (f) in original experiment (light blue) and repeated experiment (dark blue); see Supplementary Table 7 for full
statistics. h Change in tremor amplitude vs. stimulation phase lag, colour scheme as in (g); see Supplementary Table 8 for full statistics. Box plots
throughout show 25 and 75% percentile values; horizontal red line, median value; horizontal black lines, data range. Significance of z-score amplitude and
number of participants was analysed as in Fig. 3. Significance in (c) was also analysed using 2-sample Kolmogorov–Smirnov test. * indicates p < 0.05, **p <
0.005, ***p < 0.0005, n.s. non-significant throughout the figure. Source data are provided as a Source Data file.
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distinct characteristics of tremor movement during baseline, we
next sought to explore whether the change in tremor amplitude
during stimulation was associated with a change in other char-
acteristics of tremor movement. We divided all the tremor trials
with phase-locked stimulation (again 301 trials in total) into three
datasets according to the change in tremor amplitude during
stimulation relative to sham, i.e. trials with a decrease in tremor

amplitude (‘decrease’; 58 trials from 11 subjects), trials with an
increase in tremor amplitude (‘increase’; 51 trials from 10 sub-
jects; participant 6, did not show an increase in tremor amplitude
in any phase-locked condition), and trials without a change in
tremor amplitude (‘no-change’; 192 trials from 11 subjects).

We then deployed the same feature-based statistical learning
strategy14 to test whether the characteristics of the tremor
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movement can distinguish between the stimulation and baseline
periods in these three datasets. We extracted the same 7873
features as before from a 10 s segment of the tremor movement
before the onset of the stimulation and from a corresponding 10 s
segment during the middle of the stimulation; exemplary tremor
traces with tremor amplitude ‘decrease’ and ‘increase’ are shown
in Fig. 6a, b, respectively. We then used the features and the same
SVM as before to classify the tremor trials according to the period
class, i.e. ‘baseline’, or ‘stimulation’. We found that the ‘decrease’
dataset had a higher probability of classification with high
accuracy compared to the ‘increase’ and the ‘no-change’ datasets
(Fig. 6c; ‘decrease’ vs. ‘increase’, p= 0.01; ‘decrease’ vs. ‘no-
change’, p= 0.008; ‘increase’ vs. ‘no-change’, p= 0.45; and
against a null distribution, generated by assigning random values
to the feature), ‘decrease’, p= 0.005; ‘increase’, p= 0.34; ‘no-
change’, p= 0.58; pairwise Kolmogorov–Smirnov test).
Focusing on the ‘decrease’ dataset, we found that using all the

features, the tremor trials during stimulation and baseline could
be classified with an accuracy of 79% (F-score of 79). However,
the classification accuracy was dominated by only a few features,
using the top 1, 5, 10, and 40 features with highest single-feature
classification accuracy, the tremor trials could be classified with
an accuracy of 78%, 79%, 79%, and 80% (F-score of 78, 81, 81,
and 81, respectively; Fig. 6d). We then used, as before, the
hierarchical cluster tree approach with a between feature
correlation threshold of 0.2 to search for the most informative
features among the 40 features with the highest classification
accuracy (Fig. 6e). We identified nine clusters of correlated
features and extracted the corresponding features at the centre of
those clusters—the list of the most informative features is given in
Supplementary Table 13 and the magnitude probability density
plots of the central features with the highest probability are
shown in Fig. 6f. We found that the classification was dominated
by two time-series features, i.e. the ‘information gain’ feature,
which estimates how easy it is to predict a data point in the time
series from the preceding data points, and the ‘quadratic fit of
power spectrum cumulative sum’ feature, which characterises the
power spectrum of the time series. The increase in ‘quadratic fit of
power spectrum cumulative sum’ during stimulation can be
simply attributed to the drop in the spectral peak at the tremor’s
frequency. In contrast, the increase in ‘information gain’ during
stimulation revealed a loss of linear dependency between
consecutive data points of the tremor movement, i.e. a loss of
temporal coherence.
To specifically test whether the change in the tremor amplitude

was associated with a change in temporal coherence, we
computed the change in the magnitude squared coherence
during the stimulation period relative to the baseline period in

the ‘decrease’ and the ‘increase’ datasets as well as in a dataset
consisting of all the trials with sham stimulation (‘sham’). We
found that the temporal coherence in the tremor frequency-band
decreased in the ‘decrease’ dataset and increased in the ‘increase’
dataset during the stimulation, however, it did not change in the
‘sham’ dataset (Fig. 6g). The change in the tremor amplitude in
the ‘decrease’ dataset, but not in the ‘increase’ dataset, was
correlated with the change in the tremor temporal coherence. The
change in the tremor amplitude in the ‘sham’ dataset was also
positively correlated with the change in the tremor temporal
coherence, however, with a smaller slope of the linear regression
(Fig. 6h; combined dataset, line y-intercept c= 0.2, line slope
m= 1.2, R2= 0.32; ‘decrease’ dataset, c=−1.4, m= 1.35, R2=
0.49; ‘increase’ dataset, c= 0.94, m= 0.58, R2= 0.004; ‘sham’
dataset, c=−0.3, m= 0.78, R2= 0.32; Pearson correlation; see
Supplementary Fig. 2 for a correlation analysis of trials during
stimulation without phase-locking). The change in temporal
coherence in the ‘decrease’ dataset was correlated with the onset
of the stimulation and was maintained during the duration of the
stimulation (Fig. 6i).
To explore the possible mechanism by which the disruption of

the temporal coherence could result in a suppression of the
tremor amplitude, we simulated the CCTC network under ET
condition15 and phase-locked cerebellar stimulation. We found
that the mechanism might be related to the suppression of the
aberrant complex spikes in the Purkinje cells (PCs) of the
cerebellum due to synchronisation of the hyperpolarizing phase
of the stimulating with the onset of the complex spikes. See
‘Neurophysiological model’ in Supplementary Information.

Discussion
In this paper we presented the ecHT strategy to compute the
instantaneous phase of oscillatory signals in real-time and vali-
dated it using both simulation and measurements with pathologic
oscillatory brain activity, i.e. ET. The ecHT strategy is based on
the application of a causal bandpass filter to the DFT of the
analytic signal to mitigate the distortion, known as the Gibbs
phenomenon, from its end. Other frequency-domain and time-
domain filters have been previously proposed to mitigate the
Gibbs phenomenon from finite signals with a discontinuity16 but
these filters restore the DFT only away from the discontinuity
itself17. There have also been reports of restoring the endpoint of
the analytic signal using recursive models, such as autoregres-
sion18 or polynomial fitting19 to forward predict the physiological
signal so that the last acquired data points are shifted from the
window edge before the computation of the Hilbert transform.
Recursive models have been recently tested for phase-locking
brain stimulation18,20,21, showing in some cases large st.d. (e.g.

Fig. 5 Classification and prediction of participant’s response via features extraction and statistical learning of the tremor movement. a Exemplary
recordings of tremor movement from a participant that showed a reduction in tremor amplitude during phase-locked stimulation relative to sham (i–iii) and
one that did not (iv–vi). b Classification accuracy (blue) and F-score (orange) of participants’ response as a function of the number of features. Shown are
mean and st.d. values of the tenfold cross-validation. c Most informative features of the class structure. Shown are the 40 top predictive features in (b),
clustered according to correlation coefficient and re-ordered according to the clustering; green box, outline of a feature cluster; red square, central feature
of a cluster. See Supplementary Table 9 for a list of the features at the cluster’s centre. d Normalised magnitude of exemplary features shown in (c) at the
center of the clusters of correlated features. Green, ‘responders’ participants; magenta, ‘non-responders’ participants. See Supplementary Table 9 for
description of the features. e Classification accuracy of participants’ response using the 14 most informative features, i.e. the features shown in (c) at the
centres of the clusters of correlated features, showing (i) mean classification accuracy ± st.d. vs. number of features, each repeated 100 times with a
random selection of features out of the 14 most informative features, and (ii) 2D principal component analysis (PCA) plots of classification using all 14
features. Acc classification accuracy, PC principal component. f Euclidean distance between feature centroids of individual participants and the feature
centroids of the responders’ and non-responders’ classes, using the 14 most informative features; *, indicates ‘responders”; green bar, distance to
responders class < 0.5 & distance to responders class < distance to non-responders class; magenta bar, distance to responders class > distance to non-
responders class. g Same as (f) but for a new cohort of participants, showing distances to the same centroids of responders’ and non-responders’ classes in
(f), i.e. of the original participants; grey bar, distance to responders class < 0.5 but distance to responders class > distance to non-responders class. Source
data are provided as a Source Data file.
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~54°)21 and dependency on the coherence of the signal18. Ulti-
mately, the high runtime complexity of recursive models (e.g.
autoregression has a runtime complexity of O(n3) for n samples,
governed by the parameter estimation operation22) limit their use
in applications that require real-time computation using con-
ventional, and/or portable digital hardware.

In comparison, the ecHT is a simple, yet powerful method to
accurately compute the Hilbert transform in real-time to track the
instantaneous phase and envelope amplitude of an oscillatory
signal. The ecHT maintains the same runtime complexity as the
original Hilbert transform (i.e. O(nlog(n)) for n samples),
allowing implementation in simple and portable hardware. Future
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studies may be able to improve the accuracy of the ecHT by
adjusting, online, the central frequency of the bandpass filter to
the instantaneous frequency of the signal, computed e.g. via a
time derivative of the instantaneous phase. Given the widespread
use of the Hilbert transform to compute the instantaneous
attributes of oscillatory signals10, the possibility for real-time
computation using ecHT opens exciting opportunities in neu-
roscience and beyond (e.g. to monitor rotating engines and
structural defects23, speech analysis24, and geophysics25).

We then used the ecHT to demonstrate the causal role of
synchronous cerebellar activity in human participants with ET.
By deploying for the first-time phase-locking stimulation to the
cerebellum, we showed, in a double-blinded, sham and active
controlled experiment, that ET amplitude can be efficiently
supressed within a few seconds. The range of phases that were
efficacious in suppressing the tremor in our stimulation was small
but varied between participants and within participants between
days of experiments perhaps due to differences in the electrode-
skin capacitance. Future studies may be able to adjust the target
stimulation phase online using similar closed-loop strategies
currently deployed to adjust the target amplitude or frequency of
DBS26. Our results exemplify the importance of accurate phase-
locking to successfully induce a reduction in tremor amplitude.
The fact that the tremor amplitude continued to drop during the
stimulation period suggests that a longer stimulation period may
yield an even larger suppression. The sustained drop in tremor
amplitude after the end of the stimulation period may hold
potential for a therapeutic effect via neural plasticity. To start
testing the reproducibility of the stimulation effect, we validated
the effect in a subset of participants a few years after the initial
experiment and share the phase-locking methodology to allow
other researchers to easily reproduce the experiment.
The rational of targeting the cerebellum in ET has been

motivated by the recent discoveries of cerebellar abnormalities in
ET patients and its strong connectivity to the basal ganglia (via
the thalamic nuclei)27. Invasive phase-locked DBS of the thalamic
Vim near the region receiving input from the cerebellum showed
benefit in ET28. Nevertheless, numerous non-invasive cerebellar
stimulation studies have failed to demonstrate a clear effect on ET
severity even after multiple days of stimulation (see recent
reviews27,29,30). For example, a prior study applying tACS to the
cerebellum, but without phase-locking, found only a phase
entrainment of the tremor with no effect on its amplitude31.
There has been an original report that showed that non-invasive
phase-locked stimulation of the motor cortex can ameliorate

tremor in Parkinson’s disease (PD) patients32. Although both ET
and PD are caused by aberrant oscillations in the motor system,
their anatomical origins and degree of coupling between the
central oscillators are very distinct33. Of course, the effect of
stimulation on the activity of a brain circuit is complex, involving
mixtures of local activation and inactivation pathways and
interactions with downstream and upstream brain regions34, and
hence cannot be extrapolated across brain locations, brain states
and diseases27. In fact, even a small change in stimulation para-
meters was shown to result in different and sometimes opposite
effects35,36 which may be particularly true in the case of the
cerebellum given its both inhibitory and excitatory effects on the
motor cortex37,38. There has also been a report that a periodic
stimulation of the motor cortex at the tremor frequency without
phase-locking, can entrain the phase of ET in patients undergoing
DBS with an efficiency that was correlated to the somatosensory
sensation underneath the electrodes39. In our study, the changes
in the circular phase distribution and amplitude of the tremor
were not dependent on the subjective sensation of the patients.
Finally, we showed, using data-driven statistical learning

approach, that ET severity is linked to the temporal coherence of
the movement, and that stimulation that disrupts the temporal
coherence can reduce its severity. Hitherto investigations of the
tremor coherence have focused on the correlation between two
different tremor signals, such as the bilateral hand movement40,
intermuscular electromyography41, and cortico-muscular42.
These studies have elucidated important differences between
diseases (e.g. ET vs. PD) however have not found a relationship to
the severity of the tremor. The causal relationship between the
amplitude of ET and its temporal coherence provides an
important insight into the dynamics of the central oscillator
underlying the disease. This is particularly interesting given the
distinct relationship between the instantaneous frequency of ET
and its fluctuation43.

With almost a third of ET patients discontinuing medications
due to insufficient benefit, medical contraindications, or the
emergence of adverse effects44, there is a pressing need for a novel
treatment strategies for ET. Invasive DBS of the Vim nucleus is an
alternative treatment for drug-refractory ET patients however, it
is limited by the need for a brain surgery and the development of
adverse side effects such as dysarthia and dysphagia6,45,46. Our
results may provide the foundation for a new interventional
strategy for ET. The mechanism of action of such an interven-
tional strategy will be based on an active disruption of the cascade
of coherent activities that generate the tremor oscillation in the

Fig. 6 Change in ET amplitude is linked to change in temporal coherence of the tremor movement. a Exemplary recording of tremor movement during
stimulation at a phase that resulted in a reduction of tremor amplitude relative to sham. (i) full 60 s recording; black hexagon, stimulation period. (ii) and
(iii) magnified view of boxed region in (i); (iv) and (v) magnified view of boxed region in (ii) and (iii), respectively. b Exemplary recording of tremor
movement from the same participant as in (a) but during stimulation at a phase that resulted in a small increase of tremor amplitude. (i–v) as in (a).
c Probability distribution histogram of the feature-based classification accuracy according to the period class (i.e. ‘baseline’ and ‘stimulation’) of the
‘decrease’ (green), the ‘increase’ (magenta), and the ‘no-change’ (grey) datasets. two-sided pairwise Kolmogorov–Smirnov test. d Classification accuracy
(blue) and F-score (orange) of the time-series traces in the ‘decrease’ dataset according to the period class (i.e. ‘baseline’ and ‘stimulation’) as a function of
the number of features. Shown are mean and st.d. values of the tenfold cross-validation. e Most informative features for the class structure in the
‘decrease’ dataset. Shown are the 40 top predictive features in (d), clustered as in Fig. 5c. See Supplementary Table 13 for feature list. f Normalised
magnitude of features shown in (e) at the centres of the clusters of correlated features. Green, ‘stimulation’ period; blue, ‘baseline’ period. See
Supplementary Table 13 for feature description. g Change in tremor’s temporal coherence. Shown values are mean ± st.d. z-score during stimulation relative
to baseline period from (i) ‘decrease’ dataset (*, from left-to-right p= 2.5⋅10−6, 8.8⋅10−8, 2.45⋅10−8, 6.0⋅10−7, 9.5⋅10−6, 1.2⋅10−5, 6.1⋅10−6, 7.7⋅10−6,
4.9⋅10−5, 2.6⋅10−4; n= 49 trials from 11 participants), (ii) ‘increase’ dataset (*p= 0.0015; n= 41 trials from 11 participants), and (iii) dataset of sham
stimulation (‘sham’; n= 43 trials from 11 participants); unpaired two-sided t-test with Bonferroni corrections for multiple comparisons of frequency-bins
and datasets; grey markers, recording trails. h Correlation between change in tremor’s amplitude and change in tremor’s temporal coherence at the tremor
frequency-band. (i) combined datasets and (ii) individual datasets with ‘decrease’, green; ‘increase’, magenta; ‘sham’, grey; each data point is a single trial
i Change in tremor’s temporal coherence at the tremor frequency-band over time. Shown values are mean ± st.d. with the same colour scheme as in (hii);
horizontal lines show epochs with significant change; unpaired t-test with Bonferroni corrections for multiple comparisons of datasets; black hexagon,
stimulation period. Source data are provided as a Source Data file.
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olivocerebellar loop. Our computational modelling suggests that
it may be attributed to a timely perturbation of the generation of
complex spikes in the PCs. Future computational studies may be
able to explain the underlying mechanisms of those features
predicting the stimulation outcome. Such a mechanism of action
differs from the existing Vim DBS therapy for ET that masks the
tremor oscillation in the thalamocortical (TC) loop but does not
mitigate its generation in the olivocerebellar loop15. Future stu-
dies with larger patient cohorts and longer stimulation periods,
are needed to better pinpoint the magnitude and duration of the
tremor reduction and to assess the safety profile. In the future,
neuromodulatory strategies that target the temporal coherence of
the pathology may offer new opportunities to treat a wide range
of brain disorders underpinned by aberrant synchronous
oscillations.

Methods
Endpoint corrected Hilbert transform (ecHT). A discrete analytic signal is most
accurately and efficiently computed by deriving the discrete Fourier transform
(DFT) of the signal, zeroing the Fourier components of the negative frequencies
and doubling the ones of the positive frequencies, and constructing the analytic
signal using the inverse discrete Fourier transform11. However, Gibbs phe-
nomenon distortion9 in the derivation of the analytic signal at the ends of finite-
length signals has rendered an accurate computation of the instantaneous phase
and envelope amplitude at the last data point impossible12. Since the Gibbs
phenomenon stems from a nonuniform convergence of the DFT at a dis-
continuity between the beginning and the end of the analytic signal47, we
hypothesised that by applying a causal bandpass filter to the DFT of the analytic
signal we would establish a continuity between the two ends of the signal and
remove the distortion selectively from the end part of the signal. The bandpass
feature of the filter reduces extraneous DFT coefficients, limiting the oscillatory
properties to the target frequency-band, while balancing the phase-lag intro-
duced by the low-pass component of the filter with the phase-lead introduced by
the high-pass component of the filter. The causality feature of the filter restores
the linear increment of the phase at the end of the analytic signal by projecting
the oscillatory properties from the adjacent, non-distorted data points. Since the
DFT treats finite sampled signals as if they were replicated periodically, the
projection of the oscillatory properties would continue through the beginning of
the signal, thus forcing a continued increment of the phase from the restored
signal end to its beginning. The runtime complexity of the filtering is O(n/2),
where n is the number of frequency points, is lower than O n � log nð Þð Þ of the fast
Fourier transform (FFT) and inverse fast Fourier transform (IFFT) that dom-
inates the computation of the analytical signal.

Simulation of ecHT. Simulation of ecHT was done in MATLAB (MathWorks Inc).
A discrete oscillatory test signal

yi n½ � ¼ Aicos 2πfin� ;ið Þ ð1Þ

was generated (i being the signal number) over a finite time interval T, where 0 < n
<N− 1 was the time point number and N was the total number of time samples, Ai

was the envelope amplitude of the signal, fi was the frequency of the signal, and ;i
was the phase delay of the signal. The analytic signal was computed by first
computing the Fourier representation Yi[k] of the signal using MATLAB’s fast FFT
function (‘fft’), where 0 < k < K− 1 was the frequency bin number and K was the
total number of frequency samples. Then, generating the Fourier representation
Zi[k] of the analytic signal by zeroing the Fourier components of the negative
frequencies and doubling the Fourier components of the positive frequencies, i.e.

Zi k½ � ¼
Yi for k ¼ 0; k ¼ K
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If ecHT was applied, the Fourier representation of the analytic signal Zi[k] was
multiplied with the response function σ[k]of a Butterworth bandpass filter that was
obtained using MATLAB’s frequency response of digital filter function (‘freqz’)
from the filter’s impulse response coefficients generated using MATLAB’s
Butterworth filter design function (‘butter’). Finally, the analytic signal zi[n] was
computed from its Fourier representation Zi[k] using MATLAB’s IFFT function
(‘ifft’). The phase of the signal at the last data point was computed via

atan imag zi N½ �f g
yi N½ �

� �
, where imag zi N½ �f g is the imaginary part of the analytic signal, i.e.

the Hilbert transform of the original signal, and was compared to the actual phase
of the signal at the last data point, i.e. 2πfiN � ;i . The amplitude of the signal at the

last data point was computed via
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

imag zi N½ �f g2þyi N½ �2
q

and was compared to the

actual amplitude of the signal at the last data point, i.e.Ai.

Feasibility study of cerebellar electrical stimulation phase-locked to ET
Ethics. The study was approved by the local research ethics committee in accor-
dance with the declaration of Helsinki. All participants provided written informed
consent prior to study participation. Specifically, the study was approved by the
Heath Research Authority (HRA; REC 03/N018, principal investigator John
Rothwell, UCL). The approval included the assessment of governance and legal
compliance, undertaken by HRA, with the independent Research Ethics Com-
mittee (REC) opinion provided by the National Hospital for Neurology and
Neurosurgery and the UCL Institute of Neurology (ION) Joint REC. The over-
arching aim of the research project was to use transcranial brain stimulation
paradigms to discover mechanisms of cortical excitability and their impact on
motor behaviour. The research project was not classified as clinical trial or inter-
ventional trial by the HRA and hence did not required registration (which is
mandatory for all clinical trials in the UK).

Participants. Eleven human participants with ET (three females) were recruited
from the outpatient department of the UK National Hospital of Neurology and
Neurosurgery, London. All participants fulfilled the diagnostic criteria for ET
according to the Tremor Investigation Group and consensus statement of the
Movement Disorder Society48 and were on a stable treatment regime for their
tremor for at least 30 days prior to the experiment. See Supplementary Table 1 for
demographic and clinical information. Experiments were performed after over-
night withdrawal of tremor medication during a single study visit in the dominant
hand, or in case of slight asymmetry in the hand with the larger tremor amplitude.
There were no drop-outs or adverse events noted.

Participants (second cohort). Seven human participants with ET (four females) were
recruited as in the original to test whether their response can be predicted via the
feature-based approach developed in the original study. See Supplementary
Table 10 for demographic and clinical information. Experiments were performed
as in the original cohort.

Experiment design. The experiment consisted of eight stimulation conditions, i.e.
six sinusoidal stimulating currents that are phase-locked to the tremor movement
at different phase lags (i.e. 0°, 60°, 120°, 180°, 240° and 300°), a control sinusoidal
current at the tremor frequency but without phase-locking, and a sham stimulation
condition. Each stimulation condition was applied in a block (i.e. trial) of 60 s
during which the participants sat in an armchair and were instructed to maintain a
tremor evoking posture, i.e. stretched, elevated arm with fingers parted, while their
tremor movement was measured (see details below). The 60 s block included a 15 s
of a baseline period, a 30 s of a stimulation period (including 5 s of ramp-up and 5 s
of ramp-down at the beginning and end of the stimulation, respectively) and a 15 s
of post-stimulation period. In sham stimulation blocks, the current was set to zero
after the 5 s of ramp-up. Each 60 s block was preceded by a short (~4 s, 2048 data
samples) calibration recording also in a tremor evoking posture to compute the
tremor frequency and amplitude at the onset of the block (see details below). The
eight stimulation conditions were applied consecutively with a 30 s rest interval
between conditions. The sequence of eight stimulation conditions was repeated
four times (apart from one participant in which they were applied three times due
to fatigue) in a random order with 10 min rest period between sequences. The rest
interval between conditions and the rest period between sequences were occa-
sionally extended slightly if the participants requested.

Measurement and real-time computation of instantaneous tremor phase via ecHT.
Tremor movements were measured using a 3-axis analog microelectromechanical
system accelerometer (MMA7361, Freescale Semiconductor, Inc.; operated at a
sensitivity range of ±1.5 G) that was attached to the proximal phalangeal segment
of the middle finger using a custom-made adapter. The 3-axis acceleration mea-
surements were sampled using three analog-to-digital converters of a micro-
controller (Arduino Due with an Atmel AT91SAM3X8E processor and a single
ARM Cortex M3 core; operated at a clock rate of 84MHz) at a rate of ~500 Hz and
an amplitude resolution of 12-bit, and the vector amplitude sum of the three axes
was computed and stored in a running window of 128 samples. The instantaneous
phase and amplitude of the tremor movement, i.e. at the last sample of the running
window, were computed in real-time and at the same rate, using ecHT that was
implemented on the microcontroller. The ecHT implementation had a 2nd order
Butterworth bandpass filter (2nd order low pass, 2nd order high pass) with a
bandwidth that was equal to half the frequency of the tremor and was centred at
the frequency of the tremor. The frequency of the tremor was computed using FFT
from a short calibration measurement of 2048 samples (i.e. frequency resolution of
~0.25 Hz) before each 60 s stimulation block. The sampled tremor movement
measurement was logged to a laptop, together with the ecHT setting and the
tremor frequency and amplitude computed during calibration, using a Processing
script that was also used to interface with the microcontroller.

Transcranial stimulation of ipsilateral cerebellum. Sinusoidal stimulating currents
were generated by first producing voltage waveforms, pseudo-differentially via two
digital-to-analog converters of the microcontroller (with an amplitude range of ±1
V and an amplitude resolution of 12-bit) and then feeding them to an isolated bi-
phasic current source (DS4, Digitimer Ltd; operated at an input range of ±1 V and
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an output range of ±1 mA or ±10 mA). The frequency of each voltage waveform
was equal to the frequency of the tremor computed before each 60 s stimulation
block as mentioned above. To phase-lock a stimulating current to the ongoing
tremor movement, the phase of the voltage waveform was adjusted, at the same
rate of 500 Hz, to maintain a fixed phase lag to the computed phase of the last
acceleration sample. The amplitude of the stimulating currents was 2.7 ± 1 mA
(mean ± st.d.) across the participants, (the amplitude was individually adjusted for
each participant below any discomfort level due to extraneous somatosensory
stimulation underneath the electrodes). To reduce risk of extraneous high-
frequency stimulation due to low signal-to-noise level, the amplitude of the voltage
waveform was set to zero when the amplitude of the last acceleration sample was
<1% of the amplitude during the short calibration measurement before each 60 s
stimulation block. The generated stimulating voltage waveforms were logged to a
laptop together with the tremor movement measurements using the same Pro-
cessing script.

The stimulating currents were applied transcranially to the ipsilateral
cerebellum via a 2 × 2 cm2 skin electrode (Santamedical, 2″ × 2″ carbon electrode
pad with Tyco gel that was cut to the specified dimensions) that was placed 10%
nasion-inion distance lateral to inion (i.e. above the cerebellar lobule VIII) and was
paired with a 5.08 × 5.08 cm2 skin electrode (the same carbon electrode pad but was
not cut) that was placed over the contralateral frontal cortex between F3–F7 or
F4–F8 of the international 10–20 system. Before the placement of the electrodes,
the scalp skin was prepared using 80% Isopropyl alcohol and an abrasive skin gel
(NuPrep, Weaver and Company Inc), and a conductive paste (Ten20, Weaver and
Company Inc) and/or a conductive gel (CG04 Saline base Signa gel, Parker
Laboratories Inc) was deposited at the target locations. The resistance between the
electrodes was maintained below 8 kOhm.

Analysis of stimulation phase lag. Analysis of the stimulation phase lag was done in
MATLAB. The tremor movement trace of each 60 s block was filtered with the
same filter settings that were used in the real-time computation, i.e. a 2nd order
Butterworth bandpass filter with a bandwidth that was equal to half the frequency
of the tremor and centered at the frequency of the tremor computed and logged at
the short calibration period preceding each block. The instantaneous phase of the
stimulating waveform trace and the instantaneous phase of the filtered tremor
movement trace were computed using MATLAB’s ‘hilbert’ function, and the
instantaneous phase lag between the two traces was calculated and then epoched in
intervals of 1 s. The stimulating trace in the sham condition was a virtual sinusoidal
waveform at the tremor frequency.

The statistics and statistical tests of the phase lag values were computed, using
MATLAB’s CircStat toolbox13, in the following periods—the whole stimulation period
(20 s since 5 s ramp-up time and the 5 s ramp-down time at the beginning and the end
were excluded, respectively), the first half of the stimulation period (10 s since 5 s
ramp-up time was excluded), the second half of the stimulation period (10 s since 5 s
ramp-down time was excluded). First, the unimodality of the phase distribution of
each stimulation condition was validated using Watson’s test against a von Mises
distribution (set phase 0°, p < 10−5; 60°, p < 10−5; 120°, p < 10−5; 180°, p < 10−5; 240°,
p < 10−5; 300°, p < 10−5; no phase-lock, p= 0.6). The phase distribution during
stimulation with phase-locking was not different from vonMises distribution but since
the phase distribution during stimulation without phase-locking was different from
von Mises distribution, we used non-parametric statistical tests. Next, the circular
spread of the phase distribution of each stimulation condition was quantified
by computing the length of the mean resultant vector R and its uniformity was
assessed using the Omnibus test. Then, the difference between the mean phase of the
stimulation conditions was assessed using Fisher test and the difference between the
mean resultant vector length R of the stimulation conditions was assessed using
ANOVA with post-hoc analysis using Wilcoxon signed-rank test. Finally, the effect of
the tremor parameters, i.e. amplitude and frequency, on the length of the mean
resultant vector R was assessed via Pearson correlation.

Analysis of change in tremor amplitude. Analysis of the tremor amplitude was done
in MATLAB. The tremor trace of each 60 s block was filtered as in the ‘Analysis of
stimulation phase lag’. The instantaneous amplitude was computed using
MATLAB’s ‘hilbert’ function and was epoched in intervals of 1 s. To express the
tremor amplitude relative to the amplitude of the baseline period, the amplitude
value of each epoch was z-scored by subtracting the mean value during the baseline
period and then dividing by the st.d. of the value during the baseline period. The
statistics and statistical tests of the tremor amplitude values were computed in the
following periods—the baseline period (10 s between 3 s and 13 s from block
onset), the whole stimulation period (as in ‘Analysis of the stimulation phase lag’),
the first half of the stimulation period (as in ‘Analysis of the stimulation phase lag’),
the second half of the stimulation period (as in ‘Analysis of the stimulation phase
lag’), and the post-stimulation period (10 s between 3 s and 13 s from stimulation
offset). To assess the change in the tremor amplitude relative to the change in the
tremor amplitude during the sham stimulation condition, the z-score amplitude
values during stimulation and during post-stimulation periods of each stimulation
condition were subtracted by the corresponding median z-score values of the sham
stimulation condition.

To assess the effect of phase-locking the stimulation to the tremor movement,
the change in the tremor amplitude due to stimulation with phase-locking and

without phase-locking was analysed. First, the change in the tremor amplitude due
to each type of stimulation, i.e. without phase-locking and with phase-locking (data
from all six phase-lags of stimulation was combined) was assessed across the
participants in each epoch using unpaired t-test. Next, the change in tremor
amplitude of individual participant due to each stimulation condition was assessed
(i.e. data including four repetition trials from each phase-lag of stimulation was
treated separately) during stimulation and post-stimulation periods using unpaired
t-test as well as using surrogate distributions (i.e. 1000 z-scores values with the
same st.d. but zero mean value), where the p value threshold of the stimulation
conditions with phase-locking (but not without phase-locking) were Bonferroni
corrected for the six phase lag conditions. Then, the number of participants that
showed statistically significant increase/decrease of z-score amplitude was assessed
using Fisher’s exact test against the number of participants who did not show a
change in the z-score tremor amplitude (participants could have a significant
increase of z-score in one phase-lag and a significant decrease of z-score in another
phase-lag). Finally, the z-score amplitude of the sub-group of subjects that showed
a statistically significant increase/decrease of z-score amplitude was assessed using
unpaired t-test.

To assess the effect of the phase lag value during stimulation, the change in the
tremor amplitude due to stimulation with different phase lags was analysed. First,
the change in the tremor amplitude due to each phase-lag of stimulation was
assessed across the participants during the stimulation period using unpaired t-test.
Next, the change in tremor amplitude of individual participant was assessed during
stimulation again using unpaired t-test. Then, the number of participants that
showed a statistically significant increase/decrease of z-score amplitude was
assessed using Fisher’s exact test. Finally, to account for differences in phase
response across participants, the phase lags were expressed relative to the phase lag
that resulted in the largest reduction in the tremor amplitude, and the change in
tremor amplitude of individual participant and the number of participants with
statistically significant change were reanalysed.

Prediction of participants’ response to stimulation from features of tremor
movement
Dataset. Time-series of tremor movement during the baseline period, i.e. 10 s (5000
data points) from 5 s after the onset of tremor posture till 5 s before the onset of the
phase-locked stimulation, were extracted from all the recorded trials with phase-
locked stimulation, resulting in a dataset of 301 time-series trials (28 trials per
participants except participant 3 in which only 21 time-series trials were recorded).
The time-series were assigned a ‘responder’ or a ‘non-responder’ label if the par-
ticipant responded or did not respond to the stimulation, respectively. A partici-
pant was conservatively labelled as a ‘responder’ if his/her tremor amplitude
significantly decreased in at least one of the tested stimulation phases relative to
sham and did not significantly increase in any of the tested stimulation phases
relative to sham, and was labelled a ‘non-responders’ if his/her tremor amplitude
significantly increased in at least one of the tested stimulation phases relative to
sham or did not significantly change in any of the tested stimulation phases relative
to sham.

Extraction of time-series features. For each time-series trace, 7873 features were
computed using the highly comparative time-series analysis (hctsa)14, resulting in a
301 × 7873 feature matrix. The computed features included autocorrelations, power
spectra, wavelet decompositions, distributions, time-series models (e.g. Gaussian
Processes, Hidden Markov model, autoregressive models), information-theoretic
quantities (e.g. Sample Entropy, permutation entropy), non-linear measures (e.g.
fractal scaling properties, nonlinear prediction errors) etc. All features with infinity
or not a number (NaN) values and features with zero variance across the dataset
were removed from the feature matrix, resulting in a reduced feature matrix of
301 × 6196. The value of each feature was individually normalised to the
interval [0,1].

Classification. The feature space was partitioned, i.e. classified, using a linear SVM
classifier, implemented with the classify function of MATLAB’s Statistics Toolbox,
which returned a threshold that optimally separated the two classes, i.e. ‘respon-
ders’ and ‘non-responders’ time-series. The accuracy of the classification was
quantified by first computing the balanced classification accuracy a ¼ precisionþrecall

2 ,
and then computing the harmonic mean of precision and recall, i.e. F1 score,
F1 ¼ 2�precision�recall

precisionþrecall , where precision is the fraction of true positive classified samples

over the total of positively classified samples and recall is the fraction of true
positive classified samples over the total true positive and false negative classified
samples. The classification was performed using a tenfold cross-validation to
reduce bias and variance.

Performance-based feature selection. The univariate classification performance of
each feature was evaluated against the class labels. A subset of 40 features with the
highest single-feature classification accuracy was selected. To reduce the redun-
dancy within the subset of features, the Pearson correlation distance, dij= 1−ρij
was computed for each pair of features, where ρij is the Pearson correlation coef-
ficient between feature i and feature j, and a hierarchical clustering was performed
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using a complete linkage threshold of 0.2, resulting in clusters of features that were
inter-correlated by ρij > 0.8. The clusters of highly correlated features were then
represented by the feature that was located most centrally within the cluster (i.e. at
the cluster’s centre).

Feature-based prediction of participant response. The centroid of individual parti-
cipants in the feature space (including the extracted 14 most informative features)
was computed by averaging the feature values across the corresponding trials. The
centroid of the participant class (i.e. ‘responders’ or ‘non-responders’) in the same
feature space was computed by averaging the features values across the corre-
sponding trial dataset. The Euclidean distance between feature centroids was
computed with pdist function of MATLAB.

Visualisation using principal component analysis. To facilitate visualisation of the
feature space, principal component analysis (PCA) was performed. In this case, a
covariance matrix was computed for the normalised set of features from which the
eigenvectors and eigenvalues were extracted. Each principal component was con-
structed as a linear combination of the initial features. The first two principal
components were then used to display 2D scatter plots of the features.

Change in features of tremor movement due to stimulation
Dataset. Time-series of tremor movement during stimulation (10 s; 5000 data
points; from 10 s after the onset of stimulation till 10 s before the offset of sti-
mulation) and during baseline (10 s; 5000 data points; same as in ‘Classification
and prediction of participants’ response to stimulation’) from all trials with phase-
locked stimulation (301 traces of stimulation and baseline each) were extracted and
assigned a ‘stimulation’ class label or a ‘baseline’ class label, respectively. The
‘stimulation’ and ‘baseline’ time-series were then divided into three datasets
according to the change in the tremor amplitude during stimulation, i.e. ‘decrease’,
traces in which the tremor amplitude decreased during stimulation relative to sham
(58 time-series of stimulation and baseline each, 11 subjects); ‘increase’, time-series
in which the tremor amplitude increased during stimulation relative to sham (51
time-series of stimulation and baseline each, 10 subjects); ‘no-change’, traces in
which the tremor amplitude did not change during stimulation relative to sham
(192 time-series of stimulation and baseline each, 11 subjects). In addition, in a
subset of the analysis, the same ‘stimulation’ and ‘baseline’ tremor traces were
extracted from all the blocks with sham stimulation (‘sham’; 43 time-series of
stimulation and baseline each, 11 subjects).

Extraction of time-series features, classification, and performance-based feature
selection. Same as in ‘Classification and prediction of participants’ response to
stimulation’.

Temporal coherence analysis. The tremor temporal coherence vs. frequency of each
tremor trace was quantified by computing the magnitude squared coherence across
1 s epochs during ‘stimulation’ period and ‘baseline’ period using MATLAB’s
mscohere function with a frequency range of 0–31 Hz and a 1 Hz frequency
resolution. The computed values during ‘stimulation’ were then z-scored relative to
the mean and st.d. of the values during ‘baseline’. The tremor temporal coherence
at the tremor frequency band was quantified by computing the mean z-score across
the 4–8 Hz frequency bins. The tremor temporal coherence vs. time of each tremor
trace was quantified by computing the magnitude squared coherence between 1 s
epoch and its preceding one during ‘stimulation’ period and ‘baseline’ period using
the same MATLAB’s mscohere function, z-score the ‘stimulation’ values relative to
‘baseline’ in the same way, and then computing the mean z-score across the 4–8 Hz
frequency bins. Statistical significance of magnitude squared coherence at a fre-
quency bin was characterised for each dataset (i.e. decrease’, ‘increase’, and ‘sham’)
using unpaired t-test with Bonferroni corrections for multiple comparisons of
frequency bins and datasets.

Neurophysiological modelling
Model description. The CCTC network model under ET condition was simulated as
in Zhang et al.15. The model is available on ModelDB (http://modeldb.yale.edu/
266842). It consisted of 425 single-compartment, biophysics-based neurons from
the olivocerebellar and TC loops, including 40 inferior olivary nucleus (ION)
neurons in the brainstem, 200 PCs and 20 granular layer clusters (GrL; 3 distinct
neurons per cluster, 60 neurons altogether) in the cerebellar cortex, 5 glutamatergic
deep cerebellar projection neurons (DCNs) and 5 nucleoolivary (NO) neurons in
the dentate nucleus, 5 ventral intermediate thalamus (Vim) TC neurons, 100
pyramidal neurons (PYN), and 10 fast-spiking interneurons (FSI). As in our
previous study15, the ET condition was simulated by reducing the conductivity and
increasing the decay time of the PCs’ GABAergic currents to the DCN, which
mimics the loss of GABAA α1-receptor subunits and an up-regulation of α2/α3-
receptor subunits in the cerebellum. Five instances of the model were considered
and for each instance, simulations were repeated under normal condition, ET
condition with no stimulation, and ET condition with stimulation of the cere-
bellum. Each simulation lasted 11,500 ms (integration step, 0.0125 ms). ET con-
dition was initiated after 1000 ms and stimulation started after 1500 ms and lasted
till the end of the simulation.

Hitherto computational studies of the effect of electrical stimulation on tremor
activity have used a range of models ranging from a single cell with detailed
biophysical and morphological representations49 to thousands of cells in which
their activity is represented by a simplified point-mass function50, revealing
complimentary insights. Neural network modelling has an inevitable trade-off
between the scale and biological complexity of representation with both the size of
the network and the biological complexity of individual cells affect the dynamics51.
We chose to use a middle-ground approach with detailed biophysical
representation but reduced morphological representation —an approach proven to
be successful in the past by us52 and others53,54. This approach may be particularly
suited for ET since neural mass or mean-field models cannot represent the complex
change in spiking pattern (rather than mean firing rate) observed in ET
patients55,56. Furthermore, by maintaining a detailed biophysical representation of
the cells, we could explore the effect of the stimulation on the interaction between
the high-frequency simple spiking and low-frequency complex spiking of PCs that
has been causally linked to ET57.

To simulate the cerebellar stimulation, a current Istim was added to all the PCs in
the model. Istim was sinusoidal with a frequency that is equal to the frequency of the
ET and amplitudes between 1-5pA evoking small subthreshold depolarisations
expected in our experiment. Specifically, Istim with an amplitude of 1pA induced a
periodic depolarisation of ~0.5 mV amplitude in the single-compartment PC
model which is similar to the depolarisation that was induced by an extracellular
electric field with an amplitude of 2 V/m, predicted from our FEM modelling of the
experiment (Fig. 2b), in the multi-compartment PC model (Supplementary
Fig. 4a–b).

To validate that the direct response of the cerebellar cortex to the stimulating
electric fields is dominated by the PCs, we simulated the response of the most
abundant cell types in this region, i.e. PC and granule cell (GrC) to extracellular
electric fields. To best capture the spatiotemporal dynamics, we used multi-
compartmental models with detailed 3D geometrical reconstruction of the PC58

and GrC59. We exposed the cells to homogenous extracellular electric fields that
were aligned with the dendrite-somatic axes of the cells and quantified the induced
depolarisation. As in the original study with the PC model58, we removed the
sodium and calcium channels from the axonal initial segment of this cell to reduce
its spontaneous pacemaker activity (see Supplementary Fig. 4a–b).

The amplitude of Istim was normalised to the average amplitude of the
endogenous synaptic current to PCs, measured under ET state over 4000 ms (see
also Perkel et al.)60, with Istim of 1pA equals 4% of the average endogenous synaptic
current to PCs. To phase lock the sinusoidal current to the ET oscillation, first the
spike count trace of the TC neurons of the Vim was computed with a temporal
resolution of 1 ms and then filtered using a 2nd order Butterworth bandpass filter
with cut-off frequencies of 6 Hz and 10 Hz. Then, the instantaneous phase of the
spike count trace was computed online every 10 ms using ecHT on a running
window of 1000 ms, and the phase of the stimulating current was adjusted at those
time-points to maintain the target phase lag.

Computation of PCs phase-locking value. The spike count trace of the PCs was
computed with a temporal resolution of 1 ms (spikes were summed across PCs)
and low pass filtered using a 2nd order Butterworth filter with a cut-off frequency
of 30 Hz. Then, the instantaneous phases of the spike count trace and the stimu-
lating current were computed offline using MATLAB’s ‘hilbert’ function, and the
instantaneous phase lag between the two was calculated every 1 ms. The phase-
locking value of each PC was computed as in Lachaux et al.61 and then averaged
across the PCs.

Computation of Vim power spectrum density. First, the spike count trace of the TC
neurons in the Vim was computed with a temporal resolution of 1 ms (spikes were
summed across TC neurons). Then, the power spectral density (PSD) of the spike
count trace was computed using Welch’s method with 2000 ms Hanning window
and 1000 ms overlap, and normalised to the total power between 0 Hz and 25 Hz.
Tremor PSD was estimated as the peak PSD at the tremor frequency band, i.e.
between 4 and 12 Hz.

Computation of DCN and Vim temporal coherence. The spike trains of the DCN
and TC neurons of the Vim were low pass filtered using a 2nd order Butterworth
filter with a cut-off frequency of 30 Hz, and the magnitudes squared coherence
were computed using MATLAB’s mscohere function with a frequency range of
0–30 Hz. Then the magnitude squared coherence in DCN and Vim during sti-
mulation was expressed relative to baseline by subtracting the mean value during
baseline and dividing by the st.d. value during baseline, i.e. z-score.

Sensitivity analysis to the model size. To explore the effect of the model size on the
simulation outcome, we first repeated the simulation with a fivefold increase in the
number of cells in the olivocerebellar circuit while keeping the other parts of the
model unchanged, i.e. ‘Model expansion 1’. Model expansion 1 consisted of 1425
cells, including 200 ION neurons, 1000 PCs and 20 GrL clusters (60 neurons
altogether), 25 DCNs, 25 NO neurons, 5 Vim TC neurons, 100 PYN, and 10 FSI.
We randomised the synaptic connections between the TC neurons and the DCNs
with adjusted weights (20% of the original value) due to model expansion. Then,
we repeated the simulation with a fivefold increase in the number of all cells in the
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model i.e. ‘Model expansion 2’. Model expansion 2 consisted of 2125 cells,
including 200 ION neurons, 1000 PCs and 100 GrL clusters (300 neurons alto-
gether), 25 DCNs, 25 NO neurons, 25 Vim TC neurons, 500 PYN, and 50 FSI. We
randomised the synaptic connections between the different neuron types along the
olivocerebellar circuit, and between TC neurons and DCNs, with adjusted weights
(20% of the original value) due to model expansion.

Transcranial electric field modelling. Finite element method (FEM) electro-
magnetic simulations were performed in Sim4Life V.4 (ZMT ZurichMedTech AG,
Zurich), using a quasi-static ohmic-current solver. Electrodes were created within
the platform using Sim4Life’s CAD functionalities and applied to the scalp of the
MIDA anatomical head model62. Dirichlet (voltage) boundary conditions were
assigned to the electrodes, and tissues electrical conductivities were assigned
according to the IT’IS LF database63. A uniform rectilinear grid of 0.6 mm was
used. The current between the electrodes was calculated integrating the current flux
density on a closed surface surrounding one electrode and field magnitude were
normalised to 2 mA input current.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The tremor recording datasets used in this
paper are available on the Harvard Dataverse repository https://doi.org/10.7910/DVN/
Z6EN2I. Source data are provided with this paper.

Code availability
The endpoint corrected Hilbert transform (ecHT) code implemented in Matlab is
available as a supplementary file ‘Supplementary_Code_1’. The highly comparative time-
series analysis (hctsa) is available on GitHub https://github.com/benfulcher/hctsa. The
Matlab code of the most informative features in Figs. 4 and 5 is also available as a
supplementary file ‘Supplementary_Code_2’. The NEURON model of CCTC network
under ET condition and phase-locked electrical stimulation is available on the ModelDB
repository http://modeldb.yale.edu/266842. The FEM model of the transcranial cerebellar
electrical stimulation is available on the Harvard Dataverse repository https://doi.org/
10.7910/DVN/H7RHQF.
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Supplementary Information for: 
 

Non-invasive Suppression of Essential Tremor via Phase-Locked Disruption of its 
Temporal Coherence 

 
 

1. Neurophysiological model   

To explore the neurophysiological mechanism of our stimulation strategy we used a 
computational model of the Cortico-cerebello-thalamo-cortical (CCTC) network under 
essential tremor (ET) condition1 and tested the effect of phase-locked stimulation of the 
cerebellum on the spiking dynamics. The model consisted of 425 single-compartment, 
conductance-based neurons from the olivocerebellar and thalamocortical loops, including 40 
inferior olivary nucleus (ION) neurons in the brainstem, 200 Purkinje cells (PCs) and 20 
granular layer clusters (GrL; 3 distinct neurons per cluster, 60 neurons altogether) in the 
cerebellar cortex, 5 glutamatergic deep cerebellar projection neurons (DCNs) and 5 
nucleoolivary (NO) neurons in the dentate nucleus, 5 ventral intermediate thalamus (Vim) 
thalamocortical (TC) neurons, 100 pyramidal neurons (PYN), and 10 fast-spiking interneurons 
(FSI). Supplementary Fig. 5a shows a schematic representation of the model (see Methods 
for details, contextualized to hitherto approaches). As in our previous study1, the power 
spectrum density (PSD) between 4 –12Hz of the ventral intermediate thalamus (Vim) was 
used as a proxy to the tremor activity. Supplementary Fig. 3b shows a representative PSD of 
the Vim under normal and ET conditions with a pathologic oscillation peak at 7Hz. 

We first assessed the effect of periodic electrical stimulation of the cerebellum without phase-
locking by adding sinusoidal input currents to the Purkinje cells (PCs) which were chosen as 
the stimulation target due to their abundance in the cerebellar cortex2 and their high excitability 
(see Supplementary Fig. 4a-b for comparison with granular cells). We quantified the change 
in the spiking activity due to stimulation at the tremor frequency and a range of amplitudes 
evoking small sub-threshold depolarization as expected in our experiment (see Methods for 
details). We found that the stimulation entrained the PCs with an efficiency that increased with 
the current amplitude (Supplementary Fig. 3c). However, the entrainment of the PCs resulted 
in only a small decrease (<5%) or increase (<10%) in the tremor PSD of the Vim (Fig. 
Supplementary 3d, see also Supplementary Fig. 4c for representative spiking activity).  

We then assessed the effect of phase-locking the stimulation to the tremor activity by 
computing the instantaneous phase of the TC neurons’ spike-train online using ecHT and 
adjusting the phase of the sinusoidal currents to maintain a fix phase-lag as we did in our 
experiment (see Methods for details). We found that in this case, a narrow range of stimulating 
phase-lag values were capable of perturbing the synchronous activity of the PCs 
(Supplementary Fig. 3e) resulting in a large decrease (up to ~95%) in the tremor PSD of the 
Vim (Supplementary Fig. 3f). Higher current amplitudes resulted in a larger decrease in 
tremor-PSD and a wider range of efficacious phase-lags. Stimulating phase-lag values outside 
this range could result in a small increase (up to ~10%) in the tremor PSD of the Vim. 
Increasing the number of cells in the model affected the range of efficacious phase-lags but 
not the resulted drop in tremor PSD (Supplementary Fig. 4d). 



At efficacious phase-lags, the hyperpolarizing phase of the stimulating currents was 
consistently aligned with the onset time of the complex spikes in the PCs, resulting in a gradual 
suppression of the periodic complex spiking and restoration of more physiological simple 
spiking (Supplementary Fig. 3g). The perturbation of the complex spiking in the PCs disrupted 
the periodicity of the spiking in the inferior olivary nucleus (ION) neurons (Supplementary Fig. 
3h) and the temporal coherence of the bursting activity in the deep cerebellar neurons (DCNs; 
Supplementary Fig. 3i) thus ceasing the tremulous coherent drive to the Vim of the 
thalamocortical loop (Supplementary Fig. 3j). In contrast, at 180° relative phase-lags, the 
depolarizing phase of the stimulating currents was consistently aligned with the onset time of 
the complex spikes in the PCs, resulting in a small augmentation of the periodic complex 
spiking that led to a small reinforcement of the aberrant tremulous drive to the Vim of the 
thalamocortical loop (Supplementary Fig. 3g-j). 

 

2. Supplementary figures 

 

Supplementary Fig. 1 Tremor amplitude during phase-locked stimulation with values 
expressed relative to stimulation without phase-locking (related to Fig. 3e and Fig. 4c). 
a Change in tremor amplitude over time with stimulating currents were phase-locked to the 
tremor movement, showing the same as in Fig. 3e, but z-score values were expressed relative 
to non-phase-locked stimulation (instead of sham), by subtracting the median z-score during 
non-phase-locked stimulation. b Change in tremor amplitude versus stimulation phase lag, 
showing the same as in Fig. 4c, but z-score values were expressed relative to non-phase-
locked stimulation (instead of sham), by subtracting the median z-score during non-phase-
locked stimulation. 

 



 

Supplementary Fig. 2 Temporal coherence analysis of trials during stimulation without 
phase-locking (related to Figure 6h). a Correlation between change in tremor’s amplitude 
and change in tremor’s temporal coherence at the tremor frequency band (i.e., 4-8 Hz) of trials 
with stimulation without phase-locking. Each datapoint corresponds to the z-score of tremor’s 
amplitude versus the z-score tremor’s temporal coherence of a single trial during the 
stimulation period relative to the baseline period. c=-0.008, m=0.95, R2 =0.18 (c, line y-
intercept; m, line slope). It shows that in the case of non-phase-locked stimulation, the change 
in the tremor amplitude was only weakly correlated (lower R2) with the change in the tremor 
temporal coherence and exhibited a weaker dependency (smaller line slope, i.e., coefficient 
of gradient) compared to phase-locked stimulation (Fig. 6hii). b Change in tremor’s temporal 
coherence at the tremor frequency band over time during stimulation without phase-locking. 
Shown values are mean ± st.d. z-score at each epoch during stimulation period relative to the 
mean and st.d. across epochs during baseline period for the non-phase locking trials.  

 

 

Supplementary Fig. 3 Neurophysiological modelling, narrow phasic perturbation of 
cerebellar PCs’ synchrony can lead to large suppression of tremor amplitude. a 
Schematic of the Cortico-cerebello-thalamo-cortical (CCTC) network model; solid arrows and 
grey dashed arrows, pathways associated and not associated with ET generation, 
respectively; CC, cerebellar cortex; DN, dentate nucleus; RN, red nucleus; PN, pontine 
nucleus; Vim, ventral intermediate nucleus; MC, motor cortex. See Methods and Zhang et al.1 
for a detailed description of the model. b Normalized power spectral density (PSD) of the spike 
count trace of TC neurons in the Vim during tremor free condition, black line, and ET condition, 



red line (tremor frequency 7Hz). ET condition is used throughout the rest of the figure. PSD 
values were normalized to total power between 0Hz and 25Hz. Simulation duration, 11.5s. c-
d Sinusoidal current stimulation of PCs without phase-locking. Stimulation frequency, 7Hz. 
Current amplitude values were normalized to the amplitude of the endogenous synaptic 
current measured at rest; see Methods for details. c Modulation of PCs phase-locking value 
(PLV) versus normalized amplitude of stimulation during normal condition, black line, and ET 
condition, red line; see Methods for details of PLV computation. d Modulation of tremor PSD 
in Vim (i.e., maximal PSD between 4 -12Hz), showing percentage change in tremor PSD with 
respect to ET without stimulation. e-k Sinusoidal current stimulation of PCs phase-locked to 
Vim’s tremor spike train; (see Methods for details of online phase-locking computation. Phase 
lag values are expressed relative to 330° phase lag showing the largest reduction in tremor 
amplitude and wrap to ±180°. e Modulation of PCs PLV, showing colormap of PLVs versus 
normalized amplitude and phase of stimulation. f Modulation of tremor PSD in Vim, shown are 
(i) colormap of percentage change in tremor PSD versus normalized amplitude and phase of 
stimulation; black dashed line, normalized stimulation amplitude of 4%, 10% and 16%, (ii) line 
plots of percentage change in tremor PSD in Vim versus stimulation phase for amplitudes 4% 
(blue line), 10% (red line), and 16% (green line), and (iii) Normalized Vim PSD during 
stimulation with a relative phase of 0° and the same normalized amplitudes.  

 



 

Supplementary Fig. 4 Neurophysiological modelling, efficacious phasic perturbation is 
mechanistically attributed to suppression of PCs’ complex spikes. a Representative 
spiking activity of PCs, showing (i) spike raster plot during stimulation at 16% normalized 
amplitude and 0° relative phase-lag (black) and waveform of stimulating current (red); 
stimulation started after 1,500ms and lasted till the end of the simulation; (ii) same as (i) but 
at 180° relative phase-lag; (iii) statistics of PCs’ instantaneous spiking rate (i.e., 1/inter-spike-
interval) during no stimulation (‘No stim.’), stimulation at 180° relative phase-lag (‘Stim. 180°’), 
and stimulation at 0° relative phase-lag (‘Stim. 0°’); red line, median; box edges, 25% and 75% 
percentiles; *** Stim-0 vs. No-stim, p=4∙10-32; Stim-0 vs. Stim-180, p=1.5∙10-12; Bartlett’s test 
and post-hoc two-sample F-test with Bonferroni corrections for multiple comparisons; n=42 
simulation repetitions with amplitudes equally sampled between 1% and 16%; (iv) correlation 
between change in Vim tremor PSD and standard deviation (st.d.) of PCs’ instantaneous spike 
firing rate; c=-154, m=1.3, R2 =0.97 (c, line y-intercept; m, line slope; green line, linear fit); 
stimulation at 0° relative phase-lag resulted in a breakdown of complex spikes (high median 



instantaneous spiking rate due to short inter spikelet intervals, high st.d. instantaneous spiking 
rate due to long inter burst intervals) and restoration of regular simple spikes; (v-vi) 
representative spike train of a PC before (v) and during (vi) stimulation at 0° relative phase-
lag; (vii-viii) same as (v-vi) but for 180° relative phase-lag. b same as (a) but showing results 
for ION neurons; red horizontal bar indicates stimulation period; (iii) *** p=6∙10-9, p=2.2∙10-12 
(iv) c=30, m=-43, R2 =0.9. c same as (b) but showing results for DCNs, (iii) change in DCNs’ 
spiking temporal coherence z-scored relative to mean and st.d. during baseline, *** p=1.6∙10-

31, p=3.6∙10-26; (iv) correlation between change in Vim tremor PSD and change in DCNs’ 
temporal coherence shown in (iii); c=-5.8, m=14, R2 =0.97. d same as (c) but showing results 
for TC neurons in Vim, with (i-ii) showing representative spiking spectrograms instead of spike 
raster plots, (iii) *** p=7.7∙10-29, p=2.0∙10-25; (iv) c=2.5, m=25, R2 =0.95. e Representative 
spiking activity during stimulation without phase-locking at the same normalized amplitude, (i-
iv) showing the same as in (ai-di). 

 

 

Supplementary Fig. 5 Neurophysiological modelling, sensitivity to cell type and model 
size. a-b, Direct effect of the stimulation on Purkinje cell (PC) and granule cell (GrC) in the 
cerebellar cortex. see Methods for details description of the PC and GrC models. a 
Representative traces of somatic transmembrane potential of (i) PC and (ii) GrC during 
stimulation with an external sinusoidal electric field oscillating at the tremor frequency (i.e., 
7Hz) and having an amplitude of 2 V/m expected in our experiment (Fig. 2b). b, Same as (a) 
but for electric field having an amplitude of 6 V/m. The results shown in (a-b) indicate that the 
direct response of the cerebellar cortex to the stimulating electric fields is dominated by the 
PCs. c Effect of the model size on the simulation outcome. red line original ‘CCTC model’; 
green line, ‘Model expansion, 1’; blue line, ‘Model expansion 2’; see Methods for details 



description of the models. Showing (i) normalized Vim PSD during stimulation with a relative 
phase of 0° and normalized amplitude of 16% and (ii) percentage change in tremor PSD in 
Vim versus stimulation phase for the same stimulation. It shows that in comparison to the 
original model used in Supplementary Fig. 3, an increase in the number of cells in the model 
does not abolish the ET oscillation in the CCTC network (quantified via the PSD at the tremor 
frequencies in the Vim) and its response to phase-locked stimulation. However, it may modify 
range of efficacious phase-lags. 

 

3. Supplementary tables 

Supplementary Table 1 (related to Fig. 2-6) 

Demographic and clinical information of participants. yrs, years; CRST, clinical rating scale for 
tremor. The demographic information in this table was published with the consent of the 
participants. 

Participant 
No. 

Sex Handed- 
ness 

Stim 
Hemi 
sphere 

Age 
(yrs) 

Age at  
Onset 
(yrs) 

Disease 
Duration 
(yrs) 

Tremor 
Severity  
(CRST) 

Stimulation 
Intensity 
(mA) 

Tremor 
Frequency1 
(Hz) 

Tremor 
Amplitude 
Baseline1 
(a.u.) 

1 m r l 65 5 60 48 2 5.2 (0.08, 0.9) 704 (0.2, 09) 

2 f l l 48 45 3 14 4 6.9 (0.07, 1) 88 (0.2, 1) 

3 m r r 80 55 25 16 2 6.2 (0.1, 0.9) 35 (0.2, 0.9) 

4 f r l 79 69 10 29 2 5.9 (0.08, 0.9) 151 (0.1, 1) 

5 m r r 71 25 46 44 1 4.6 (0.2, 0.6) 1613 (0.2, 02) 

6 m r r 38 18 20 30 3 6.2 (0.09, 1) 276 (0.2, 0.2) 

7 m r r 79 55 24 93 4 3.8 (0.09, 0.7) 1454 (0.2, 0.9) 

8 f r r 78 57 21 57 3 5.4 (0.1, 0.9) 480 (0.2, 09) 

9 m l r 52 1 51 57 2 6.2 (0.07, 0.9) 204 (0.1, 02) 

10 m r l 82 64 18 63 3 5.2 (0.03, 0.9) 79 (0.1, 0.8) 

11 m r l 70 55 15 37 3 4.1 (0.1, 1) 76 (0.2, 0.8) 
 

1 Showing in brackets participants’ coefficient of variances (COVs; left) of tremor frequency and tremor amplitude during baseline 
period across trials and the corresponding p-values of the Hartigan’s dip test for multimodality (right).  

  

Demographic and clinical information statistics of all participant cohort (‘all participants’), 
participants who responded to phase-locking stimulation (‘responders’), and participants who 
did respond to phase-locking stimulation (‘non-responders’), as well as significant difference 
(i.e., p-value) between responders and non-responders, characterized using Wilcoxon rank-
sum test. 

 all participants responders non-responders  p-value 

Age (yrs) 67.5 ±15 61.6 ±16 77.8 ±4.7 0.07 

Disease Duration 
(yrs) 

26.6 ±17.9 27.8 ±20.3 24.5 ±15.4 0.78 



Tremor Severity 
(CRST) 

44.4 ±23 37 ±18 57.2 ±28 0.29 

Stimulation 
Intensity (mA) 

2.6 ±0.9 2.8 ±0.9 2.5 ±1.3 0.8 

Tremor 
Frequency (Hz) 

5.4 ±1.0 6 ±1.1 4.9 ±0.9 0.08 

Tremor Amplitude 
Baseline (a.u.) 

468 ±594 205 ±237 825 ±823 0.23 

 

Demographic and clinical information during repetition experiment with a subset of participants  

Participant 
No. 

Age 
(yrs) 

Disease 
Duration 
(yrs) 

Tremor 
Severity  
(CRST) 

Stimulation 
Intensity 
(mA) 

Tremor 
Frequency 
(Hz) 

Tremor 
Amplitude 
Baseline 
(a.u.) 

1  68 63 75 2 4,9 974,0 

2 51 6 15 3 6,5 43,0 

3 84 29 47 2 6,4 53,0 

6 42 24 31 3 6,8 82,0 

9 55 54 47 2 6,9 118,0 

11 73 18 46 3 4,8 46,0 
        

 

Supplementary Table 2 (related to Fig. 2d) 

Similarity of the mean phase lag between the stimulation conditions, assessed using Fisher 
test during the whole stimulation period (‘whole stim’), the 1st half of the stimulation period 
(‘1st stim half’), and the second half of the stimulation period (‘2nd stim half’). no-pl, no phase-
locking. 

Post-hoc analysis (p-value) 
Set phase lags Whole stim. 1st stim half 2nd stim half 
0° vs 60°   2.73E-06 2.73E-06 2.73E-06 
0° vs 120°   2.73E-06 2.73E-06 2.73E-06 
0° vs 180°   0.20* 0.20* 0.20* 
0° vs 240°   2.73E-06 2.73E-06 2.73E-06 
0° vs 300°   2.73E-06 2.73E-06 2.73E-06 
60° vs 120°   2.73E-06 2.73E-06 2.73E-06 
60° vs 180°   2.73E-06 2.73E-06 2.73E-06 
60° vs 240°   0.20 0.09 0.67 
60° vs 300°   2.73E-06 2.73E-06 2.73E-06 
120° vs 180°   2.73E-06 2.73E-06 2.73E-06 
120° vs 240°   2.73E-06 2.73E-06 2.73E-06 
120° vs 300°   0.39 0.67 0.01 
180° vs 240°   2.73E-06 2.73E-06 2.73E-06 
180° vs 300°   2.73E-06 2.73E-06 2.73E-06 
240° vs 300°   2.73E-06 2.73E-06 2.73E-06 
no-pl vs 0°   0.09 0.67 0.20 



no-pl vs 60°   0.67 0.20 0.67 
no-pl vs 120°   0.20 0.67 1.00 
no-pl vs 180°   0.03 0.67 0.20 
no-pl vs 240°   0.67 0.09 0.67 
no-pl vs 300°   0.20 0.67 0.67 

 

* We found that the Fisher test between 0° phase lag and 180° phase lag using MATLAB Circstats3 
function ‘circ_cmtest’ is inaccurate due to the phase wrapping of the function.  

 

Supplementary Table 3 (related to Fig. 2e) 

Similarity of the circular spread of the phase lags, quantified via the mean resultant vector 
length R, between the stimulation conditions, assessed using ANOVA with post-hoc analysis 
using Wilcoxon signed-rank test during the whole stimulation period (‘whole stim’), the 1st half 
of the stimulation period (‘1st stim half’), the second half (‘2nd stim half’) of the stimulation 
period, and between the 1st and 2nd halves of the stimulation period (‘1st vs 2nd stim halves’). 
no-pl, no phase-locking. 

Set phase lags Whole stim 
(p-value) 

1st stim half 
(p-value) 

2nd stim half 
(p-value) 

0° vs 60° 0.70 1.00 0.15 
0° vs 120° 0.64 0.58 0.52 
0° vs 180° 0.58 0.52 0.41 
0° vs 240° 0.24 0.37 0.15 
0° vs 300° 0.83 0.64 0.41 
60° vs 120° 0.24 0.37 0.58 
60° vs 180° 0.64 0.70 0.58 
60° vs 240° 0.70 0.37 0.90 
60° vs 300° 0.52 0.52 0.21 
120° vs 180° 0.12 0.07 1.00 
120° vs 240° 0.15 0.05 1.00 
120° vs 300° 0.90 0.17 0.52 
180° vs 240° 0.32 1.00 0.70 
180° vs 300° 0.52 0.90 0.46 
240° vs 300° 0.46 0.90 0.24 
no-pl vs 0° 9.77E-04 9.77E-04 9.77E-04 
no-pl vs 60° 9.77E-04 9.77E-04 9.77E-04 
no-pl vs 120° 9.77E-04 9.77E-04 9.77E-04 
no-pl vs 180° 9.77E-04 9.77E-04 9.77E-04 
no-pl vs 240° 9.77E-04 9.77E-04 9.77E-04 
no-pl vs 300° 9.77E-04 9.77E-04 9.77E-04 
sham vs 0° 9.77E-04 9.77E-04 9.77E-04 
sham vs 60° 9.77E-04 9.77E-04 9.77E-04 
sham vs 120° 9.77E-04 9.77E-04 9.77E-04 
sham vs 180° 9.77E-04 9.77E-04 9.77E-04 
sham vs 240° 9.77E-04 9.77E-04 9.77E-04 
sham vs 300° 9.77E-04 9.77E-04 9.77E-04 



sham vs no-pl 0.37 0.27832 0.90 
 

1st vs 2nd stim halves (p-value) 
Set 
phase 
lag 1st 
stim 
half/2nd 
stim half 

0° 60° 120° 180° 240° 300° no-pl sham 

0° 0.58 0.15 0.83 0.76 0.15 0.64 9.77E-04 9.77E-04 
60° 0.90 0.52 0.37 0.97 0.64 0.83 9.77E-04 9.77E-04 
120° 0.90 0.02 0.15 0.15 0.04 0.46 9.77E-04 9.77E-04 
180° 0.58 0.70 0.76 0.76 0.58 0.52 9.77E-04 9.77E-04 
240° 0.21 0.97 0.32 0.41 0.97 0.28 9.77E-04 9.77E-04 
300° 0.12 0.41 0.58 0.76 0.90 0.21 9.77E-04 9.77E-04 
no-pl 9.77E-04 9.77E-04 9.77E-04 9.77E-04 9.77E-04 9.77E-04 0.90 0.83 
sham 9.77E-04 9.77E-04 9.77E-04 9.77E-04 9.77E-04 9.77E-04 0.24 0.21 

 

Supplementary Table 4 (related to Fig. 3b,f)  

Number of participants showing a statistically significant change in tremor amplitude due to 
non phase-locked stimulation and phase-locked stimulation during the 1st half of the 
stimulation period (‘1st stim half’), the second half (‘2nd stim half’) of the stimulation period, 
and after the end of the stimulation (‘post stim’).  

Number of participants showing a statistically significant change ’in tremor amplitude (Fisher exact test 
against number of participants with no change, ‘No’) 
 Non phase-lock stimulation Phase-lock stimulation 
 No  Reduction Increase No  Reduction Increase 
1st stim half 3 5 (p=0.66) 3 (p=1) 1 5 (p=0.15) 5 (p=0.15) 
2nd stim half 5 4 (p=0.66) 2 (p=1) 1 9 (p<0.005) 4 (p=0.31) 

Post stim 3 5 (p=0.66) 3 (p=1) 0 10 (p<0.00005) 3 (p=0.21) 

 

In the 2nd stim half period and post-stim period, 3 and 2 participants, respectively, showed a 
significant reduction in one phase-lag and a significant increase in another phase-lag. In 
addition, in the 2nd stim half period and post-stim period, 3 and 2 participants, respectively, 
showed a significant reduction during both stimulation with phase-locking and without phase-
locking (the reduction during stimulation without phase-locking was however typically smaller). 

 

Supplementary Table 5 (related to Fig. 4a,c)  

Change in tremor amplitude induced by phase-locked stimulation during the 1st half of the 
stimulation period (‘1st stim half’), the second half (‘2nd stim half’) of the stimulation period, 
and after the end of the stimulation (‘post stim’). 

Change in tremor amplitude vs stim phase lag (mean st.d. z-score, unpaired t-test p-value)  
Set phase lag 1st stim half 2nd stim half post stim 
0 -0.61  0.38, p=0.14 -0.86  0.39, p=0.05 -0.67  0.37, p=0.10 
60 0.09  0.26, p=0.75 -0.14  0.26, p=0.60 -0.06  0.25, p=0.80 



120 -0.27  0.39, p=0.51 -0.54  0.50, p=0.30 -0.71  0.35, p=0.07 

180 -0.26  0.20, p=0.23 -0.24  0.37, p=0.53 -0.68  0.30, p=0.05 

240 -0.04  0.24, p=0.87 -0.08  0.30, p=0.79 -0.49  0.42, p=0.27 

300 -0.39  0.45, p=0.41 -0.38  0.39, p=0.35 -0.36  0.33, p=0.29 
 

Tremor amplitude vs stim phase lag expressed relative to phase of maximal reduction (mean st.d. 
z-score, unpaired t-test p-value) 
Relative phase lag 1st stim half 2nd stim half* Post stim 
-120 -0.15  0.08, p=0.56 0.18  0.07, p=0.43 -0.26  0.08, p=0.37 
-60 0.18  0.08, p=0.52 -0.22  0.07, p=0.33 -0.27  0.08, p=0.32 

0 -1.28  0.13, p=0.02 -1.43  0.12, p=0.01 -1.74  0.10, p<0.0005 

60 -0.03  0.07, p=0.89 -0.11  0.09, p=0.72 -0.10  0.07, p=0.67 

120 -0.39  0.11, p=0.31 -0.57  0.17, p=0.35 -0.23  0.12, p=0.59 

180 0.19  0.07, p=0.40 -0.10  0.06, p=0.64 -0.37  0.08, p=0.20 
* Significance during the 2nd stim half was also tested using 2-sample Kolmogorov-Smirnov test against 
a surrogate distribution of z-score values yielding -120°, p=0.05; -60°, p=0.1; 0°, p=0.002; 60°, p=0.09; 
120°, p=0.09; 180°, p=0.1. 

 

Participants showing a statistically significant change in tremor amplitude due to phase-locked 
stimulation in the 2nd stim half. Showing participant number (‘ID’) and p-value of statistical 
testing comparing the phase-locked stimulation condition with sham stimulation (‘p-value 
Shm’). For subjects who also showed a significant reduction in tremor amplitude during non-
phase-locked stimulation, the p-value of statistical testing comparing the phase-locked 
stimulation condition with the non-phase-locked stimulation condition (‘p-value non-pl’) is 
added. 

Participants showing a statistically significant change in tremor amplitude vs stim phase lag  
(ID, p-value Shm, p-value non-pl) 
Set phase lag Tremor decrease Tremor increase 

0 
1 (3∙10-4), 2 (3∙10-3, 0.2), 3 (2∙10-7), 4 
(6∙10-3), 6 (1∙10-5) 
 

5 (7∙10-3, 0.5) 

60 
4 (3∙10-4), 6 (1∙10-3), 8 (5∙10-4, 1∙10-3), 9 
(6∙10-3), 10 (2∙10-4, 0.9) 
 

5 (8∙10-4, 0.3) 

120 
2 (4∙10-4, 0.06), 6 (1∙10-3),  
7 (4∙10-5) 
 

4 (7∙10-5), 5 (2∙10-3, 1∙10-3) 

180 2 (3∙10-8, 1∙10-5), 8 (1∙10-4, 2∙10-4) 
 

4 (4∙10-3), 5 (1∙10-5, 0.04) 

240 
2 (4∙10-4, 8∙10-3), 8 (3∙10-3, 0.08),  
10 (2∙10-5, 0.5) 
 

5 (1∙10-7, 4∙10-3), 7 (3∙10-4, 0.2) 

300 2 (3∙10-7, 3∙10-7) 10 (2∙10-3) 

 

Number of participants showing a statistically significant change in tremor amplitude due to 
phase-locked stimulation during 2nd stim half, computed using Fisher exact test against the 
number of participants who did not show any change in tremor amplitude.  

Number of participants showing a statistically significant change in tremor 
amplitude vs stim phase lag 
Set phase lag Tremor decrease Tremor increase 



(n decrease, n no-
change, p-value)  

(n increase, n no-
change, p-value) 

0 5, 5, p=1 1, 5, p=0.15 

60 5, 5, p=1 1, 5, p=0.15 

120 3, 6, p=0.39 2, 6, p=0.18 

180 2, 7, p=0.08 2, 7, p=0.08 

240 3, 6, p=0.39 2, 6, p=0.18 

300 1, 9, p<0.005 1, 9, p<0.005 

 

Number of participants showing a statistically significant change in tremor 
amplitude vs stim phase lag expressed relative to phase of maximal 
reduction 
Set phase lag Tremor decrease 

(n decrease, n no-
change, p-value)  

Tremor increase 
(n increase, n no-
change, p-value) 

-120  1, 9, p<0.005 1, 9, p<0.005 

-60 2, 7, p=0.08 2, 7, p=0.08 

0  9, 1, p<0.005 1, 1, p=1 

60 3, 6, p=0.39 2, 6, p=0.18 

120 2, 8, p=0.03 1, 8, p=0.01 

180 2, 7, p=0.08 2, 7, p=0.08 

 

Supplementary Table 6 (related to Fig. 4e-h) 

Similarity of the mean phase-lag between the original experiment and the repeated experiment 
(n=6, including participants 1,2,3,6, 9, and 11), assessed using Circular Krusical Wallis test. 

Phase-lag (mean st.d., p-value)  
Set phase lag original experiment repeated experiment difference 
0 357º  13º 2º  6º p=0.76 

60 60º  11º 60º  7º p=0.77 

120 121º  9º 110º  8º p=0.19 

180 182º  16º 178º  6º p=0.75 

240 242º  3º 237º  8º p=0.37 

300 299º  12º 302º  9º p=0.53 

 

Similarity of the phase resultant between the original experiment and the repeated experiment 
(n=6, including participants 1,2,3,6, 9, and 11), assessed using a paired sign-rank test. 

Phase resultant (mean st.d., p-value)  
Set phase lag original experiment repeated experiment difference 
0 0.98  0.01 0.95  0.04 p=0.09 

60 0.98  0.01 0.96  0.03 p=0.79 

120 0.98  0.01 0.96  0.04 p=0.84 

180 0.98  0.01 0.96  0.04 p=0.07 

240 0.98  0.01 0.93  0.06 p=0.08 



300 0.97  0.02 0.95  0.07 p=0.39 

 

Supplementary Table 7 (related to Fig. 4g)  

Similarity of the change in tremor amplitude induced by phase-locked stimulation between the 
original experiment and the repeated experiment (n=6, including participants 1,2,3,6, 9, and 
11), assessed using paired t-test. Showing, results during the 1st half of the stimulation period 
(‘1st stim half’), the second half (‘2nd stim half’) of the stimulation period, and after the end of 
the stimulation (‘post stim’). 

Change in tremor amplitude (mean st.d. z-score, unpaired t-test p-value)  
period original experiment repeated experiment difference 
1st stim half -1.86  0.39, p=0.0001 -1.82  0.42, p=0.01 p=0.93 
2nd stim half -2.10  0.46, p=0.001 -2.28  0.53, p=0.001 p=0.83 

Post stim -1.81  0.27, p=0.0001 -1.62  0.27, p<0.0001 p=0.58 

 

Participants showing a statistically significant change in tremor amplitude due to phase-locked 
stimulation between the original experiment and the repeated experiment (n=6, including 
participants 1,2,3,6, 9, and 11). Showing, results during the 1st half of the stimulation period 
(‘1st stim half’), the second half (‘2nd stim half’) of the stimulation period, and after the end of 
the stimulation (‘post stim’). 

Number of participants showing a statistically significant change in tremor 
amplitude vs stim phase lag 
Set phase lag Tremor decrease 

(n original experiment, 
n repeated 
experiment)  

Tremor increase 
(n original experiment, 
n repeated 
experiment) 

1st stim half 4, 4 1, 2 
2nd stim half 5, 5 0, 3 

Post stim 6, 5 0, 2 

 

Supplementary Table 8 (related to Fig. 4h)  

Similarity of the change in tremor amplitude during stimulation between the original experiment 
and the repeated experiment (n=6, including participants 1,2,3,6, 9, and 11), assessed using 
paired t-test. 

Change in tremor amplitude vs stim phase lag (mean st.d. z-score)  
Set phase lag original experiment repeated experiment difference (p-value)  
0 -1.46  0.59 -0.33  0.56 p<0.00001 

60 -0.20  0.23 -0.28  0.46 p=0.33 

120 -0.92  0.80 -0.94  0.44 p=0.10 

180 -0.32  0.59 -0.98  0.70 p=0.37 

240 -0.08  0.31 -0.88  0.44 p=0.10 

300 -0.91  0.61 -0.92  1.19 p=0.03 

 

Supplementary Table 9 (related to Fig. 5c-d) 



Most informative features, i.e., the features shown in Fig. 5c at the centres of the clusters of 
correlated features, found to predict the participants’ response to stimulation. See Fulcher et 
al.4 for description of the features.  

Feature ID 
in 4 Feature name 

Classification 
accuracy (%) 
 

7588 MF_GARCHfit_ar_P1_Q1_diff_ac1 79.22 
1129 CO_trev_3_raw 78.98 
916 EN_PermEn_2_1_normPermEn 80.75 
1125 CO_trev_2_abs 77.76 
7467 MF_armax_2_2_05_1_maxdc 83.10 
4138 SC_FluctAnal_2_dfa_50_3_logi_r1_se1 83.61 
4141 SC_FluctAnal_2_dfa_50_3_logi_r1_resac1 79.32 
4568 SP_Summaries_fft_linfitloglog_all_a2 78.69 
5185 NL_BoxCorrDim_50_ac_5_mind2 78.03 
16 rms 78.44 
3561 SB_MotifTwo_mean_uuuu 78.70 
2390 FC_Surprise_T1_50_3_udq_500_std 80.41 
1900 CO_StickAngles_y_q1_all 77.98 
3289 DN_OutlierInclude_n_001_nfla 77.53 

 

Description of features shown in Fig. 5d 
 
• Normalised non-linear autocorrelation trev function (feature ID, 1129) – The function 

calculates the mean of the difference between the shifted time-series. A perfectly 
sinusoidal timeseries should have a zero difference in the means when shifted by tau. In 
our data, the non-responders had a more negative trev value which suggest that their 
movement was less symmetric. 

• Root-mean square (feature ID, 16) – The function computed the root mean square of the 
time series (i.e., amplitude). In our data, the responders had lower RMS. 

• Motif correlation (feature ID, 3561) – The function searches for local motifs in a binary 
symbolisation of the time series with data points larger than mean set to 1 and those below 
the mean to 0. In our data, non-responders had larger amplitude above the mean, i.e., less 
symmetry relative to the time axis. 

• Predictive memory of signal (feature ID 2390) – The function estimates the surprise in the 
next data point given recent memory of the previous data points and then computes the 
st.d. of the surprise matrix. In our data, non-responders had a higher portion of extreme 
values compared to the mean information, thus more information in each data point.  

 

See Supplementary Software for MATLAB code computing the abovementioned features.  

 

 

Supplementary Table 10 (related to Fig. 5g) 

Demographic and clinical information of second cohort of participants. yrs, years; CRST, 
clinical rating scale for tremor; a.u., arbitrary units. The demographic information in this table 
was published with the consent of the participants. 

 



Partici- 
pant 
No. 

Sex Handed- 
ness 

Stimulated 
Hemisphere 

Age 
(yrs) 

Age at  
Onset 
(yrs) 

Disease 
Duration 
(yrs) 

Tremor 
Severity  
(CRST) 

Stimulation 
Intensity 
(mA) 

Tremor 
Frequency 
(Hz) 

Tremor 
Amplitude 
Baseline 
(a.u.) 

1 m r r 61 20 41 14 2 8.1 44.0 
2 f r r 43 37 6 7 3 8.7 20.0 
3 m r r 56 26 30 25 1 7.4 37.0 
4 m l l 47 15 32 31 3 5.4 71.0 
5 f r r 54 44 10 7 2 6.8 17.0 
6 f r l 42 38 4 6 1 8.5 16.0 
7 f r l 80 42 38 65 1 4.2 220.3 

 

Demographic and clinical information statistics from the second cohort of participants, showing 
all participant cohort (‘all participants’), participants who responded to phase-locking 
stimulation (‘responders’), and participants who did respond to phase-locking stimulation 
(‘non-responders’), as well as significant difference (i.e., p-value) between responders and 
non-responders, characterized using Wilcoxon rank-sum test. 

 all participants responders non-responders p-value 

Age (yrs) 55  13 60  19 51  8 0.63 

Disease Duration 
(yrs) 

23  16 25  17 22  18 1.0 

Tremor Severity 
(CRST) 

22  21 32  30 14  12 0.46 

Stimulation 
Intensity (mA) 

0.2  0.1 0.2  0.1 0.2  0.1 0.74 

Tremor 
Frequency (Hz) 

7.0  1.7 6.8  2.3 7.2  1.4 1.0 

Tremor Amplitude 
Baseline (a.u.) 

60.8  73.0 92.4  111.1 37  26.1 0.63 

 

Supplementary Table 11 (related to Fig. 5g) 

Phase-lag between stimulation and tremor movement in the second cohort of participants 
during the 1st half of the stimulation period (‘1st stim half’), the second half (‘2nd stim half’) of 
the stimulation period, and after the end of the stimulation (‘post stim’).  

Phase-lag (mean st.d., p-value) 
Set phase lag 1st stim half 2nd stim half 
0 7  10, p<0.00001 6  12, p<0.00001 
60 59  9, p<0.00001 60  8, p<0.00001 

120 113  20, p<0.00001 122  14, p<0.00001 

180 180  11, p<0.00001 183  12, p<0.00001 

240 247  7, p<0.00001 245  9, p<0.00001 

300 308  7, p<0.00001 302  7, p<0.00001 

 



Circular spread of the phase lags quantified via the mean resultant vector length R in the 
second cohort of participants. 

Phase resultant (mean st.d., p-value) 
Set phase lag 1st stim half 2nd stim half 
0 0.97  0.03 0.96  0.04 
60 0.96  0.03 0.97  0.02 

120 0.93  0.14 0.94  0.10 

180 0.96  0.05 0.97  0.02 

240 0.95  0.07 0.97  0.04 

300 0.94  0.08 0.95  0.06 

 

Supplementary Table 12 (related to Fig. 5g)  

participants in the second cohort, showing a statistically significant change (decrease or 
increase) in tremor amplitude during phase-locked stimulation and non phase-locked 
stimulation.  

Number of participants showing a statistically significant change in tremor 
amplitude vs stim phase lag 
Set phase lag Phase-locked 

stimulation (n 
decrease, n increase)  

Non phase-locked 
stimulation (n 
decrease, n increase) 

1st stim half 5, 2 3, 1 
2nd stim half 4, 4 1, 2 

Post stim 5, 4 1, 2 

 

Change in tremor amplitude induced by phase- vs phase of stimulation in the second cohort 
of participants.  

Change in tremor amplitude vs stim phase lag (mean st.d. z-score, unpaired t-test p-value)  
Set phase lag 1st stim half 2nd stim half post stim 
0 -0.12  0.86, p=0.72 -0.30  2.31, p=0.74 -0.40  2.92, p=0.73 
60 -0.03  0.86, p=0.94 0.24  1.69, p=0.72 -0.16  1.79, p=0.82 

120 -0.19  1.20, p=0.69 -0.18  1.20, p=0.70 0.06  1.38, p=0.91 

180 -0.36  0.93, p=0.35 0.02  1.39, p=0.97 -0.04  1.52, p=0.95 

240 -0.37  0.76, p=0.25 -0.17  1.07, p=0.70 -0.36  0.68, p=0.21 

300 -0.11  0.73, p=0.70 0.15  1.05, p=0.71 0.02  1.24, p=0.96 

 

Supplementary Table 13 (related to Fig. 6e-f) 

Most informative features, i.e., the features shown in Fig. 6e at the centres of the clusters of 
correlated features, found to predict the participants’ response to stimulation. See Fulcher et 
al.4 for description of the features.  

Feature ID 
in 4 Feature name 

Classification 
accuracy (%) 
 

2315 FC_Surprise_T2_50_3_q_500_median 79.31 
4432 SP_Summaries_welch_rect_fpoly2_r2 78.45 



3077 FC_LocalSimple_median5_taures 75.86 
526 CO_glscf_2_5_tau 75.86 
6641 WL_DetailCoeffs_db3_max_max_median 77.59 
1529 CO_Embed2_Basic_1_downdiag05 76.72 
1927 CO_Embed2_tau_mean_eucdm 75.00 
3286 DN_OutlierInclude_n_001_nfexpb 75.00 
1938 CO_Embed2_tau_areas_50 75.00 

 

Description of features shown in Fig. 6f 
 

• Information Gain – The function estimates the predictability of the next data point given 
the previous data points. A perfect sine wave has zero median information gain.  
In our data, stimulation that suppressed the tremor amplitude increased the information 
gain. 

• Quadratic fit of power spectrum cumulative sum - The function computes the R2 of a 
quadratic fit to the cumulative sum of the power spectrum. 
In our data, stimulation that suppressed the tremor amplitude increase the accuracy of the 
fit, potentially by reducing the peak at the tremor frequency. 

 

See Supplementary Software for MATLAB code computing the abovementioned features.  
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