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Sparse decomposition light-field microscopy for
high speed imaging of neuronal activity
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One of the major challenges in large scale optical imaging of neuronal activity is to simultaneously achieve sufficient
temporal and spatial resolution across a large volume. Here, we introduce sparse decomposition light-field microscopy
(SDLFM), a computational imaging technique based on light-field microscopy (LFM) that takes algorithmic advan-
tage of the high temporal resolution of LFM and the inherent temporal sparsity of spikes to improve effective spatial
resolution and signal-to-noise ratios (SNRs). With increased effective spatial resolution and SNRs, neuronal activity at
the single-cell level can be recovered over a large volume. We demonstrate the single-cell imaging capability of SDLFM
with in vivo imaging of neuronal activity of whole brains of larval zebrafish with estimated lateral and axial resolutions
of ∼3.5 µm and ∼7.4 µm, respectively, acquired at volumetric imaging rates up to 50 Hz. We also show that SDLFM
increases the quality of neural imaging in adult fruit flies. © 2020 Optical Society of America under the terms of the OSA Open

Access Publishing Agreement

https://doi.org/10.1364/OPTICA.392805

1. INTRODUCTION

Optical imaging of neuronal activity using fluorescent indicators
[1–6] has become a popular method of recording the population
activity of neurons in order to study neural circuit dynamics, owing
to the low invasiveness, high spatial resolution, and potential scal-
ability of such strategies. However, imaging activity in vivo at high
speed still remains a challenging task in part due to the fact that
most optical imaging systems are only suitable for imaging a single
plane at a time, whereas the brain is three-dimensional (3D). In
other words, most fluorescence microscopy methods developed for

volumetric imaging are based on time multiplexing (e.g., sequen-
tial plane-by-plane imaging), and therefore have inherently low
temporal resolution—usually slower than two-dimensional (2D)
imaging by a factor equal to, or larger than, the number of planes to
be imaged [4,7]. Neuronal activity can occur at rates of 50–100 Hz
[8], and beyond, and resolving the temporal ordering of events of
different neurons—important for understanding how informa-
tion is processed throughout brain circuits—requires even higher
temporal resolution. Furthermore, recently developed geneti-
cally encoded voltage indicators are opening up the possibility of
direct measurement of action potentials across large brain volumes
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[9]. This leaves substantial need for further optical technology
development [10,11].

Fluorescence microscopy has a fundamental limit in terms
of the number of photons that can be collected in a given time
interval, which manifests itself as a trade-off among resolution,
speed, and noise [12], which in turn necessitates an optical sys-
tem design with an optimal trade-off between these variables.
Light-field microscopy (LFM) is well suited for this purpose, as it
images a large 3D volume at the speed of the camera frame rate, it
continuously excites all fluorophores in the imaging volume with
the minimum instantaneous peak power, and it makes excellent
use of digitization bandwidth, but at the cost of reduced spatial
resolution [13–16]. In a recent collaboration, LFM was able to
image neural activity throughout entire C. elegans and entire larval
zebrafish brains [15], but the spatial resolution obtained from
zebrafish was below single-cell resolution, requiring independent
component analysis (ICA) to segment the neurons and to extract
the activities of neurons. More recently, extended field of view
LFM (XLFM) [17] was developed; an advanced form of LFM
that allows simultaneous optimization of imaging volume and
spatial resolution and also avoids square-shaped artifacts near the
focal plane by placing the microlens array on the pupil plane of the
system. This technique has demonstrated its potential by imaging
whole-brain neural activity of freely behaving larval zebrafish, with
both improved spatial resolution and imaging volume coverage
compared to earlier light-field methods, but higher resolution is
still desired to minimize the crosstalk between the signals from
neurons and, in particular, to be able to record neural activity at
single-cell resolution across densely labeled entire brains. Multiple
methods were developed to extract neuronal activity from light-
field images with below-single-cell resolution in densely labeled
brains [16,18] by computationally demixing the optically mixed

signals using time-domain information. Notably, compressive
LFM [18] decomposed the raw data into multiple sub-videos
using ICA so that each sub-video exhibited spatial sparsity and
then extracted the location and activity of each neuron with higher
accuracy with a compressive sensing approach. Technically, these
demixing approaches formulate linear inverse problems to infer
neuronal activity directly from raw light-field recordings instead
of obtaining volumes first and then extracting activity from the
volumes. While these methods offer powerful ways to improve the
accuracy of neuronal location and activity, they require multiple
assumptions to be met. First, all of the active neurons in the field
of view must be accurately detected during the pre-processing
steps, which is non-trivial even with diffraction-limited resolution.
Second, time-varying components in the images that are not due
to neuronal activity (e.g., illumination artifacts, blood flow) may
appear as artifacts in the extracted signal, as such components are
not modeled by the linear inverse problem.

2. SPARSE DECOMPOSITION LIGHT-FIELD
MICROSCOPY

Here, we introduce a method that further improves the ability of
XLFM [Fig. 1(a)] to resolve neuronal activity by taking advantage
of the inherent temporal sparsity of spikes for volume recon-
struction of light-field images. Instead of attempting to directly
extract neuronal activity, our method first performs high resolution
volume reconstruction, which allows us not only to gauge image
quality, which is important for microscopy-oriented experiments,
but also to observe things beyond neuronal activity and apply
conventional image processing techniques as necessary. The idea
of improving spatial resolution by employing the temporal sparsity
of fluorescent signals to introduce spatial sparsity in images has

Fig. 1. Sparse decomposition light-field microscopy (SDLFM) of neuronal activity. (a) Schematic of the extended field of view light-field microscope
(XLFM) used as the hardware for SDLFM. Unlike a conventional light-field microscope, the microlens array is placed on the conjugated pupil plane
instead of the image plane of the system. (b) Schematic of the sparse decomposition algorithm. A light-field video recording is decomposed into additive
non-negative components: a low rank non-negative component that corresponds to the static part of the recording and a sparse non-negative component
that corresponds to the neuronal activity. (c) Conventional volume reconstruction from a light-field image. Each frame is independently deconvolved using
the point spread function (PSF) of the microscope. (d) Volume reconstruction with SDLFM. The decomposed sparse component from (b) is deconvolved
with regularization using the PSF of the microscope.
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been widely explored and implemented by many super-resolution
optical microscopy methods [19–21], where they turn fluores-
cence molecules on and off with various means and leave each
molecule turned off for most of the time so that only a small subset
of fluorescent molecules is imaged at a time (i.e., spatial sparsity
is gained from temporal sparsity), which then can be localized
with an accuracy beyond the optical system’s resolution. Here, we
take a similar approach and exploit the natural activity-dependent
fluorescence intensity change of each neuron, instead of turning
each molecule on and off, as the origin of spatial sparsity. Unlike
the fluorescent molecules used for super-resolution microscopy
that can be completely turned off, genetically encoded calcium
indicators have strong baseline fluorescence, and oftentimes there
are other sources of fluorescence that contribute to the background
of the image, which causes the image to be not sparse, even when
all neurons are silent. To circumvent this, we decompose the image
into a non-negative low rank component and a non-negative sparse
component by applying a decomposition algorithm to the raw
data [Fig. 1(b)]. After the decomposition, volume reconstruction
can be applied to the sparse component rather than the raw images
[Figs. 1(c) and 1(d)], which can improve the effective spatial reso-
lution (or localization accuracy) for two reasons. First, the volume
reconstruction in XLFM from light-field images is essentially
limited-angle computed tomography, which performs better
when the object is sparse [17]. Second, since the solution to the
inverse problem for each sparse component is sparse, regularization
techniques can be applied for the volume reconstruction to take
advantage of the sparsity and further improve the accuracy of the
solution.

The pre-reconstruction sparse decomposition is innovative in
that it resolves a key challenge in light-field volume reconstruction,
known as the ‘long-object’ problem in tomographic imaging.
Different from conventional neural imaging techniques, a 3D
LFM image is recovered by decoding and integrating the infor-
mation in a 2D image. This inverse problem can be accurately
solved when the sample is spatially sparse (i.e., the signals in the
2D image are not strongly entangled). However, when it comes to
imaging a densely packed sample (e.g., a pan-neuronally labeled
larval zebrafish brain), conventional reconstruction algorithms
fail to faithfully restore the 3D information that is highly mixed
in the 2D image, leading to serious resolution and signal-to-noise
ratio (SNR) decline. This problem has been observed in various
light-field papers [15,17]. The core idea of sparse decomposition
LFM (SDLFM) is that we can exploit the temporal sparsity of
neural activity and convert that temporal sparsity into spatial
sparsity of the 2D images, which allows us to achieve the level of
resolution expected for sparse samples, in densely packed ones. On
the contrary, although post-reconstruction background-reducing
methods can generate ‘cleaned-up’ data, they do not help alleviate
the ‘long-object’ problem in the reconstruction and, therefore,
cannot improve the effective resolution of LFM images.

3. RESULTS

A. Performance Verification via Simulation

Although neural spikes are inherently temporally sparse, the spar-
sity is not perfect. Neural circuits are known to show temporal
synchronicity in their activities [22] that would impede efficient
translation of temporal sparsity of spikes into spatial sparsity in
images, especially with the slow kinetics of calcium indicators. In

order to quantitatively assess the benefit of SDLFM in the presence
of such synchronicity, we ran optical simulations of XLFM using a
synthetic volume with a size, shape, and neuron density matched to
that of a larval zebrafish brain and assessed XLFM versus SDLFM
with different levels of synchronicity, defined as the proportion of
neurons that are simultaneously active (i.e., calcium concentration
above baseline). There were 80,000 neurons simulated, and the rise
time and decay time constants of GCaMP6f, 45 ms and 142 ms,
respectively [1], were used. With an average firing rate of 0.3 Hz,
10% of the neurons were simultaneously active within an exposure
time of 50 ms [Fig. 2(a)]. Simulated acquired light-field images
were volume reconstructed with conventional XLFM reconstruc-
tion as well as SDLFM reconstruction, and then the signals from
all neurons were extracted. The extracted signals were compared
to the ground truth, and the resulting correlation coefficients were
evaluated. The signals from SDLFM showed more stable baselines
due to less signal mixing [Fig. 2(a)], and, as the result, ∼100%
of the neurons [Fig. 2(b)], over 95% of the neurons [Fig. 2(c)],
and over 80% of the neurons [Fig. 2(d)] were reconstructed with
correlation coefficients above 0.9, when 6.3%, 12.5%, and 25%
of the neurons were simultaneously active, respectively, whereas
the correlation coefficients of less than 10% of the neurons were
above 0.9 with XLFM in the 6.3% case [Fig. 2(e)]. The Pearson
correlation coefficients among the simulated neuronal traces, a
numerical measure of the synchronicity of the simulated activity,
were 0.056, 0.119, and 0.132 when 6.3%, 12.5%, and 25% of the
neurons were simultaneously active, respectively. We note that we
deliberately kept the noise levels low (Table S1 of Supplement 1),
by a factor of 10 lower compared to practical noise levels attainable
with current technologies, in order to clearly demonstrate the
correlation coefficient improvement; otherwise, the correlation
coefficients become noise-limited and not resolution-limited
(i.e., our simulation is performed in the resolution-limited regime
to assess the level of signal mixing). While noise is currently a
common issue in calcium imaging, it has to be distinguished from
the correlation coefficient limitation due to signal mixing as a
result of spatial resolution limitations. Deterministic signal mixing
introduces artifactual correlations among the activities of neurons,
which impedes proper analysis of functional connections, whereas
noise is stochastic and does not introduce artifactual correlations.
Simulation results from the noise-limited regime showed that the
performance of SDLFM approaches that of XLFM at noise levels
where the brightness level contributed by the neuronal activity is
similar to that contributed by the noise of the background (Fig. S1
of Supplement 1). In such a case, the decomposed sparse compo-
nent and its reconstruction were no longer sparse, which means the
source of resolution improvement disappeared.

What is the worst-case scenario with SDLFM, e.g., as neural
synchrony approaches the (physiologically unrealistic) extreme
value of 100%? With XLFM, the signals were accurately recon-
structed when the spatial density of the neurons was low [Fig. 2(f )],
and SDLFM achieved higher performance than XLFM by further
reducing the effective density of the neurons at plausible synchrony
levels [Fig. 2(g)], since the volume reconstruction was performed
only for the neurons that were active during the exposure time of
a given frame. In particular, for realistic values of synchrony, the
correlation coefficients could be very close to perfection [Fig. 2(g)],
but, in the worst case—the physiologically unrealistic value of
100%—the SDLFM algorithm still achieves correlations equal
to those of XLFM. Thus, the worst case simply reverts to the ear-
lier best case. In other words, SDLFM “fails gracefully” as neural
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Fig. 2. SDLFM simulation. (a) Simulation results showing the comparison of the ground truth and the extracted activity waveforms. The activities
of eight representative neurons are shown. There were 80,000 neurons simulated with an average firing rate of 0.3 Hz and the rise time and decay time
constants of GCaMP6f of 45 ms and 142 ms, respectively. On average, 10% of the neurons were simultaneously active in each frame where the exposure
time was 50 ms. Black, ground truth; blue, XLFM; red, SDLFM. (b) Normalized (with respect to the total number of neurons) histogram of the correlation
coefficients obtained by comparing the ground truth and the extracted activity from simulated SDLFM when 6.3% of the neurons are simultaneously
active in each frame. (c) As in (b), but when 12.5% of the neurons are simultaneously active in each frame. (d) As in (b), but when 25% of the neurons are
simultaneously active in each frame. (e) As in (b), but for XLFM, and when 6.3% of the neurons are simultaneously active. (f ) Median values of correlation
coefficients obtained by comparing the ground truth and the extracted activity from simulated XLFM. d = 1 indicates that the neurons are as dense as
that of a larval zebrafish brain. (g) As in (f), but for SDLFM. (h) Temporal maximum intensity projection (MIP) of ground truth input volumes. Top, axial
projection. Bottom, lateral projection. Scale bar, 50 µm. (i) Temporal MIP of reconstructed volumes from simulating XLFM. Top, axial projection.
Bottom, lateral projection. Scale bar, 50 µm. (j) Temporal MIP of reconstructed volumes from simulating SDLFM. In each frame, 6.3% of the neurons
were simultaneously active. Top, axial projection. Bottom, lateral projection. Scale bar, 50 µm. (k) z (top) and x (bottom) slices from the temporal MIP
of ground truth input volumes used for simulation. Z indicates the imaging depth from the top surface of the brain. X represents the position along the
rostral-caudal axis of the fish, measured as the distance to the rostral surface of the brain. The intensity profile in (n) is measured over the yellow dashed line.
Scale bar, 50 µm. The inset in the upper right zooms in on the small box at the center. Scale bar, 10 µm. (l) As in (k), but for XLFM. (m) As in (k), but for
SDLFM. (n) Intensity profiles measured over the yellow dashed lines in (k), (l), and (m) along lateral (top) and axial (bottom) directions. A.U., arbitrary
units. Black, ground truth; blue, XLFM; red, SDLFM.
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synchrony increases, but for realistic values of neural synchrony, it
can perform extremely well.

The effective resolution improvement was verified through the
direct comparison of the temporal maximum intensity projections
(MIPs) of the ground truth [Figs. 2(h) and 2(k)], the XLFM recon-
struction [Figs. 2(i) and 2(l)], and the SDLFM reconstruction
[Figs. 2(j) and 2(m)]. The intensity profiles measured from the
volumes showed that every peak is clearly resolved with SDLFM
[Fig. 2(n)]. In addition to the effective resolution improvement,
the SDLFM reconstruction was free from the haze [Fig. 2(j)]
above and below the dense volume that appeared in the XLFM
reconstruction [Fig. 2(i)], which originated from the fact that the
light-field imaging system captured information from only limited
angles and therefore failed to reject it (i.e., XLFM reconstruction is
ill-posed for dense volumes).

B. Imaging Whole Brains of Zebrafish Larvae

To demonstrate the ability of SDLFM to image neuronal activity
at high speed, we performed calcium imaging in live zebrafish
larvae brains expressing pan-neuronal GCaMP6f [1] and nuclear
localized GCaMP6s at 4–6 days post fertilization. A larval zebrafish
brain was ideal for testing the performance of SDLFM, as it has
densely packed neurons, and the neurons occasionally show
synchrony across large populations [4,15], both of which pose a
challenge to SDLFM, while its optical transparency potentially
allows one to approach the theoretical limit of spatial resolution.

We imaged the spontaneous neural activity of fish at volume
rates of 2–50 Hz with a volumetric field of view of ∼700 µm×
∼ 400 µm×∼ 300 µm. Reconstructed volumes acquired using
the conventional XLFM reconstruction method allowed neu-
ronal activity imaging at near-cellular resolution for zebrafish
with nuclear localized GCaMP6s, as demonstrated in [17]
[Fig. 3(a), Visualization 1], although the volumes from imag-
ing fish brains with GCaMP6f in the cytosol were not as clear
due to signals from axonal and dendritic processes (Fig. S2a of
Supplement 1, Visualization 2). With SDLFM reconstruction,
neuronal cell bodies were clearly visible in both nuclear localized
GCaMP [Figs. 3(b)–3(d), S3, S4, Visualization 3, Visualization
4] and cytosolic GCaMP strains (Fig. S2(b) of Supplement 1,
Visualization 5, Visualization 6, Visualization 7). In addition,
x and z slices and their zoom-ins further confirmed our system’s
capability even in densely packed regions [Figs. 3(c) and 3(d)]
over a large volume. Furthermore, to assess and compare the
spatial resolutions of XLFM and SDLFM within their fields
of view, we performed 2D Fourier-domain analysis with the z
and x slices of densely labeled zebrafish brain images using the
method presented in Ref. [23] (Fig. S5 of Supplement 1). The
lateral and axial resolutions of XLFM and SDLFM were esti-
mated for different axial and lateral positions [Figs. 3(e) and 3(f )],
which demonstrated that (1) XLFM and SDLFM maintained
generally uniform resolutions within a field of view no smaller
than ∼∅500µm2

× 250 µm, and, (2) compared with XLFM,
SDLFM improved the lateral and axial resolutions by 2.2 µm and
4 µm, respectively. We also examined the cell-cell distances in the
SDLFM image shown in Fig. 3(b) and found separable neuron
pairs that were 3–4 µm apart (Fig. S4 of Supplement 1) within the
fish brain. The average cell-cell distance was 9.26 µm (Fig. S4),
which was a reasonable value compared with the average neuron
diameter (∼7 µm) of larval zebrafish [4] given that SDLFM only
reconstructed the active cells in a brain. These results mean that

SDLFM can approach the theoretical resolutions—3.25µm later-
ally and 5.05 µm axially—determined by the numerical apertures
(NA) of the objective lens and the microlenses in densely labeled
samples. We note that in our experimental results, the resolution
degradation due to scattering in zebrafish was minimal, in part
because our spatial resolution was already lower than the resolution
limit set by scattering for transparent animals such as zebrafish,
which has been confirmed by earlier studies that performed whole-
brain imaging of a larval zebrafish with higher resolution than
us [4,24,25].

In line with the simulation results [Figs. 2(i) and 2(j)], the haze
above and below the brain in the XLFM reconstruction [Figs. 3(a),
S2(a)] was removed with the SDLFM reconstruction [Figs. 3(b),
S2(b)]. In addition, blood flow through the vessels were visible
(Visualization 5, Visualization 6, Visualization 7), which might
otherwise be mistaken as neural activity. We speculate that the
bright spots circulating through the vessels are inter-blood cell
spaces. As blood cells strongly absorb visible light, including
GCaMP fluorescence signals from nearby, they effectively cast
shadows at their locations, which can be thought of as sparse neg-
ative components. However, due to the non-negativity enforced
by the decomposition algorithm, the images are decomposed
in a way such that absences of blood cells (i.e., inter-blood cell
spaces) appear positive. Neuronal activities from ∼8000 neurons
were extracted by directly segmenting the temporal MIP volume
[Figs. 3(g) and 3(h), S7, S8], and the results from SDLFM showed
more stable baselines than those from XFLM, similar to the simula-
tion results [Fig. 2(a)]. The average Pearson correlation coefficients
among∼8000 neurons was 0.059, which falls within the simulated
range. The average SNRs, defined as the maximum fluorescence
change observed divided by the standard deviation of the base-
line, were 74.3 and 9.1 for SDLFM and XLFM reconstruction,
respectively.

To further evaluate the capabilities of SDLFM to resolve neural
signals from a densely labeled brain, we implemented a hybrid
optical system [Fig. 4(a)] for rapidly alternating imaging of larval
zebrafish with light-sheet microscopy (LSM) and SDLFM. In
this experiment, a fish expressing pan-neuronal nuclear localized
GCaMP6s was imaged alternatively with the LSM mode and the
SDLFM mode by consecutively switching between light-sheet
and wide-field excitation [Fig. 4(b)]. Each mode lasted for 100 ms,
resulting in an effective frame rate of 5 Hz. LSM images and the
corresponding planes from SDLFM images were registered and
compared [Figs. 4(c), S9, Visualization 8]. Despite the intensity
non-uniformity presumably caused by distinct illumination strat-
egies, single cells are clearly resolved in the LSM image, which
are also visible in the SDLFM image [Figs. 4(c), S9]. Using direct
intensity-based segmentation, we found 280 out of 538 neuron
footprints in the SDLFM images overlapped with their counter-
parts in the LSM images [Fig. 4(c)]. Well-matched neural activity
traces were extracted from these overlaid segmentations, with an
average correlation coefficient of 0.864 [Fig. 4(d)].

C. Imaging Whole Brains of Adult Drosophila

We next imaged brains of adult Drosophila expressing GCaMP6s
and nuclear localized GCaMP6m pan-neuronally. We imaged
spontaneous neuronal activity in brains of head-fixed flies at
volume rates of 2–10 Hz with a volumetric field of view of
∼500 µm×∼ 350 µm×∼ 400 µm. With XLFM recon-
struction, we were able to identify tens of neurons in fly brains
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Fig. 3. Imaging whole brains of zebrafish larvae using SDLFM. (a) Reconstructed XLFM image of larval zebrafish brain expressing nuclear localized
GCaMP6s. Top, axial MIP. Bottom, lateral MIP. Scale bar, 100µm. (b) Temporal MIP of reconstructed SDLFM images of larval zebrafish brain expressing
nuclear localized GCaMP6s. The temporal MIP shows the accumulated neuronal activity from 200 s of imaging. Top, axial MIP. Bottom, lateral MIP. Scale
bar, 100µm. From the same raw data as in (a). (c) Single z slice (horizontal section, z= 140 µm, counted upwards from top to bottom, z= 0 µm indicates
the top surface of the brain) from the temporal MIP of reconstructed SDLFM images of larval zebrafish brain expressing nuclear localized GCaMP6s (left).
From the same raw data as in (b). Scale bar, 100µm. Magnified view of the yellow boxed region (right). Scale bar, 10µm. (d) Single y slice (sagittal section,
y = 440 µm, counted upward from the right side to the left side, y = 0 µm indicates the right surface of the brain) from the temporal MIP of reconstructed
SDLFM images of larval zebrafish brain expressing nuclear localized GCaMP6s (left). From the same raw data as in (b). Scale bar, 100 µm. Magnified view
of the yellow boxed region (right). Scale bar, 10 µm. (e) Measured lateral resolution of XLFM and SDLFM along the z axis. (f ) Measured axial resolution
of XLFM and SDLFM along the x axis (the rostral-caudal axis of the brain). (g) Extracted neuronal activities from imaging larval zebrafish brain expressing
GCaMP6f with SDLFM shown as a heat map. (h) Signal traces of the extracted neuronal activities from randomly selected neurons with XLFM (red) and
SDLFM (black).

expressing nuclear localized GCaMP6m, although the neurons
were not clearly resolved [Fig. 5(a)]. With SDLFM reconstruction,
nearly single-cell resolution was achieved for fly brains expressing
nuclear localized GCaMP6m [Fig. 5(b), Visualization 9] with
the measured mean lateral and axial full widths at half-maximum
(FWHM) of 2.9 µm (±0.4 µm, standard deviation) and 6.3 µm
(±0.8 µm) [Fig. 5(c)] for 10 nuclei. While a brain of an adult
Drosophila scatters light significantly more than that of a larval

zebrafish, the use of a nuclear localized calcium indicator largely
reduces the issue of scattering, as the neuronal cell bodies of a fly
brain are located at the surface of the brain. For fly brains with
GCaMP6s in the cytosol, we observed well-localized components,
which correspond to activities from cell bodies, as well as larger
components that correspond to activities from neuronal processes
and clusters of neurons as previously demonstrated with multi-
photon microscopy (Fig. S10 of Supplement 1, Visualization 10,
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Fig. 4. Hybrid LSM-SDLFM imaging. (a) Schematic of LSM-SDLFM used for rapidly alternating LSM and SDLFM of larval zebrafish brain.
(b) Illumination time line. The illumination was altered between the laser light-sheet mode and the LED wide-field mode for single-slice LSM and whole-
brain SDLFM snapshots. Each mode lasted for 100 ms. (c) Temporal MIPs of LSM images (left) and the corresponding SDLFM volume sections (center),
and segmentation results (right, LSM, magenta; SDLFM, green; overlap, white). Scale bar, 100µm. The white and yellow boxed regions are zoomed-in and
shown in the insets with the corresponding colors, respectively. Scale bar, 20µm. The light-sheet is 70µm deep underneath the brain surface. (d) Extracted
neuronal activities from the 280 overlapped footprints in (c) are shown as a heat map (left) as well as in signal traces of representative neurons (right, LSM,
red; SDLFM, black). The average correlation coefficient between LSM and SDLFM across all 280 cells is 0.864.

Visualization 11, Visualization 12) [26]. The average SNRs were
11.4 and 3.3 for SDLFM and XLFM reconstruction, respectively.

By directly segmenting the temporal maximum intensity pro-
jection volume (Fig. S11 of Supplement 1), neuronal activities
from∼300 neurons were extracted from imaging nuclear localized
GCaMP6m flies [Figs. 5(d) and 5(e)]. About 200 spatial footprints
and the corresponding neuronal activities were detected from
imaging GCaMP6s flies using constrained non-negative matrix
factorization (NMF) (Fig. S12 of Supplement 1) [27].

On a side note, we experimentally verified the performance of
our system when the sample is scattering and sparsely labeled with
XLFM, which provides an estimate of achievable resolution with
SDLFM, by imaging a 500-µm-thick mouse brain slice of cortex
expressing yellow fluorescent protein (YFP, Thy1-YFP) (Fig. S13
of Supplement 1). We were able to confirm that our system can
resolve putative dendritic processes that are separated by 8 µm
at 100 µm depth, measured from the surface of the brain slice as
inferred by the location of the first neuronal cell body. In addition,
among the ∼200 neurons, we found clearly separated cell pairs

that were 15.8 µm apart at 230 µm depth and 12.6 µm apart at
52 µm depth. The real resolutions at these depths might be higher
than these estimations, as the sparse expression, and the large cell
size, in these specimens might make these neurons too distant to
assess the ultimate limits of resolution (Fig. S13 of Supplement
1). Furthermore, neuronal cell bodies as deep as 300 µm were
resolved, which is similar to the previously reported performance
of LFM [16].

4. SUMMARY

In summary, we implemented SDLFM that achieves higher spatial
resolution than conventional LFM methods without sacrificing
temporal resolution and applied it to neuronal activity imaging of
whole brains of larval zebrafish and adult Drosophila. By decom-
posing the raw light-field recording into a low rank component
and a sparse component, the solution to the inverse problem can be
recovered more accurately. It is worth noting that while SDLFM
generally requires the sample to be immobilized or head-fixed,
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Fig. 5. Imaging whole brains of adult Drosophila using SDLFM. (a) Reconstructed XLFM image of adult Drosophila brain expressing NLS-GCaMP6m.
Top left, axial projection. Top right, lateral projection. Bottom, rostral-caudal projection. Scale bar, 100 µm. (b) Temporal MIP of reconstructed SDLFM
images of adult Drosophila brain expressing NLS-GCaMP6m. The temporal MIP shows the accumulated neuronal activity from 100 s of imaging. The
low rank component and the sparse component are shown as blue and green, respectively. The yellow boxed region was used to measure the intensity pro-
file in (c) From the same raw data as in (a). Top left, axial projection. Top right, lateral projection. Bottom, rostral-caudal projection. Scale bar, 100 µm.
(c) Magnified spatial MIP views of the yellow boxed region in (b) from a single frame (rather than the temporal MIP) and the lateral and axial intensity pro-
files across the yellow dashed lines. Within the MIP images on the left side, top left, axial projection, top right, lateral projection, bottom, rostral-caudal pro-
jection. Scale bar, 10µm. (d) Extracted neuronal activities from imaging adult Drosophila brain expressing NLS-GCaMP6m with SDLFM shown as a heat
map. (e) Signal traces of the extracted neuronal activities with SDLFM from randomly selected neurons.

we found that the eye movement of larval zebrafish was faithfully
captured in the reconstructed volumes without artifacts, which
indicates that being able to decompose into two components does
not require the immobilization in a strict sense (Visualization 13).
In addition, not only other imaging methods such as compressive
light-field microscopy [18] or seeded iterative demixing (SID)
[16], but also the prevalent post-processing methods for calcium
imaging data based on NMF and ICA, require the same level of
immobilization to be applied, which have been assisted by the
development of head-fixed protocols for neuroscience studies
[28]. Furthermore, SID has been successfully demonstrated on
freely moving animals [29], which indicates that a brain’s posi-
tion relative to the optical system can remain stationary even for
behaving animals.

We believe that SDLFM may be particularly well suited for
imaging neuronal activity with fluorescent voltage indicators [9] in
3D, as not only does LFM have superior temporal resolution, but
also the high temporal sparsity of voltage signals can be translated
to extremely high spatial sparsity and hence excellent spatial resolu-
tion. Furthermore, due to the nature of single-exposure imaging,
SDLFM has a much longer effective pixel dwell time (i.e., time

duration that each pixel accumulates the incident photons) than
that of scanning microscopy (e.g., LSM, confocal microscopy) at
a given frame rate, which means that it will have a lower chance of
missing spikes.

In addition, while our demonstration was focused on imaging
neuronal activity with a specific optical system (i.e., XLFM), we
believe our strategy can be applied to a wide range of imaging
applications that have dominant and static backgrounds (e.g., aut-
ofluorescence) and spatiotemporally sparse dynamics of interest.
For example, we found that SDLFM can clearly capture the flow
of the blood cells even without knowing its existence in the raw
image data. In terms of the hardware, almost any computational
imaging method (e.g., wavefront encoding for depth-of-field
enhancement) can benefit from our approach, as sparsity is an
excellent prior that can be easily exploited for the reconstruction.

5. METHODS

A. XLFM Implementation

We built three XLFMs introduced in Ref. [17] as the hardware
of SDLFM [Figs. 1(a), S14]. Here, we denote them as XLFM1,

https://doi.org/10.6084/m9.figshare.12808166
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XLFM2, and XLFM3. For XLFM1, we used a 16× 0.8 NA water
dipping objective lens (CFI75 LWD 16×W, Nikon) for imaging,
a blue laser (λ= 473 nm, 100 mW, OBIS, Coherent) for exci-
tation, and a standard green fluorescent protein (GFP) filter set
(FF495-Di03-25× 36, FF03-525/50-25, Semrock). A custom-
designed microlens array was assembled and then mounted on the
scientific complementary metal–oxide–semiconductor (sCMOS)
camera (Zyla 5.5 sCMOS, Andor) using a continuous rotation
lens mount (CLR1, Thorlabs), with the camera sensor at the
back focal plane of the microlenses. The sCMOS camera was
mounted on a 3D translational platform (PT3, Thorlabs) for fine
3D positioning to ensure that the microlens array was accurately
conjugated to the back pupil plane of the objective lens through a
4 f relay system ( f 1= 180 mm, AC508-180-A-ML, Thorlabs;
f 2= 125 mm, PAC074, Newport) (Table S1 of Supplement 1).
XLFM2 was implemented by switching the microlens array of
XLFM1: microlenses with different focal lengths were used for
XLFM2 in order to extend the axial field of view while maintaining
the same magnification for each sub-image. This modification
allowed us to reduce the computational cost for the volume recon-
struction by 50%. For XLFM3, we used a blue LED (M470L3,
Thorlabs) as the light source, a different sCMOS camera (ORCA-
Flash4.0 V3, Hamamatsu), and a microlens array that supports a
larger field of view, while the rest of the parts remained the same as
in XLFM1 and XLFM2.

B. Hybrid LSM-SDLFM Implementation

For rapidly alternating LSM and SDLFM of larval zebrafish brain,
we built a hybrid LSM-SDLFM by adding LSM capability to
XLFM2 [Fig. 4(a), Table S1 of Supplement 1]. A stationary light
sheet was created at the focal plane of the detection objective lens
by focusing an expanded laser beam (OBIS 473 nm LX 75 mW,
Coherent) using a cylindrical lens ( f = 75 mm, ACY254-075-A,
Thorlabs). A blue LED (470 nm, M470L4, Thorlabs) was used
for whole-brain excitation. The illumination was altered between
the laser light-sheet mode and the LED wide-field mode in each
frame for LSM imaging and SDLFM imaging, respectively. In the
detection path, a 50:50 beam splitter (BSW10R, Thorlabs) was
inserted between the tube lens ( f = 180 mm, AC508-180-A-ML,
Thorlabs) and the image plane to evenly split the emission light.
The transmitted light was used for SDLFM imaging, while the
reflected light formed LSM images on a sCMOS camera (ORCA-
Flash4.0 V3, Hamamatsu). Digital triggers were generated using a
peripheral component interconnect express (PCIe) input/output
(I/O) card (PCIe-6323, National Instruments) to synchronize the
cameras and the light sources.

C. Sparse Decomposition and Volume Reconstruction

SDLFM first decomposes the raw light-field recording Y into
two additive matrices L(stationary component) and S(sparse
component) [Fig. 1(b)] by solving the optimization problem

min
L,S
‖L‖∗ + λ‖S‖1 subject to Y = L + S, L ≥ 0, S ≥ 0,

where each column of Y is the light-field image at each time point
(i.e., Y = [y1, y2, · · · , y N]), ‖L‖∗ is the nuclear norm of L , and
‖S‖1 is the L-1 norm of S [30,31]. We used the alternating direc-
tion method of multipliers (ADMM) for the optimization as in
Ref. [30] with a modification to ensure non-negative components

by enforcing non-negativity of L and S at the end of each itera-
tion. Solving this optimization problem gives a low rank matrix
L , which corresponds to the stationary part of the images, and a
sparse matrix S, which corresponds to the neuronal activity. After
the decomposition, volume reconstruction was applied to S rather
than Y using Richardson–Lucy iterations with regularization to
introduce weak preference to sparse solutions [32,33]:

xi+1 = AT
{

y
A{x }

}
xi

1− λS sign{xi }
,

where xi , y , A{·}, AT
{·}, and λS are the solutions at the i th iter-

ation, the decomposed light-field image, the forward projection
function, the backward projection function, and the regularization
parameter, respectively. sign{xi } = xi > εth was used instead of
sign{xi } = xi > 0 for relaxation of the sparsity (i.e., seeking a
solution where the majority of the entities are close to zero rather
than being exactly zero). Both decomposition and volume recon-
struction were performed partially on a workstation with a 16-core
Intel Xeon processor, Nvidia Tesla K40c GPU and 128 GB of
RAM and partially on a medium size cluster with multiple GPUs.
The sparse decomposition typically took about 12 h on a single
machine for a video with 1000 frames and 100 iterations. The vol-
ume reconstruction of a single frame typically took about 3 mi on
a single GPU with 30 iterations. The SDLFM software for sparse
decomposition and volume reconstruction is written in MATLAB
and requires a workstation with MATLAB2019a or a later version,
a GPU with at least 8 GB of memory, and at least 64 GB of RAM
(Code 1, Ref. [34]).

D. Zebrafish Preparation for Imaging

All procedures involving animals at the Massachusetts Institute
of Technology (MIT) were conducted in accordance with the
US National Institutes of Health Guide for the Care and Use
of Laboratory Animals and approved by the MIT Committee
on Animal Care. For zebrafish experiments, pan-neuronal
GCaMP6f expressing Tg(HuC:GCaMP6f) j f 1 and nuclear
localized GCaMP6s expressing Tg(HuC:H2B:GCaMP6s) j f 5

larvae were imaged at 4–6 days post fertilization. The transgenic
larvae were kept at 28◦C and paralyzed in standard fish water con-
taining 0.25 mg/ml of pancuronium bromide (Sigma-Aldrich) for
2 min prior to imaging. The larvae were embedded in agar with
0.5% agarose (SeaKem GTG) and 1% low melting point agarose
(Sigma-Aldrich) for immobilization in Petri dishes (Fig. S15 of
Supplement 1). Upon solidification of agarose, fish water was
added to the dishes.

E. Drosophila Preparation for Imaging

For fly experiments, adult flies with pan-neuronal GCaMP6s and
nuclear confined GCaMP6m expression were imaged. Flies with
pan-neuronal GCaMP6s expression were obtained by crossing
the UAS-GCaMP6s line and nSyb-GAL4 line, both from the
Bloomington Drosophila Stock Center. Flies with pan-neuronal
nuclear localized GCaMP6m (UAS-nls-GCaMP6m/CyO;
R57C10-Gal4(VK00020), R57C10-Gal4(VK00040)/TM6B)
were generously sent from Janelia Research Campus. A fly was
transferred to a small vial and anesthetized by leaving the vial on ice
for a few minutes. The fly was mounted on a custom-designed fly
mount (Fig. S16 of Supplement 1), similar to previously reported
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methods [35,36], made by creating a hole on a piece of aluminum
shim using laser ablation. Silicon adhesive (Kwik-sil, World
Precision Instruments) was applied to the gaps between the fly and
the mount for immobilization. After the adhesive was cured, saline
solution [36,37] (103 mM NaCl, 3 mM KCl, 5 mM TES, 8 mM
trehalose, 10 mM glucose, 26 mM NaHCO3, 1 mM NaH2PO4,
4 mM MgCl2, and 1.5 mM CaCl2) was added to the fly head. The
cuticle on the head was first cut using a tungsten dissection needle
(RS-6064, Roboz Surgical Store), and then the cuticle, fat bodies,
air sacks, and muscle 16 were removed using sharpened forceps
(Dumont #5, Fine Science Tools). New saline solution was applied
to remove remaining tissue residues in the solution.

F. PSF Measurement

We measured the empirical point spread function (PSF) of the
microscopes by imaging a 1-µm-diameter green fluorescent bead
located at the center of the field of view with an axial step size of
2.5 µm for XLFM1 and XLFM2 and 4 µm for XLFM3 (Fig. S17
of Supplement 1). We typically took 200 images for each PSF
stack, which covered 500 µm, 500 µm, and 800 µm axial fields
of view for the three microscopes, respectively. After taking the
stack, 10 background images were taken after shifting the bead
sample laterally to move it away from the field of view. The aver-
aged background image was subtracted from the measured raw
PSF to remove the background component that comes from the
ambient light, the camera offset and the reflection of excitation
light. Due to the magnification ratio disparity of sub-images intro-
duced by the axial displacement of the microlenses in XLFM1, we
manually reorganized the PSF into two complementary parts for
reconstruction, as described in Ref. [17].

G. Data Analysis

For neuronal activity extraction from zebrafish data, the temporal
MIP of the four-dimensional (4D) time series volumes was first
estimated, and then direct cell segmentation based on 3D matched
filtering [38] was applied to the volume to obtain spatial filters that
correspond to the neurons. The spatial filters were applied to the
4D time series volumes to extract the time courses, and then the
extracted time courses were de-noised using deconvolution [27].
The same spatial filters were applied to the volume reconstructed
low rank component to estimate the baseline fluorescence intensity
of each neuron. The SNR was measured as the maximum fluores-
cence change observed divided by the standard deviation of the
baseline, where the baseline was determined as the 80th percentile
of the fluorescence, assuming that each neuron was active for less
than 20%.

For comparison of LSM and SDLFM images, we first recon-
structed a volume from an XLFM image that was taken with the
light-sheet excitation mode. A spatial filter was created by blurring
and thresholding the XLFM volume and was used for extracting
SDLFM volume sections that corresponded to the LSM images.
A rigid 2D image registration was performed from the axial MIP
of the XLFM volume to the corresponding LSM image. The reg-
istration parameters were stored and used for image registration
of the spatially filtered SDLFM images to the LSM images. The
temporal MIP was taken from the SDLFM images and the LSM
images, and direct intensity-based segmentation was applied to
obtain spatial footprints for the neurons. The overlapped spatial
footprints were applied to extract the time courses from both LSM

and SDLFM, and then the extracted time courses were compared.
For better comparison, we pre-processed the LSM images using the
same sparse decomposition algorithms in SDLFM and normalized
the SDLFM signals to the ranges of the LSM traces.

For Drosophila with nuclear localization signal (NLS)-
GCaMP6m, the same procedure as analyzing zebrafish data
was applied to the data. For the pan-neuronal GCaMP6s strain,
the whole 4D time series of volumes was fed into constrained NMF
[27] to extract both spatial filters and temporal signal traces. The
algorithm first detected the neuron candidates based on their shape
and then extracted the signal trace for each neuron. The extracted
spatial filters were applied to the volume reconstructed low rank
component to estimate the baseline fluorescence intensity of each
neuron. The correlation coefficients and the SNRs were calculated
following the same procedure as the zebrafish data analysis.

H. SDLFM Simulation

For simulations of SDLFM versus XLFM, we first generated a
synthetic volume with a size, shape, and neuron density matched
to that of a larval zebrafish brain (Table S2 of Supplement 1).
Specifically, each sphere was randomly generated within the vol-
ume predefined by a fish-brain-shaped mask. The sphere was
accepted as a neuron if it does not spatially overlap with any exist-
ing neurons, and this process was repeated until the target number
of neurons was reached. In order to test the robustness of SDLFM
to increases in synchronicity of neuronal activity, the simulation
was performed with a different proportion of neurons that were
simultaneously active (i.e., calcium concentration above the base-
line) at each frame. In the simulations, the average firing rates of
20 Hz, 1.75 Hz, 0.8 Hz, 0.4 Hz, and 0.2 Hz corresponded to the
proportion of neurons that are simultaneously active within the
exposure time of each frame of 100%, 50%, 25%, 12.5%, and
6.3%, respectively. By convolving the volumes with the empirical
PSF, a time series of light-field images was generated, and low
levels of readout noise and shot noise were added to the image to
avoid overfitting and to ensure numerical stability (Table S2 of
Supplement 1). Then, volume reconstruction was performed on
the images with both conventional XLFM reconstruction and
SDLFM reconstruction. The signal for each neuron was extracted
by applying the spatial filter to the volume for each neuron. The
extracted signals were compared to the ground truth and the
correlation coefficients were evaluated.
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Fig. S17.  Empirical PSF of the XLFM obtained by taking a z-stack image of a green fluorescent bead with 1μm diameter with 2.5μm z-step size. Top left, axial projection. Top right and bottom, lateral projections.  
     

Table S1.  System design 

 Objective lens Relay lens 1 Relay lens 2 Microlens Camera 

XLFM1 

16x 0.8NA  
water dipping 
objective lens  

(CFI75 LWD 16xW, 
Nikon) 

f=180mm  
achromatic doublet 
(AC508-180-A-ML, 

Thorlabs) 

 
f=125mm  

achromatic doublet 
(PAC074, Newport) 

f=36.1mm 
plano-convex 

axial position offset  
= 0.5mm 

29 lenses in total 

Andor Zyla 5.5 

XLFM2 
& 

hybrid 
LSM-

SDLFM 

f1=36.6mm 
f2=35.4mm 

plano-convex 
axial position offset  

= 0mm 
29 lenses in total 

Andor Zyla 5.5 

XLFM3 

f1=36.6mm 
f2=35.4mm 

plano-convex 
axial position offset  

= 0mm 
19 lenses in total 

Hamamatsu Orca 
Flash 4.0 v3 

Table S2.  Simulation parameters

Parameters Value 
number of neurons 80,000 

size of neurons (radius) 2 [µm] – 2.5 [µm] 
spatial distribution of neurons A sphere was randomly generated within the volume predefined by a fish brain shaped mask. The 

sphere was accepted as a neuron if it does not spatially overlap with any existing neuron. This process 
was repeated until the target number of neurons was reached. 

average distance from a cell to the nearest cell 
(center-to-center) 

5.54 [µm] 

rise time (GCaMP) 45 [msec] 
decay time constant (GCaMP) 142 [msec] 

dF/F0 (GCaMP) 
(F0 : baseline fluorescence) 

0.3 

cell-to-cell brightness variation  
(GCaMP) 

50% 

synchronicity  6.25%, 12.5%, 25%, 50%, 100% 
average effective firing rate 0.2 Hz, 0.4 Hz, 0.8 Hz, 1.75 Hz, 20 Hz 

frame rate 20 [Hz] 
read noise  

(s.t.d. level relative to the brightest pixel value) 
0.1%  

shot noise 
(number of the expected shot noise, √ࡺ 

, at the brightest pixel) 

100 e- 

optical configuration Objective lens: 16× 0.8NA 
Microlens array focal length = 36.1mm 

Relay lens 1 focal length = 180mm 
Relay lens 2 focal length = 125mm 

Pixel size = 6.5 µm 
Number of pixels = 2160 × 2560 

 (embedded in the point spread function by using an empirical PSF of XLFM1) 
 

Table S3.  System-data correspondence 

System Data 
XLFM1 Fig. 3, Fig. S1, Fig. S4, Fig. S5, Fig. S6, 

Fig. S7, 
Fig. S16, Media S1, Media S2, Media 

S4, Media S5 
XLFM2 Fig. S2, Fig. S9, Media S3, Media S6, 

Media S7 
XLFM3 Fig. 5, Fig. S10, Fig. S11, Fig. S12, 

Media S9, Media S10, Media S11, 
Media S12, Media S13 

hybrid LSM-SDLFM Fig. 4, Fig. S8, Media S8   

Media S1. XLFM whole brain functional imaging of a zebrafish larva expressing nuclear localized GCaMP6s pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 10 Hz.  
Media S2. XLFM whole brain functional imaging of a zebrafish larva expressing GCaMP6f pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 10 Hz.  
Media S3. SDLFM whole brain functional imaging of a zebrafish larva expressing nuclear localized GCaMP6s pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 2Hz. Temporal MIP is shown at the beginning.  
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Media S4. SDLFM whole brain functional imaging of a zebrafish larva expressing nuclear localized GCaMP6s pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 5 Hz. Temporal MIP is shown at the beginning.  
Media S5. SDLFM whole brain functional imaging of a zebrafish larva expressing GCaMP6f pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 10 Hz. Temporal MIP is shown at the beginning.  
Media S6. SDLFM whole brain functional imaging of a zebrafish larva expressing GCaMP6f pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 50 Hz. Temporal MIP is shown at the beginning.  
Media S7. SDLFM whole brain functional imaging of a zebrafish larva expressing GCaMP6f pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 50 Hz. Temporal MIP is shown at the beginning.  
Media S8. Rapidly alternating whole brain functional imaging of a zebrafish larva expressing nuclear localized GCaMP6s pan-neuronally using LSM (left) with a laser light sheet illumination and SDLFM (right) with a LED wide-field illumination to demonstrate the achievable resolution. The data was acquired at 5 Hz.  
Media S9. SDLFM whole brain in vivo functional imaging of an adult Drosophila expressing NLS-GCaMP6m pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 5 Hz. SDLFM reconstruction (green) is overlaid on the volume-reconstructed low rank component (blue). Temporal MIP is shown at the beginning.  
Media S10. SDLFM whole brain functional imaging of an adult Drosophila expressing GCaMP6s pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 2 Hz. SDLFM reconstruction (green) is overlaid on the volume-reconstructed low rank component (blue).  
Media S11.  SDLFM whole brain functional imaging of an adult Drosophila expressing GCaMP6s pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 10 Hz. SDLFM reconstruction (green) is overlaid on the volume-reconstructed low rank component (blue).  
Media S12.  SDLFM whole brain functional imaging of an adult Drosophila expressing GCaMP6s pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 5 Hz. SDLFM reconstruction (green) is overlaid on the volume-reconstructed low rank component (blue).  
Media S13. SDLFM whole brain functional imaging of a zebrafish larva expressing nuclear localized GCaMP6s pan-neuronally. Maximum intensity projection with a fixed view. The data was acquired at a volume rate of 10 Hz. Temporal MIP is shown at the beginning.  
Code 1. SDLFM software for sparse decomposition and volume reconstruction written in MATLAB. 
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