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Allen BD, Moore-Kochlacs C, Bernstein JG, Kinney JP, Schol-
vin J, Seoane LF, Chronopoulos C, Lamantia C, Kodandarama-
iah SB, Tegmark M, Boyden ES. Automated in vivo patch-clamp
evaluation of extracellular multielectrode array spike recording capa-
bility. J Neurophysiol 120: 2182-2200, 2018. First published July 11,
2018; doi:10.1152/jn.00650.2017.—Much innovation is currently
aimed at improving the number, density, and geometry of electrodes
on extracellular multielectrode arrays for in vivo recording of neural
activity in the mammalian brain. To choose a multielectrode array
configuration for a given neuroscience purpose, or to reveal design
principles of future multielectrode arrays, it would be useful to have
a systematic way of evaluating the spike recording capability of such
arrays. We describe an automated system that performs robotic
patch-clamp recording of a neuron being simultaneously recorded via
an extracellular multielectrode array. By recording a patch-clamp data
set from a neuron while acquiring extracellular recordings from the
same neuron, we can evaluate how well the extracellular multielec-
trode array captures the spiking information from that neuron. To
demonstrate the utility of our system, we show that it can provide data
from the mammalian cortex to evaluate how the spike sorting perfor-
mance of a close-packed extracellular multielectrode array is affected
by bursting, which alters the shape and amplitude of spikes in a train.
We also introduce an algorithmic framework to help evaluate how the
number of electrodes in a multielectrode array affects spike sorting,
examining how adding more electrodes yields data that can be spike
sorted more easily. Our automated methodology may thus help with
the evaluation of new electrode designs and configurations, providing
empirical guidance on the kinds of electrodes that will be optimal for
different brain regions, cell types, and species, for improving the
accuracy of spike sorting.

NEW & NOTEWORTHY We present an automated strategy for
evaluating the spike recording performance of an extracellular multi-
electrode array, by enabling simultaneous recording of a neuron with
both such an array and with patch clamp. We use our robot and
accompanying algorithms to evaluate the performance of multielec-
trode arrays on supporting spike sorting.
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INTRODUCTION

Much current effort focuses on scaling up the number of
neurons being simultaneously recorded with extracellular mul-
tielectrode arrays in the living mammalian brain, with new
technologies potentially capable of recording thousands, and
someday perhaps even millions, of individual neurons (Berényi
et al. 2014; Mora Lopez et al. 2017; Neto et al. 2016; Rios et
al. 2016; Scholvin et al. 2016; Shobe et al. 2015). An open
question is what parameters (electrode number, density, geom-
etry) of these multielectrode arrays are most important for
supporting accurate interpretation of the resulting data sets. For
example, one widespread hope is that increasing the density or
number of electrodes on such an array may facilitate spike
sorting, the process of assigning extracellular spikes to the
neurons that generated them (for a review, see Einevoll et al.
2012). Spike sorting can be facilitated when multiple elec-
trodes sense the spikes of a given neuron, i.e., if there is
“spatial oversampling” (Scholvin et al. 2016) of the relevant
signals, which enables data processing via a number of ap-
proaches including clustering and triangulation (for a review,
see Buzsdki 2004), blind source separation (Hill et al. 2010;
Jackel et al. 2012; Leibig et al. 2016; Takahashi and Sakurai
2005), and template matching (Franke et al. 2010, 2015;
Pachitariu et al. 2016; Roberts and Hartline 1975; Vollgraf and
Obermayer 2006). Spatial oversampling is a feature of many
neural recording strategies, including stereotrodes (Mc-
Naughton et al. 1983) and tetrodes (Harris et al. 2000; Henze
et al. 2000; O’Keefe and Recce 1993; Wilson and McNaughton
1993) as well as silicon-based arrays of tens or hundreds of
electrodes (Anastassiou et al. 2015; Berényi et al. 2014;
Blanche et al. 2005; Mora Lopez et al. 2017; Neto et al. 2016;
Rios et al. 2016; Scholvin et al. 2016; Shobe et al. 2015).
However, although increasing spatial oversampling by using
very dense arrays could in principle boost the performance of
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spike sorting, it would also increase manufacturing cost, oper-
ating complexity, and data storage and analysis costs. Further-
more, there might be fundamental properties of recorded spikes
that could confound spike sorting regardless of electrode so-
phistication.

To help make it easy to evaluate the spike recording perfor-
mance of a given electrode array, and to enable systematic
analysis of design principles of multielectrode arrays, we
developed an automated strategy for collecting a “‘ground
truth” recording of a single neuron, via automatic patch-clamp
recording in vivo (Kodandaramaiah et al. 2016), at the same
time that the neuron is recorded by a given extracellular
array—in our case, an array of close-packed extracellular elec-
trodes that we fabricated, with pads just a few micrometers
apart, for dense spatial oversampling (Scholvin et al. 2016).
We used such an array to densely survey signals in a volume
of brain tissue, allowing detailed analysis of the information
added by such closely packed electrodes in the service of spike
sorting. Thus the patch-clamp recording would yield spikes of
only a single neuron, whereas that neuron’s spikes and those of
other nearby neurons would be mixed together to result in the
signals picked up on the extracellular electrodes. Our auto-
mated system brings the patch pipette and the extracellular
electrode array into close registration to each other, important
for obtaining simultaneous recordings on each of a single
neuron, while avoiding collisions. A key insight was that by
broadcasting a voltage from the patch pipette and recording it
on the electrode array, we could halt pipette movement before
a collision with the electrode array, important for achieving
simultaneous dual recordings without electrode damage.

We demonstrated the utility of our robot by performing 51
recordings in the primary visual cortex of 19 anesthetized
(0.5-1.2% isoflurane) mice, 2 of which were allowed to wake
up during the recording session. Twenty-nine recordings had
mean extracellular spike amplitudes of the patched neuron >15
1V, which was also at least one median absolute deviation
(MAD) above the average of the extracellular trace of each
particular recording (in the spike sorting literature, MAD is
also called standard deviation of the noise; Quiroga et al.
2004). We selected the 12 recordings with the greatest such
amplitudes (>50 wV) for further analysis in this study, al-
though we note that the other recordings could be useful for
studying things not examined in this study, such as how spike
waveform is modulated by neural morphology. These 12 re-
cordings included whole cell (n = 10) as well as cell-attached
(n = 2) recordings.

As a test case, we examined the capability of our chosen
electrode array to accurately report spikes during a burst, by
comparing extracellular spikes to the patch data. Bursting may
modulate spike amplitude and shape (Connors et al. 1982; Fee
et al. 1996) and confound spike sorting (Harris et al. 2000;
Lewicki 1998). We examined neurons putatively in cortical
layers 2/3 and 5 and used the patch recording to measure the
changes in extracellular amplitude and spike half-width during
bursting, assessing the detectability of such spikes on the
extracellular electrode array by plotting a partial receiver-
operating characteristic (PROC) curve and its associated partial
area under the curve (PAUC; Krzanowski and Hand 2009), for
a simple but intuitive thresholding strategy. As expected,
extracellular electrodes struggled to report burst spikes that
decreased in amplitude: we found a significant PAUC improve-
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ment when burst spikes were removed from the analysis, which
was most notable in recordings of putative layer 5 neurons.

We next aimed to evaluate the potential that increasing
numbers of electrodes might have for improving spike sorting
performance. We wanted to develop an assessment of potential
spike sorting performance that was fully automated and scal-
able to arbitrary numbers of electrodes and electrode densities,
so we devised a method for calculating an intracellular voltage
estimator from a specified subset of the available extracellular
voltage traces. By using this intracellular voltage estimator to
perform spike detection and calculating the PAUC, we could
estimate the potential spike sorting performance of a given
electrode array. In the case of our given multielectrode array,
we found that increasing the number of electrodes helped, as
expected.

The design of our intracellular voltage estimator bears some
discussion. Our first step was to derive a transformation (math-
ematically speaking, a convolution) between the intracellular
and extracellular spike waveforms, minimizing the mean
squared error to derive the transformation. This approach is
reminiscent of the approach of Freygang and Frank (1959),
who designed an “equivalence circuit” that transformed a
recorded intracellular voltage into a signal resembling a simul-
taneously recorded extracellular voltage. The relationship they
derived was dependent on the capacitance of the neuron’s
membrane and the resistances of tissue and electrodes. Rather
than modeling our system in terms of circuit elements, we
derived a minimal mean squared error transformation between
intra- and extracellular voltages in a phenomenological sense,
because we were only interested in understanding the quality of
our extracellular electrodes’ reporting capability. (Our model
assumes linear time invariance of the system.) Once we de-
rived this relationship for each electrode, in the form of a filter
kernel, we convolved the extracellular voltage traces with the
filter kernel and asked how well the intracellular voltage could
be modeled using extracellular voltages from varying numbers
of electrodes. We linearly regressed the thus convolved extra-
cellular voltages against the actual intracellular voltage, yield-
ing an intracellular voltage estimator. We then used the same
thresholding framework that we had previously used to eval-
uate bursting on a single electrode (above) on this intracellular
voltage estimator. We found that potential spike sorting per-
formance varied with electrode density and recording volume,
with the best performance being achieved at the fullest density
of our electrode arrays. These results may motivate the design
of electrode arrays with even higher density electrode packing,
and the automated strategy we developed for data collection
and analysis may provide a platform for the evaluation of new
electrode array designs.

MATERIALS AND METHODS

Electrode array design and preparation. Electrode arrays were
designed and constructed at the MIT Microsystems Technology Lab-
oratories. Recording sites were ~9 X 9 um in size and spaced 2 um
apart in two or four columns. Before experiments, recording sites
were electroplated with the conductive polymer poly(3,4-ethylene-
dioxythiophene) (PEDOT), to increase signal-to-noise ratio (SNR) to
a target impedance of 400—600 k{2, using 0.5-1 nA of constant
current for 10—12 s. Shorts (defined as having an impedance <300
k) and open circuits (defined as having an impedance that did not
drop with electroplating and was typically >2 M()) were identified,
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and probes with at least ~90% working electrodes (as defined as not
shorted and not open) were selected for use. Only the signals recorded
from working electrodes were used for analysis. For a subset of
recordings, the back of the electrode array was painted with a fine
paint brush with 1% Dil (1,1'-dioctadecyl-3,3,3’,3'-tetramethylindo-
carbocyanine perchlorate; Invitrogen) dissolved in 100% ethanol and
left to dry, to mark the array’s track for histological analysis. For
reuse, probes were rinsed with deionized water and cleaned with
protease (0.25% trypsin-EDTA; Life Technologies) followed by
isopropanol.

Surgical procedures. All animal procedures were approved by the
MIT Committee on Animal Care. We performed surgery on male
C57B1/6 mice of 8—12 wk of age (Taconic) for head plate installation
under isoflurane anesthesia (1.5-2.5%) with buprenorphine (0.1 mg/
kg) and meloxicam (2 mg/kg) administered as analgesics. An anes-
thetized mouse was placed in a stereotaxic frame (Kopf), and the scalp
was shaved, ophthalmic ointment (Puralube vet ointment; Dechra)
was applied to the eyes, and iodine solution (Betadine) and 70%
ethanol were used to sterilize the surgical area. An incision was made
to the scalp, and two self-tapping stainless steel screws with attached
stainless steel wires were implanted in the skull over the cerebellum
and frontal cortex, to act as electrical references and to provide extra
stability for a head plate. The head plate was secured with dental
cement (C&B Metabond), and the exposed skull was covered with a
layer of silicon elastomer (Kwik-Cast; WPI).

Recordings commenced after 1-5 wk. For the subset of awake
recordings, mice were habituated to head restraint over 3 days for 15,
30, and then 45 min with periodic condensed milk reward. On the day
of or before recording, craniotomies were performed under isoflurane
anesthesia as before. Circular (200-300 wm in diameter) craniotomies
were performed stereotaxically either with a hand drill or with our
robotic system for making automated craniotomies (Pak et al. 2015).
Coordinates for the electrode array were [—2.8 mm anterior/posterior,
3.0 mm medial/lateral] for motor-controlled (Thorlabs) probe inser-
tion perpendicular to the brain surface (~23° from vertical) of the
primary visual cortex (V1) to a final tip depth of 543 um for the
64-channel recording included in this study, spanning layer 2/3, or
960-1,000 wm for the 128- and 256-channel recordings, spanning
layers 2-5 (see Fig. 1A). Craniotomies for pipette insertion were
located 500 or 1,000 um medial to the electrode array craniotomy, for
targeting layer 2/3 or 5, respectively, with a pipette angled at 35-40°
from vertical (Fig. 1A). Craniotomies were periodically doused with
saline or lactated Ringer’s solution, to prevent dehydration, and were
covered with silicone elastomer (Kwik-Cast; WPI) postexperiment.

Recording session preparation. In preparation for a particular
recording session, a mouse was initially anesthetized with 2-5%
isoflurane in an induction chamber and affixed by its head plate to a
metal holder, with its body snugly inside a three-dimensionally (3D)
printed tube. A fluidic heating pad was placed in contact with the tube
to maintain core body temperature. A cone was placed over the nose
for continuous delivery of isoflurane anesthesia. A thin layer of eye
lube (Puralube by Dechra, or Lacri-Lube by Refresh) was placed over
the eyes to maintain moisture. For anesthetized recording sessions,
isoflurane was tuned to 0.5-1.2%. For an awake session, a mouse
anesthetized as above was woken up by the cessation of isoflurane
delivery. Electrical ground was shared between the patch and elec-
trode array recording apparatuses through a silver chloride pellet
placed above the skull in saline or lactated Ringer’s solution. The
electrical reference for the electrode array recording was connected to
either the cerebellum or cortex skull screw wire. The electrode array
was then inserted at a rate of roughly 5 wm/s to its target depth.

Recording session. Once the electrode array was inserted, one or
several successive attempts at automated patch-clamp recording com-
menced after 10 min or so. Patch-clamp recordings were performed
using the robotic autopatcher system (Kodandaramaiah et al. 2012).
Standard intracellular solution was prepared as described in Kodan-
daramaiah et al. (2016), with 0.4% biocytin (wt/vol; Sigma), 135 mM
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potassium gluconate, 0.1 mM CaCl,, 0.6 mM MgCl,, 1 mM EGTA,
10 mM HEPES, 4 mM Mg-ATP, 0.4 mM Na-GTP, and 8 mM NacCl,
with dropwise addition of 5 M KOH to adjust the pH to 7.2 and
addition of potassium gluconate in increments of 25 mg until the final
osmolarity reached 290-295 mosmol/kg H,O. Pipettes of 1.2-mm
outer diameter (no. G120F-4; Warner Instruments) were pulled to
resistance of 4.5-8 M{) with either a Flaming-Brown puller (Sutter
P-97) or a gravity puller (Narishige PC-10).

The autopatching sessions began with insertion of a pipette into the
brain under positive pressure, to avoid clogging, to a stereotaxically
estimated depth of 150-200 wm from the target region. The target
region was defined as the part of the electrode array that was in the
desired cell layer.

For avoiding collisions between the pipette tip and electrode array,
we Fourier transformed the 100-mV square-wave (20 Hz) pulses
applied to the pipette tip and sensed on each electrode of the extra-
cellular multielectrode array. We then fit the amplitude of the 20-Hz
bin vs. electrode position within the array with a five-parameter model
of 1/r voltage falloff, using MATLAB’s curve-fitting toolbox. This
model took advantage of the known spacing of the electrodes. Three
parameters were for 3-D position, with one parameter as an overall
proportionality constant and one for added noise (the noise factor
significantly improved fits, because signal strength did not decay
toward zero).

During autopatcher operation, if a seal was formed but a membrane
break-in was not achieved through pulses of suction or a brief voltage
pulse, the neuron was recorded from in cell-attached mode (n = 2 of
the 12 recordings chosen for further analysis in Figs. 2-5) in the
current-clamp configuration (with no current injected). If a break-in
was achieved and a whole cell recording begun, the patching system
was switched to current-clamp mode, where 1-s-long hyperpolarizing
and depolarizing current steps were injected to measure cell electrical
properties and spiking threshold for a subset of the recordings chosen
for further analysis in Figs. 2-5 (n = 6 recordings). Regardless of
whether the recording was cell-attached or whole cell, a visual
stimulus, as described below, was then played to elicit activity.

Because our focus was on demonstrating the utility of our system,
and not on characterizing natural neural responses to stimuli, when
one neuron (neuron 12 in Fig. 2C) in the whole cell configuration did
not initially exhibit spiking in response to visual stimuli, 50-pA
steady-state current was injected, resulting in spiking. One neuron
(neuron 6 in Fig. 2C) in the whole cell configuration was initially
injected with 100-pA steady-state current for an entire ~7.6-min visual
stimulus presentation by mistake. The neuron was subsequently re-
corded from during another visual stimulus presentation, and this
latter recording is the one included in the data presented.

Recording selection and explanation. For the analyses shown in
Figs. 2-5, we focused on the 12 recordings that exhibited the highest
mean nonburst extracellular spike amplitude (>50 wV) on the elec-
trode with the greatest such spike magnitude (which we informally
refer to as the “closest electrode,” although of course we do not know
for sure which electrode is physically closest to the neuron being
patched), which happened to correspond to the 12 recordings with the
greatest SNR on the “closest electrode” (>5). In this paper, we define
SNR as the mean nonburst spike magnitude divided by MAD. MAD
is the statistical measure we use for the noise of an extracellular trace;
we use the version of MAD that is an unbiased estimator for the
standard deviation for normal data, which is defined as the median of
the absolute value of the trace divided by 0.6745 (after the trace is
median subtracted). MAD is a robust statistic because it is not greatly
influenced by outliers (e.g., spikes). (In previous extracellular litera-
ture, MAD is sometimes referred to as the standard deviation of the
noise, e.g., Quiroga et al. 2004). In contrast, the standard deviation of
an extracellular trace is dependent on both noise level and spiking
characteristics. Specifically, the standard deviation of an extracellular
trace will increase with spike magnitude and spike rate. For those who
are more familiar with the use of standard deviation to measure the

J Neurophysiol » doi:10.1152/jn.00650.2017 - www.jn.org
Downloaded from www.physiology.org/journal/jn at Massachusetts Inst of Tech Lib (018.027.118.107) on October 23, 2019.



AUTOMATED IN VIVO EVALUATION OF MULTIELECTRODE ARRAYS

dispersion of an extracellular trace, we note that, in practice, standard
deviation ranged from one to two times the MAD of a trace (mean
1.2X).

Mean extracellular waveforms were calculated as follows: snap-
shots of bandpass-filtered [2nd-order infinite impulse response (IIR)
Butterworth, 100—-6,000 Hz] voltage were triggered off of the timing
of each patch-reported spike time (patch-reported spike times were
defined as the time of the peak of the derivative of the patch-measured
spike). These snapshots were averaged for each electrode, yielding
one mean spike waveform for each electrode (see e.g., Fig 2A, right,
and Fig. 2B, right). The amplitude of the spike was then determined
by finding the maximum voltage deflection from zero; in practice, this
was usually the absolute value of the spike’s trough.

Three patch recordings were obtained in the same mouse and target
cell layer in which a previous recording had taken place (the electrode
array remained in the same place between recordings, and a new
pipette insertion was made). These later recordings were deemed
unlikely to be from the same neurons that were patched earlier in the
session, and in addition, the first patching attempt would likely have
led to the death of the neuron patched. Consistent with this, the earlier
and later recordings differed substantially in either mean extracellular
spike amplitude on the “closest electrode” or firing rate, or both.
Specifically, neuron 2 (numbers as in Fig. 2C and Tables 1 and 2) and
neuron 5 had respective mean (SD) extracellular spike amplitudes and
firing rates of —100 (31) wV and 5.2 Hz vs. —82 (27) and 19 Hz.
Neurons 7 and 11 had respective mean extracellular spike amplitudes
and firing rates of —81 (48) wV and 10.2 Hz vs. —66 (35) wV and 6.5
Hz. Neurons 8 and 10 had respective mean extracellular spike ampli-
tudes and firing rates of —65 (10) wV and 1.8 Hz vs. —57 (9) wV and
0.17 Hz.

Visual stimulus. A small (4 X 6-in.) LCD screen was placed at a
roughly 45° angle with respect to the mouse’s anteroposterior axis, in
the mouse’s right visual field. Roughly 7.6 min of a visual stimulus
were played, consisting of sinusoidal drifting gratings (generated with
Psychtoolbox) and/or a natural scene of reeds blowing in the wind
(from the Chicago Motion Database, courtesy of Stephanie Palmer’s
laboratory, University of Chicago) to elicit neural activity. The drift-
ing grating presentation consisted of 10 s of gray screen, followed by
the presentation of a sinusoidal drifting grating of a particular orien-
tation (12 different orientations separated by 30° each, 1 cycle per
second, 1/720 cycles per pixel) for 2 s, followed by 1s of gray screen,
with each orientation (and subsequent gray screen) repeated 12 times
in a pseudorandom fashion. A photodiode was placed in the lower left
of the LCD screen and was digitized along with the patch signal, for
synchronization. A typical recording session consisted of one or more
7.6-min presentations in succession. For neurons in which the drifting
gratings and natural scene were presented in succession, the recording
that exhibited the greatest mean extracellular spike amplitude (as
explained above) was analyzed, with the exception of one recording
that had the greatest spike amplitude but appeared to exhibit drift in its
extracellular signal (that is, the extracellular spike amplitude de-
creased over time throughout the recording, although this was not
quantified in detail). The absolute value of the difference of the mean
spike amplitude between multiple recordings of the same neuron was,
on average, 7.4% (4.1%) (n = 7 neurons from 5 mice).

Data acquisition and processing. For a subset of recordings (n =
5), separate systems were used to acquire signals from the patch-
clamp pipette (pClamp software with Multiclamp 700B amplifier,
Molecular Devices CV-7B headstage amplifier, and DigiData 1440A
for digitization) and electrode array (Intan RHD2000 evaluation
system), each using a sampling rate of 25 kHz. To account for
potential clock drift, a 25-Hz square-wave synchronization pulse was
recorded by both systems, for post hoc temporal alignment. The rest
of the extracellular array recordings (n = 7) were acquired with a
direct-to-drive data acquisition system (Willow system, LeafLabs;
Kinney et al. 2015) at 30 kHz simultaneously with the patch-clamp
signal acquired on the Multiclamp as before and routed for synchro-
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nized digitization with the electrode array signals. For our spike
sorting style analyses, both the patch-clamp and electrode (“extracel-
lular”) data were initially bandpass filtered from 100 to 6,000 Hz
(2nd-order IIR Butterworth), to isolate the spikes in the signal.

Spike detection on the patch recordings was performed as follows.
For whole cell recordings, spikes were detected by threshold crossing,
usually set halfway between the spike peak and resting potential.
Spike thresholds were increased as necessary if the membrane did not
fall below the original threshold during bursts. Cell-attached record-
ings were noisier than whole cell recordings. For cell-attached record-
ings, we used the peak of the derivative of the voltage (rather than the
voltage itself), which allowed for easier discrimination of spikes over
noise. We applied a matched filter to enhance the waveforms corre-
sponding to the derivatives of the cell-attached voltage and to sup-
press spurious spikes resulting from signal jumps across two time bins
(a phenomenon occasionally observed in cell-attached but not whole
cell recordings, presumably an artifact of motion). The timing of the
patch-reported spikes (“patch spike times” for short) of both whole
cell or cell-attached recordings was calculated by taking the time of
the maximum of the derivative of each spike. This was chosen
because the derivative of an intracellular voltage has been previously
demonstrated to relate to the rising phase of the extracellularly
measured spike voltage (Anastassiou et al. 2015; Freygang and Frank
1959; Henze et al. 2000). In practice, there was typically less vari-
ability in the timing of the intracellular derivative maximum relative
to the extracellular spike trough than with the timing of the raw
intracellular waveform maximum relative to the extracellular spike
trough.

Once we had spike times, bursts were identified for each neuron. A
spike was considered within a burst if it occurred within 20 ms after
an earlier spike, a criterion used, for example, in Staba et al. (2002).
Each spike in a burst was numbered.

For the descriptive analyses of the extracellular correlates of
intracellular spikes (see Fig. 3B, bottom; Fig. 4E, bottom; Fig. 4H,
bottom; Table 2), extracellular spike amplitude was calculated as the
minimum extracellular voltage (bandpass filtered from 100 to 6,000
Hz with a 2nd-order IIR Butterworth) within =1 ms of each patch
spike time. The extracellular recording of neuron 4 had large artifacts,
presumably due to motion, so values reported in Tables 1 and 2 were
post mean subtraction (as described below; table values for other
neurons were before mean subtraction).

Detection and classification analyses. For analyses of the how well
spikes can be detected and classified in the extracellular traces, we
first bandpass filtered the extracellular traces from 100 to 6,000Hz
(2nd-order Butterworth IIR) and performed a mean subtraction to
remove potential artifacts that were shared across electrodes. Specif-
ically, we calculated the mean time series trace across all recording
sites (mean of each voltage at a particular time point, calculated for all
time points), trace,,.,,, and then multiplied it by a weight of magni-
tude, m;, and subtracted it from the trace of each individual recording
site, trace;, The magnitude m; was calculated as (trace,.,, trace;)/
(trace,, . o trace, .,,), similar to Ludwig et al. (2009). These traces
were multiplied by —1 so that spike deflections would be in the
positive direction.

Thresholds are often used in various forms of spike sorting, with
the choice of threshold representing a trade-off between letting in
false positive spikes and losing false negative spikes. For this study,
we wanted to present a general methodology for evaluating spike
sorting quality of a given electrode array that emphasized intuition, so
we varied thresholds systematically rather than picking a single
threshold. We then used receiver-operator characteristic (ROC) anal-
yses, standard statistical analyses for binary classifiers. We performed
these analyses on both the preprocessed extracellular traces and the
intracellular voltage estimators we developed (and that are described
subsequently below).

ROC analyses look at the trade-off between false negatives and
false positives across a range of thresholds. For an analysis with N =
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100 thresholds, we collected the set of deflections above the threshold,
0,, with i€[1,--,100], calculating the values of 6, as described below.
For each deflection, we then recorded the value and time of the
deflection peak. For the intracellular voltage estimator (see below),
deflections were collected from the estimator (for cell-attached re-
cordings) or the derivative of the estimator (for whole cell recordings),
to make such traces more similar to the bandpass-filtered extracellular
voltages or to the intracellular traces as we processed them for spike
time extraction. We set our minimum threshold to two times the
median absolute deviation, 6, = 2-MAD, to capture low-amplitude
spikes. [We find that, at worst, this threshold finds 97% of the patched
neuron’s spikes (neuron 7, 141/4,640 spikes missed, Table 1;
<2-MAD, Table 2), and more commonly, 0 or <10 spikes are missed
by this threshold (<2-MAD, Table 2).] Our maximum threshold, 6,,
was set to the maximum of the extracellular trace or the estimator (for
cell-attached recordings) or the derivative of the estimator (for whole
cell recordings). The rest of the thresholds were spaced evenly
between 0; and 6,,. These sets of deflections may include spikes from
the patched neuron, spikes from other neurons, and noise deflections.

For a given threshold level, deflections derived as above were
defined as true positives (TP) or false positives (FP) by comparing
their timing to ground truth patch spike times as follows: we iterated
over the patch spike times, and whenever there was a deflection
within =1 ms of a given patch spike time, TP was increased by 1.
After this process was complete, the remaining deflections that had
not been classified as TP were defined as FP (i.e., FP = signal spike
times — TP). Histograms showing the numbers of TP and FP for
extracellular traces by amplitude (threshold) can be found in Fig. 3D
and Fig. 4, F and I, where TP numbers are split into burst and nonburst
spikes and FP are labeled “other deflections.” (Note that for these
plots, mean subtraction was not performed.)

Next, TP rate (also known as sensitivity) was calculated by divid-
ing TP by the total number of patch spike times. When TP rate is 1,
there are no false negatives, i.e., no missed ground truth spikes. ROC
analyses most commonly plot the TP rate vs. the FP rate, where the FP
rate is FP/total negatives. However, by setting our minimum threshold
very low, there were tens of thousands of FPs at lower thresholds
(note the y-axis break in Fig. 3D and Fig. 4, F and I). We were
interested in threshold-style spike sorting performance at thresholds
before the FP overwhelmed the TP and thus focused our analysis on
a partial ROC (PROC), limiting the analysis to when FP is less than
or equal to the total number of patch spike times. We normalized FP
by the total number of patch spike times to aid in comparison across
recordings. When FP/total spikes = 0, there are no FP, and when
FP/total spikes = 1, there were as many deflections in the signal that
did not match the ground truth spikes as there were ground truth
spikes. (FP/total spikes is related to the FP rate by a constant: FP/total
spikes = total negatives/total spikes X FP rate.) As we iterated across
threshold levels, the trade-off between TP rate and FP/total spikes was
summarized by the PROC curve, with TP rate and FP/total spikes
plotted on the vertical and horizontal axes, respectively (see e.g., Fig.
3C, solid line).

To analyze the effect of bursting on spike sorting, PROC curves
were generated in the following fashion: FP values were calculated as
described above, but we calculated TP values after removing the times
of burst spikes from patch spike times (“nonburst patch spike times”)
and calculating TP rate by dividing by the number of nonburst patch
spike times (see e.g., Fig. 3C, dashed line). For this analysis and for
the generation of all PROC curves in this paper, the “nonburst spikes”
group includes the first spike in any burst, as well as spikes not within
bursts.

The PROC curve is summarized by the partial area under the
PROC curve (PAUC; Krzanowski and Hand 2009), where FP/total
patch spikes €[0,1] (see e.g., Fig. 4A) and captures in a single number
the possible performance of a given electrode array, for a given
neuron, in terms of spike detection across thresholds. If many TPs can
be detected before a substantial number of FPs are detected, the PROC
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will rise steeply and the PAUC will be large. A PAUC value of 1
indicates that a threshold exists such that there is perfect classification,
i.e., no FP or false negatives.

Intracellular voltage estimator. Given that our automated system
acquires ground truth patch data, we wanted to utilize these data in an
automated method to evaluate the potential performance of spike
sorting for different electrode array configurations. We used the
known patch voltage as our transformation target because it contains
large, detectable deflections at the patched spike times. Because the
frequency content and timing of patch vs. extracellular spike wave-
forms are different from each other (and in fact vary from extracel-
lular electrode to electrode; see Fig. 2, A-C, as well as Gold et al.
2006), we first needed to find filter kernels with which to convolve the
extracellular traces, which would transform the frequencies and tim-
ing of the extracellular spike traces into those of the patch trace. Once
we had convolved the extracellular traces with these kernels, we
regressed these convolved extracellular voltage traces against the
intracellular trace to create intracellular voltage estimators.

In outline, we modeled our estimate of the intracellular voltage as
an extracellular voltage convolved with a filter kernel plus noise (see
APPENDIX for detail). Because of the convolution theorem, we could
transform our equation to Fourier space, which simplifies it into the
familiar equation of a line. We could then perform simple linear
regression to derive the slope separately for each frequency, and
inverse Fourier transform the equation to reveal our minimal mean
squared error kernel (see example in Fig. 5B, step I).

The process was as follows: first (“0”), data were preprocessed.
Both the extracellular voltage traces and patch-clamp voltage trace
were filtered (bandpass, 2nd-order IIR Butterworth, 100—6,000 Hz) to
remove nonspike information. The extracellular voltage traces were
mean-subtracted with respect to the other working electrodes (as
described previously in Detection and classification analyses) and
then zeroed out everywhere but =4 ms from the patch spike times. /)
The zeroed and filtered extracellular traces and filtered patch trace
were then Fourier transformed in bins of 512 time points, which
overlapped twofold and were apodized with a Blackman window.
This bin value, which corresponds to 17 ms for a recording sampled
at 30 kHz, or 20 ms for a recording sampled at 25 kHz, was chosen
to conservatively encompass spike waveforms and capture rich fre-
quency information. For each extracellular trace, a separate simple
linear regression was then performed for each frequency between
these signals (extracellular and intracellular), and the resulting regres-
sion coefficients were inverse Fourier transformed to obtain the
convolution filter kernel (example in Fig. 5B, step I). 2) The kernels
were applied to their respective filtered extracellular voltage traces
(not the selectively zeroed time series; Fig. 5, A and B, step 2). 3) The
resulting convolved traces from some specified n extracellular traces
were regressed on the intracellular voltage trace (Fig. 5, A and B, step
3), creating new estimators. Spike detection and classification was
performed on these intracellular voltage estimators as described in
Detection and classification analyses.

Histology. Of the 16 recordings made utilizing the pipette location
model, 3 were performed in mice where only a single whole cell
recording was made; the brains of these mice were selected for
histological analysis. Of these three brains, two appeared to have a
single neuron labeled (Fig. 1G), albeit with some background staining,
whereas the signal from a single neuron was not clear in the third
brain. Brain slices of 40 um were prepared using the protocol of
Kodandaramaiah et al. (2012), with incubation performed using
streptavidin conjugated to Alexa-488 for visualization of the biocytin-
filled neuron. Slices were imaged with a confocal microscope (Zeiss)
with a X20 lens. Data presented in Fig. 1G are from maximum
intensity projections of a single brain slice, performed in Imagel].

Statistics. Statistics were computed using GraphPad Prism 7. For
repeated-measures ANOVAs and Dunnett post hoc tests, sphericity
was assumed (repeated-measures ANOVA in Prism 7). If statistics
were rerun without sphericity assumed (repeated-measures ANOVA
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with Geisser-Greenhouse correction in Prism 7), a Geisser-Green-
house correction was used, which generally raised the P value of both
the ANOVA and post hoc test results. In this case, the main effect in
the ANOVAs of Fig. 5, C and D, remained statistically significant
(P = 0.0069 and P = 0.0214, respectively), but the results were
altered as follows. The statistically significant difference between the
full density and quarter density groups in Fig. 5C remained, however
now with P = 0.0410. The statistically significant difference between
the 64-electrode and 1, 2, and 4 electrodes remained (P = 0.0345,
0.0479, and 0.0306, respectively), but the 64- vs. 8-electrode com-
parison was no longer significant (P = 0.0719).

Data and analysis sharing. All raw data from this paper, as well as
code to generate figures, is publicly available on the website
http://scalablephysiology.org.

RESULTS

A strategy for dual automated patch clamp and extracellular
electrode array recordings in vivo. We developed a way to
automatically colocalize a patch pipette for whole cell record-
ing and an extracellular multielectrode array in vivo (Fig. 1A).
Without such a strategy, our initial attempts at dually recording
from the same neuron with both a patch pipette and an
electrode array were unsuccessful: either the patched neuron
was not detectable on the array, or the pipette resistance would
precipitously drop (e.g., from 7 to <3 M()) while being
lowered. We took the latter as evidence that the pipette may
have collided with the array. On trials in which that happened,
we observed a large, 20-Hz square-wave signal on one or more
electrodes of the array (>200 wV, peak to peak, after filtering;
bandpass, 2nd-order IIR Butterworth, 100-6,000 Hz) that
increased with each pipette step (up to perhaps 1,000 wV) just
preceding the collision, time-locked to the 10-mV, 20-Hz
square wave being applied to the patch pipette. We hypothe-
sized that by monitoring the patch pipette signal on the elec-
trode array, we could slow down or halt the movement of the
pipette in an optimal way, obtaining neurons that were dually
recorded, while avoiding patch pipette collision with the elec-
trode array.

In initial testing, our patch pipette emitted 20-Hz square-
wave pulses of =10 mV, as the autopatcher “hunted” for a
neuron by advancing in discrete, 2-um steps, as in the original
autopatcher protocol (Fig. 1A; Kodandaramaiah et al. 2012).
Because the signal from the pipette was not noticeable on the
extracellular signal until a collision was imminent, we in-
creased the pipette square-wave amplitude to =100 mV, which
allowed us to sense the signal on the electrode array upon
initial pipette insertion, with a pipette tip-to-electrode array
distance that was stereotaxically estimated to be 150-200 wm.
Once a neuron was detected, the square-wave pulses used to
measure resistance were lowered back to =10mV, the normal
range of autopatcher operation.

For some of our 51 recordings (n = 35), we estimated when
the pipette tip and electrode array were sufficiently close, by a
combination of readings from actuators, which may not have
been in perfect alignment, and by intuition gleaned from
several pipette insertions in which these voltage pulses were
sensed as a large (>200 wV) and increasing (with each pipette
step) signal on at least one electrode of the array preceding a
collision. Of the 35 recordings obtained in this way, 21 had
extracellular spike amplitude >15 wV, and 9 had amplitude
>50 wV. With this system we observed 13 pipette-to-array
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collisions in addition to the 35 successes, for a collision-free
yield of 35/(13 + 35) = 73%.

For the remaining recordings (n = 16), we used a model for
predicting collisions, which we developed and then periodi-
cally queried during the neuron hunt to stop pipette movement
appropriately (Fig. 1B, exemplar recording). To isolate the
pipette signal on the electrode array, we first Fourier trans-
formed the voltage on each electrode and extracted the ampli-
tude of the 20-Hz time bin. We found that the resulting
electrode array signals could be fit with a 1/r falloff model
(Fig. 1C) when sensed across the electrodes of the array,
consistent with the pipette tip playing the role of a point source
in a resistive medium. The known spacing between the elec-
trodes on the array was used in the model to provide a
calibration of absolute scale, and thus allowed us to infer the
absolute distance between the pipette tip and the electrode
array (although this was not validated precisely, so we call this
distance the inferred distance in this paper). As the pipette
advanced toward the electrode array in 2-um steps, the falloff
curve evolved (Fig. 1D), and the R* value for the goodness of
fit with a 1/r curve was monitored (Fig. 1E). For 4 of 16
recordings, one or two negative R? values were observed,
indicating a bad measurement or curve fit, and these data points
were excluded from analysis. These constituted 2/51, 1/24,
1/119, and 1/33 measurements for their respective recordings,
for a total of 5 bad data points out of 451 data points when
pooled across all 16 recordings (1.1%). We attempted to patch
a neuron if the autopatcher detected one with an inferred
distance from the array between ~15 and ~50 um.

Beyond observing high R? values, which gives confidence in
the model, we did not do any further calculations in real time
to assess the accuracy of the fit. We did, however, perform a
post hoc evaluation of how well the model estimates at each
step conformed to a best-fit line of the trajectory of the pipette
in 3-D space as it was advanced into the brain (Fig. 1F for
exemplar, Fig. 1H, top, for population data). Although residual
error was often in the 5- to 10-um range for our recordings
(Fig. 1H, top), such as in this example, some fits were noisier,
with occasional jumps in predicted distance of 25 wm or higher
between 2-um steps of the pipette (Fig. 1G). Histological
validation of this system was attempted for three recordings,
with two recordings each yielding one neuron labeled and a
clearly visible track from the extracellular probe (Fig. 1G left
and second from lef). The final model estimate corresponded
well to the histologically determined distance between filled
neuron and probe track (40 vs. ~40 um) in the former record-
ing and less well in the second recording (55 vs. ~75 wm). We
note that there were only four data points in the latter record-
ing, and sometimes distance estimates appeared to improve as
the pipette advanced toward the array (Fig. 1G, second from
right), although this was not always the case (Fig. 1G, right).

Our methodology may be synergistic with the stereotaxic
positioning apparatus recently reported (Neto et al. 2016). Of
the 16 recordings obtained using this system, 8 and 3 neurons
had extracellular spike amplitude >15 and 50 @V, respec-
tively. We detected a single probe collision after implementa-
tion of this system out of 27 trials, but it occurred before we
started to periodically query the model; this was presumably
due to a gross actuator misalignment.

Colocalized recordings: basic properties. We chose the 12
neurons with the largest extracellular amplitude to explore their
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Fig. 1. A strategy for dual automated patch clamp and extracellular electrode array recordings in vivo. A: schematic of mouse cortical layers (gray dashed lines)
with an electrode array inserted perpendicularly to the brain surface (from fop right). A patch pipette targets a neuron (from fop left) in either layer 2/3 or layer
5, with the goal of having the electrode array and patch pipette colocalized (i.e., recording activity of the same neuron). Curves emanating from pipette represent
current emitted from the pipette for sensing on the electrode array. B: pipette tip-to-electrode array distance prediction from computational model. As the pipette
is lowered toward the array (gold squares) in discrete 2-um steps, distance is estimated (red circles, with a green best-fit line across data points), shown for an
exemplar recording (data in C—F also correspond to this recording). C: 20-Hz amplitude of a voltage pulse from the pipette as sensed across the electrode array
(blue dots represent electrodes), and 1/r curve fit (surface plot). Electrode spacing on the array was 11 um between adjacent electrode centers. D: amplitude
(circles) and curve fit (solid lines), illustrated for a single column of the electrode array, as the pipette approaches the array in discrete 2-um steps. E: goodness
of fit for our 1/r model during each step as the pipette approaches the electrode array. F: at each step, a distance between the pipette tip and the electrode with
the largest 20-Hz amplitude signal is approximated. Residual error to a best-fit line that estimates the 3-dimensional (3D) trajectory of the pipette tip in space
is calculated post hoc (blue dots). G: position estimates, as in -B, for 4 of the 16 recordings in which the model was used, illustrating varying “confidence” in
the model. Number labels (#) correspond to recording number in H. Histology for the 2 recordings in which both the patched neuron was recovered (left) and
the track from the electrode array was apparent (2nd from leff) are shown, with biocytin-filled neuron in yellow (and Dil from the array in cyan for left
experiment). Distances indicated between the neuron and the electrode array are 40 and 75 wm, respectively. H: mean, over all pipette steps, of residuals (top)
and mean of R? fits (bottom) for each of the 16 recordings in which the model was used.
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value in examining the recording power of a given array, a
close-packed electrode array of our design, with electrodes
spaced by just a few micrometers apart (Scholvin et al. 2016).
Such a close-packed array allowed us to analyze the resulting
dense signals and examine how such spatial oversampling
strategies might contribute to spike sorting capability. These
neurons were recorded in putative (i.e., estimated based on
pipette stereotaxic depth) cortical layer 2/3 (n = 5) or layer 5
(n = 7) of primary visual cortex in anesthetized (0.5-1.2%
isoflurane), head-fixed mice. For two of these recordings,
isoflurane was turned off after a whole cell patch-clamp re-
cording was obtained, and awake recordings took place 15-20
min later, well after the animal’s first postrecovery whisking
motions (see Table 1.) All recordings were ~7.6 min long, and
data presented in this paper are from the first 456 s of the
recording, for comparison across recordings, including those
that were slightly longer than 456 s. The neuron recorded by
the patch pipette was localized (Fig. 2A, middle) to the region
interrogated by our array of close-packed electrodes [~9 X
9-um electrodes spaced ~2 um apart, with 64 (n = 1), 128
(n = 4), or 256 electrode (n = 7) counts, arranged in 2 or 4
columns]. Ten of our patch recordings were made in the whole
cell configuration and two were made in cell-attached mode
(Table 1, type). When the patched neuron spiked (Fig. 24, left),
these spikes were also sensed by the extracellular electrode
array, and the patch-reported spike times were then used to
identify the associated extracellular spike waveforms. The
mean waveform sensed by each electrode is shown in Fig. 24,
right, averaged over all the extracellular spikes identified by
their association with patch-reported spike times. Because
waveforms of spikes within a burst may differ significantly
from those of nonburst spikes (or the first spike of a burst),
later burst spikes (2"-th spikes within a burst) were not used
when the mean waveforms were computed. We defined a burst
spike as a spike that occurred within 20 ms of the previous
spike, a criterion used, for example, in Staba et al. (2002). The
plot of mean waveforms across the extracellular electrode array
helped visualize the spatial extent of where a patched neuron’s
waveforms ended up (Fig. 2A, right, generated from 845
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spikes; Fig. 2B for a neuron recorded in the cell-attached
configuration, generated from 199 spikes).

To visualize how spike waveforms varied across electrodes
in a compact way, we ordered all of the working electrodes
(see MATERIALS AND METHODS) for each recording by their mean
spike amplitude, from largest to smallest. We then plotted the
mean waveforms (excluding spikes within a burst) for the 2"-th
ordered electrode for each patched neuron, where n = {0, 1, 2,
3, 4,5, 6} (Fig. 2C), so that the falloff of amplitude across
electrodes, thus rank ordered, could be rapidly visualized.
Using these close-packed arrays, we found that the spatial
extent of the signals picked up from a single neuron typically
spanned hundreds of micrometers (Fig. 2A, right, and Fig. 2B).
Future colocalized experiments might find that such spatial
signatures of neurons are predictive of their locations or cel-
lular properties. Neurons with such a wide spatial extent of
extracellular voltage may bias analyses of spike-triggered local
field potential (LFP) when their spikes bleed into the LFP
frequency spectrum and contaminate the spike-triggered LFP
(Ray 2015). Ray (2015) reviewed the challenges of spike-
triggered LFP based on models. Our colocalized recording
technique could enable investigators to empirically examine
such phenomena and derive, in the future, best practices for
spike-triggered LFP analysis.

Evaluation of spike detection on the “closest electrode” via
simple thresholding. Using this set of 12 recordings, we ex-
plored what such colocalized neuron spiking data could reveal
about the spike sorting capability of a given multielectrode
array. To set the stage, we first defined a few initial terms and
analyses. For a given dual recording, we identified the elec-
trode pad with the greatest amplitude spikes that correspond to
the patch-reported spikes, which we informally refer to as the
“closest electrode.” This is the electrode with the highest
amplitude copy of the patched neuron’s spiking activity, and
thus is a good place to start when looking for intuitive mea-
sures of spike quality. To measure the noise dispersion of an
extracellular trace, we use the median absolute deviation
(MAD), which unlike standard deviation is not greatly influ-
enced by outliers (e.g., spikes), making it a robust statistic (see
MATERIALS AND METHODS for further detail). In previous extra-

Table 1. Properties of 12 neurons recorded with extracellular spikes of >50-uV magnitude
Spike
No. of Working Count Firing Burst Burst Spikes Burst Burst
Neuron Mouse Layer Type Awake Electrodes All Burst Rate, Hz Count Rate, Hz per Burst Duration, ms ISI, ms
1 A 5 Whole Yes 236 3,877 989 8.50 327 0.72 4.0(1.7) 28 (18) 9(4)
2 B 5 Cell attached ~ No 122 2,372 969 5.20 489 1.07 3.0 (1.0) 14 (8) 7(3)
3 c 5 Whole No 236 323 15 0.71 15 0.03 2.0 (0.0) 15(3) 14 (3)
4 D 5 Whole Yes 214 2926 1,328 6.42 566 1.24 3.3(1.6) 24 (17) 10 (4)
5 B 5 Whole No 122 8,748 4,004 19.18 2,296 5.04 2.7 (1.0 15 (11) 9(4)
6 E 2/3  Whole No 58 1,136 291 2.49 168 0.37 2.7(1.4) 20 (15) 12 (5)
7 F 5 Whole No 225 4,640 1,625 10.18 693 1.52 3.3(1.5) 17 (10) 7(4)
8 B 2/3  Whole No 122 823 93 1.80 65 0.14 2.4(0.8) 18 (12) 12 (4)
9 G 2/3  Cell attached  No 238 205 6 0.45 6 0.01 2.0 (0.0) 15(3) 15 (3)
10 B 2/3  Whole No 122 78 16 0.17 15 0.03 2.1(0.3) 7() 6(2)
11 F 5 Whole No 225 2,976 1,199 6.53 522 1.14 3.3(0.3) 15 (8) 6(4)
12 D 2/3  Whole No 214 1,592 216 3.49 187 0.41 2.2(0.4) 13 (8) 11(5)

Some recordings are from the same mouse, as denoted. Layer was inferred from stereotaxic coordinates. Working electrodes refers to the no. of electrodes
on the multielectrode array that were not open or shorted. Spike count is based on the patch recording and is reported for both burst and nonburst spikes. Firing
rates varied from 0.2 to 19.2 Hz. The no. of bursts (burst count) is given as well as the burst rate (no. of bursts per unit time) for the recording. The no. of spikes
per burst, mean burst duration, and mean burst interspike interval (ISI) are given as means (SD).
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Fig. 2. Colocalized recordings: basic properties. A: voltage trace from a representative patched neuron recorded in the whole cell configuration (left), with a
schematic of the patched neuron (blue) and other neurons (magenta, green, yellow) being sensed by an array of close-packed electrodes (gold; in our case,
~9 X 9—um electrodes spaced ~2 wm apart; lines emanating from neurons representing signal propagation). Right: for each electrode in a 2-column, 64-electrode
array, snapshots of bandpass-filtered (2nd-order infinite impulse response IIR Butterworth, 100—6,000 Hz) voltage are triggered off the timing of the peak of
the derivative of the spikes of the patched neuron and then averaged. These patch-triggered mean extracellular spikes are displayed in the spatial configuration
corresponding to the location of the electrodes in the array. In this analysis, a spike that occurs within 20 ms of another spike is considered to be within a burst
(Staba et al. 2002), and later spikes in a burst (from the 2nd one onward) are not included in this average because their waveforms may differ significantly from
that of nonburst spikes or the first spike in a burst (Henze et al. 2000). Electrodes that are shorted (i.e., impedance <300 k{2) or open (i.e., impedance >2 M())
are shown in red. B: a representative trace from a patched neuron recorded in the cell-attached configuration (left) and patch-triggered mean extracellular spikes
on 128 electrodes of a 4-column, 256-electrode array (right). Shorts and opens are shown in red. C: patch-triggered mean extracellular spikes from the 2"-th
electrode among the list of amplitude-ordered electrodes (n = 0—6) from each of the 12 neurons, color-coded as indicated. Amplitude ordering means ranking
good (i.e., nonshorted/open) electrodes by their patch-triggered mean extracellular spike amplitudes, from largest to smallest. Neurons are ordered by these

aforementioned mean spike amplitudes so that neuron I has the greatest amplitude and neuron 12 has the smallest.

cellular literature, MAD is sometimes referred to as the stan-
dard deviation of the noise (e.g., in Quiroga et al. 2004). In
Table 2, we report MAD for the “closest electrode” for each
recording (range: 6-14 wV).

Next, we examined the spike amplitude on the “closest
electrode” for each recording. In Table 2, we report these
amplitudes, split into nonburst and burst spikes. Nonburst
spikes include all spikes not in a burst, as well as the first
spikes of bursts. We examined nonburst and burst spikes
separately because burst spikes sometimes have lower spike
amplitudes than nonburst spikes (discussed in more detail in
Evaluation of detection and classification of burst spikes via
simple thresholding). The 12 recordings we chose for detailed
analysis had mean nonburst spike amplitudes >50 wV; the
neuron with the highest such amplitude had a nonburst spike
amplitude of —267 (124) wV. We calculate the SNR as the
mean nonburst spike amplitude divided by MAD, which
ranged from 5 to 19 across these recordings. This measure is
not a full picture of how detectable patched spikes are on the
“closest electrode,” because many of the spike amplitudes have
large variance (see spike amplitude and SD values in Table 2
and amplitude distributions in Fig. 3B and Fig. 4, E and H).

Having established some basic analyses, we next sought to
begin to characterize the spike sorting capability of a given
multielectrode array. An initial step in spike sorting is spike
detection, in which potential spikes from extracellular traces
are gathered so that they can be categorized as spikes from
individual neurons or noise. Most spike sorting algorithms use
thresholding for spike detection, which simply and intuitively
records all the deflections crossing a particular threshold from
an extracellular trace. A multiple of a noise dispersion measure
of the trace, usually standard deviation or MAD, is commonly
used to set this threshold. A lower threshold is likely to capture
more spikes but also may let in many noise deflections that must
be correctly identified and categorized as not spikes in the spike
sorting process. We were interested in using our data to describe
the impact the initial threshold may have on spike sorting, spe-
cifically by looking at the spikes from a single neuron that may be
lost in this detection step. A review of the literature found that
thresholds were commonly set in the range of two to six times the
study’s noise dispersion measure (Leibig et al. 2016; Marre et al.
2012; Quiroga et al. 2004; Rossant et al. 2016; Swindale and
Spacek 2014). On the basis of these numbers, to quantify
potential spikes lost, we look at the spikes in a thresholding
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Table 2. Properties of the 12 neurons of Table 1 as recorded on the “closest” extracellular electrode

Thresholding Range
Between 2 and

<2-MAD 6-MAD
Spike Amplitude, uV SNR Spikes Spikes Portion of spikes Half-Width Ratio
Other Deflections  Intra-to-Extra Mean burst
Neuron MAD, uwV  Nonburst Burst Nonburst  in Spike Range  Peak Offset, ms All Nonburst Burst Nonburst Burst spike number — Burst/nonburst
1 14 —267(134) —135(124) 19.24 36 0.30 37 28 269 0.01 0.27 4.7 (1.4) 1.7
2 7 —100 (24) =79 (32) 13.85 2,720 0.16 1 15 56 0.01 0.06 3.4(1.0) 1.2
3 8 =91 (18) —63 (16) 11.71 766 0.07 0 1 1 0.00 0.07 2.0 (0.0) 1.2
4 9 =77 (12) —54(18) 5.61 370 0.00 6 38 605 0.02 0.46 3.6 (1.8) 1.4
5 9 —82(20) —62 (27) 9.09 8,441 0.04 58 110 926 0.02 0.23 3.4(1.0) 1.2
6 9 =69 (15) —65(19) 7.64 262 0.00 3 100 51 0.12 0.18 2.7 (1.0) 1.0
7 13 —68 (32) —47 (37) 5.23 37,073 0.03 141 1928 1141 0.64 0.70 3.2(L.3) 1.3
8 6 —64 (10) =56 (9) 11.05 11 0.12 0 1 0 0.00 0.00 1.0
9 6 =60 (17) —63(9) 9.80 1,725 0.03 2 10 1 0.05 0.17 1.2
10 6 =57 (8) —41(8) 9.66 4 0.16 0 0 1 0.00 0.06 1.0
11 8 —53(26) —3831) 6.26 20,807 0.03 86 682 657 0.38 0.55 3.2(1.1) 1.3
12 8 =52 (17) =52 (17) 6.55 3,928 0.10 2 443 65 0.32 0.30 2.1(0.4) 1.2

MAD, median absolute deviation (see equation in MATERIALS AND METHODS). Spike amplitude is denoted for both burst and nonburst spikes. Signal-to-noise
ratio (SNR) is defined as the mean nonburst spike amplitude divided by MAD. Other deflections in spike range is a measurement of the noise and activity recorded
from other neurons on the electrode that may confound spike detection and classification (for details of this calculation, see RESULTS). Intra-to-extra peak offset
is the difference between the timing of the neuron’s spike as recorded by the extracellular electrode minus the timing of the same as recorded by the patch pipette,
with details as follows: the timing of the maximum of the derivative of the mean patch-recorded spike waveform is defined as 0, and the reported offset is the
time elapsed after O representing the maximum deflection of the mean extracellular spike waveform. We use a minimum spike detection threshold of 2-MAD
and so report the number of spikes below it (as detected on the extracellular trace). To look at the number of spikes with amplitudes near or in the noise, we
defined a noise range of between 2 and 6 times MAD, based on spike detection thresholds found in the spike sorting literature. (For most neurons, most
extracellular spikes were greater in amplitude than 6-MAD.) Spikes in this range may be lost in the spike detection step of spike sorting. We report the number
and portion of spikes, nonburst and burst, in this range, relative to the total number of nonburst and burst spikes, respectively. For some recordings burst spikes
in particular are found in this range. Mean burst spike number (e.g., 2, 3, 4, ...) is reported for the burst spikes in the 2—6:-MAD range for each recording.
Half-width ratio is the half-width of the mean burst spike divided by the half-width of the mean nonburst spike. When half-width ratio is 1, the mean burst and
nonburst spikes have the same width; when half-width ratio is >1, the burst spike is longer than the nonburst spike. Mean values are reported as means (SD).

range we defined as 2—6-MAD. (The lower bound is set by our
minimum analysis threshold of 2-MAD, see MATERIALS AND
METHODs for more details and spike counts <2-MAD in Table
2.) In the thresholding range data in Table 2, we count the
number and portion of spikes in this range between 2 and 6
times MAD, split into burst and nonburst spikes. We find that
most of our recorded neurons (8/12) have 5% or less of their
nonburst spikes in this range. However, three neurons have
>30% of their nonburst spikes in this range, and one neuron
has >60% of its nonburst spikes in this range; these three
neurons also have three of our four lowest SNRs (Table 2). For
some patched neurons, we see a larger portion of the neuron’s
burst spikes in the 2—6-MAD range than nonburst spikes; these
neurons have lower amplitude burst spikes than nonburst
spikes (see portion of spikes for neurons 1, 4, and 5 in Table
2). Because we are looking at the extracellular traces from the
“closest electrode,” which has the highest amplitude, spikes in
this 2—-6-MAD range are unlikely to appear above this range on
other extracellular electrodes. Differences in noise on different
electrodes will lead to some differences in which spikes cross
a given threshold, even if the spike amplitude on another
electrode is lower.

These data highlight that spikes will be omitted from spike
classification steps of spike sorting, having been lost at the
spike detection step, even with the recording advantages of
multielectrode arrays where each recording site is another
opportunity to record a neuron’s spikes at a high magnitude or
SNR. The set of spikes assigned to each neuron at the end of
spike sorting may be incomplete, due not to poor categoriza-
tion but to the spikes not having been available to be catego-
rized. As we show in our demonstration data set, for some
neurons this could be more than half the spikes, which would

give a very inaccurate picture of the spiking on that neuron and
might lead to major biases in analyses after spike sorting. This
potential loss of spikes in the spike detection step of spike
sorting may be partially ameliorated by spike sorting methods
that perform spike detection, categorize (or “sort”) those spikes
into sets of spikes from individual neurons, and then perform a
second detection step on the extracellular traces based on the
distributions of spike waveforms found in the sets of sorted
spikes (e.g., convolving with a spike waveform template).
Colocalized recordings with ground truth spike times are nec-
essary to characterize this issue and design spike sorting
methods to handle it accurately.

We are also interested in the number of spikes from neurons
other than the patched neuron that are reported on the “closest
electrode.” A particular neuron’s spiking activity may appear
with high SNR on an extracellular electrode, with all spikes
above the detection threshold, but if one or many other neurons
also have high SNR spikes on that electrode, the categorization
of spikes from said particular neuron, at least with a simple
threshold, may be difficult. To represent how many spikes from
other neurons (and noise deflections) are in the same amplitude
range as the patched neuron’s spikes, we count all the deflec-
tions greater than the mean amplitude minus one standard
deviation of the patched neuron’s nonburst spikes (Table 2,
other deflections in spike range). We see that some recordings
have as few as four other deflections in spike range, whereas
others have tens of thousands of other deflections in spike
range. Thus application of simple thresholds to data jointly
acquired from the same neuron, via simultaneous patch and
extracellular array recording, can be used to gain some intu-
ition into the frequency of confounds to spike sorting when
using an extracellular multielectrode array.
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Fig. 3. Evaluation of detection and classification of burst spikes via simple thresholding. A: voltage traces from a neuron in layer 5 of the primary visual cortex
of an awake, head-fixed mouse (neuron I from Fig. 2C). This exemplar neuron had the largest mean extracellular spikes among all our recordings (n = 12
recordings from 7 mice). Top: 5 s of whole cell patch recording (current clamp) of spikes recorded during delivery of visual stimuli (see MATERIALS AND
METHODS). V/,, intracellular voltage. 2nd from frop: zoom-in to 500 ms of the fop recording containing a burst, with spike number within a burst labeled with
numbers and colors. A nonburst spike is labeled with a gray 0. The set of all spikes, for a given neuron, with a specific label (e.g., green 2) is referred to as a
“burst spike group.” 2nd from bottom: the negative of the derivative (—V)) of the trace immediately above. Bottom: the extracellular voltage (V) trace (bandpass
filtered, 2nd-order infinite impulse response Butterworth, 100—6,000 Hz) from 1 electrode of a colocalized, 256-electrode recording. This electrode exhibited
the greatest mean extracellular spike amplitude and is referred to informally as the “closest electrode.” For use in computing partial receiver operating
characteristic (PROC) curves later, we plot an example threshold as a gray dotted line (at —150 wV). B: spike amplitude vs. bursting state for the neuron in A.
Bottom: spike amplitudes measured on the “closest electrode” (as in bottom trace in A) at the times of patch-clamp-measured spikes, labeled with colors/numbers
as in A, plotted vs. time since the previous spike (on a log scale, with spikes of later burst spike groups plotted on top of those of earlier ones). Gray dotted line
corresponds to the threshold plotted in A, bottom, and is used to define a particular point on the PROC curve in C. Each black arrow points from the mean (voltage,
time) coordinate of a particular burst spike group to the mean of the next burst spike group. Inset: mean extracellular spikes for each burst spike group, color
coded as in A, and overlaid (with later burst spike groups on top of earlier ones). Top: as at bottom, but for peaks of the negative of the derivative of the
intracellularly measured spikes (as shown in A, 2nd from bottom). C: PROC curve (e.g., true positive rate vs. false positives divided by patch spikes, plotted as
a threshold, such as indicated by gray lines in A and B, is systematically varied) for the “closest electrode” recording of the neuron in A. True positives (TPs)
correspond to extracellular spikes with amplitude above the threshold and that occur within 1 ms of the times of patch-reported spike times, expressed as a fraction
of the total number of patch spikes; false positives (FPs) correspond to the number of detected extracellular spikes that do not occur within 1 ms of a patch spike
time, expressed as a ratio to the total number of patch spike times. Gray circle corresponds to the TP and FP values associated with the —150-uV threshold shown
in A and B. We generated such curves when all spikes were considered (black line) as well as when bursting spikes (e.g., spikes that were preceded by another
spike within 20 ms, in the patch-clamp recording) were eliminated (black dashed line). D: histogram of extracellular voltage deflections greater than the chosen
noise floor of 2 times the median absolute deviation (MAD) across the entire recording, with nonburst (gray) and burst spikes (green) of the patched neuron as
well as other deflections (yellow).

Evaluation of detection and classification of burst spikes via
simple thresholding. As another example of an analysis we
could do with our system to evaluate a performance character-
istic of a given extracellular array, we examined the impact of
burst spikes on a simple thresholding model of spike sorting.
Nine of 12 of our patched neurons burst at least 50 times during
the 456-s recording session analyzed (Table 1, burst count).
Bursting is known to modulate spike amplitude and shape in
extracellular recordings (Henze et al. 2000), but such changes
are difficult to characterize without ground truth spike times
because an electrode typically senses the spikes of several
neurons in its immediate vicinity. When later spikes in a burst
have lower amplitude or a changed shape, they may be clas-
sified as spikes from other neurons (as described in Chung et
al. 2017) or be lost below the detection threshold. In Table 2,
we give the spike amplitudes for burst spikes vs. nonburst
spikes. Eight of our recordings had a >10-uV difference in

mean spike amplitude in burst vs. nonburst spikes. As a metric
for the change in spike waveform shape during bursting, we
analyzed spike half-width (i.e., the width of the spike at
half-maximal spike amplitude) for the mean nonburst spike vs.
the mean burst spike, calculating the ratio for each recording
(Table 2, half-width ratio); values >1 indicate that a burst
spike is longer in duration than a nonburst spike. Such changes
in spike shape during a burst can result in misclassified or
missed spikes.

To more systematically explore how spike amplitude varied
with time since the preceding spike, as well as the number of
preceding spikes, within a burst, we performed a number of
analyses of how these parameters relate to each other. We
explain these analyses in the context of an exemplar neuron
(Fig. 3; neuron 1 in Fig. 2C and Tables 1 and 2), a cortical
layer 5 neuron recorded in an awake mouse (that had earlier
been anesthetized with isoflurane but had since recovered).
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This neuron exhibited the largest extracellular spikes of all
those we analyzed (Table 2, spike amplitude), and thus we use
it for this initial illustration, before analysis of all the neurons.
This neuron exhibited both single, isolated spikes as well as
bursts of two or more spikes (Fig. 3A, top 2 traces). Later
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spikes within a burst (e.g., spikes 4 and 5 in Fig. 3A) often
began from a voltage level elevated above baseline, and higher
than the voltage preceding earlier spikes in the burst (e.g.,
spikes I and 2 in Fig. 3A). This bursting pattern, where some
burst spikes were initiated at a higher voltage level, is similar
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to bursting of deep cortical neurons observed by other groups
(Chagnac-Amitai and Connors 1989; Connors et al. 1982;
Contreras 2004; Helmchen et al. 1999) and was also apparent
in other layer 5 neurons in our recordings (e.g., Fig. 4G, top 2
traces).

How does the modulation of the intracellular spike wave-
form during a burst translate to changes in observed extracel-
lular voltage? To explore this, we first looked at the negative of
the derivative of the intracellular voltage (Fig. 3A, second trace
from bottom) and compared its dynamics during bursting with
those observed in the simultaneously obtained extracellular
recording. We did this comparison because the derivative of
the intracellular potential (V) has been experimentally ob-
served to closely match the initial rising phase in the waveform
of an extracellular spike (Anastassiou et al. 2015; Freygang
and Frank, 1959; Henze et al. 2000). We denote the intracel-
lular potential as V; and the extracellular potential measured at
the “closest electrode” as Vi. Many spikes in V; (Fig. 3A,
second trace from bottom) can be seen in Vi (Fig. 3A, bottom),
but later events in the burst appear smaller or may be indis-
tinguishable from noise. To characterize this modulation more
systematically, we examined both V| and V (Fig. 3B, fop and
bottom, respectively) for each spike, plotting them against the
time interval since the previous spike (denoted as interspike
interval). Plots for V; and V both show a decrease in magni-
tude from early to late spikes in a burst, with a shape resem-
bling an “L” with a corner around x = 20 ms. We note that this
corner was not dependent on our chosen criteria of 20 ms for
a spike being within a burst: although the coloring of the plot
points depends on this cutoff, the shape of the curve does not.

For the neuron explored in Fig. 3, the first spike in a burst
(red, n = 327) had a mean amplitude of 97 mV/ms (16) for V;
and —345 (60) wV for V. Later burst spikes had substantially
lower amplitude, e.g., the fourth spike in a burst (yellow, n =
189) had mean amplitudes of 31 mV/ms and —100 (61) uV,
respectively. This decrease in V; and Vi magnitude represents
a slowing of the initial rising phase of a spike during the
progression of a burst. We can see shape change as a result of
this slowing of the initial rising phase for burst spikes in Fig.
3B, inset, where we plot the intracellular and extracellular
mean waveforms for burst spikes I-6. Neuron 1 has the
highest value of our measure of spike shape change; its
half-width ratio is 1.7 (Table 2, neuron 1, half-width ratio). The
decrease in Vi magnitude and spike shape, of course, has the
potential to introduce errors, i.e., false negatives, or missed
spikes, due to the reduction of magnitude, which could con-
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found thresholding methods as well as methods of spike sorting
that depend on stereotypy of spike shape over time.

We next sought to quantify how the burst-related changes in
spike shape might affect spike detection. To get a general
picture of the effect of bursting, independent of a given choice
of threshold, in a simple and intuitive way, we decided to
systematically vary the threshold and perform a ROC analysis,
a standard statistical technique that allowed us to summarize
the performance of spike detection across a range of thresh-
olds. Instead of picking a single voltage threshold, which may
be arbitrary, we systematically varied the threshold applied to
the signal of the “closest electrode” and categorized all deflec-
tions above that threshold as TP or FP spikes by comparison
with the patch ground truth. An example threshold of —150
nV is shown in Fig. 3A, bottom.

We defined a TP as a deflection in the extracellular signal
that matched the timing of a patch-reported spike within 1 ms,
with the timing of the patch-reported spike being the time of
the maximum of the derivative of that spike; a maximum of 1
TP was assigned per intracellular spike. A FP was a deflection
in the extracellular signal that did not match the timing of an
intracellular spike. This deflection might be noise, or a spike
from another neuron. We then created PROC plots. On the
y-axis, we plotted TP rates (TP/total number of patch spikes) as
thresholds varied. For the x-axis, we limited our analysis to
when FP = total number of patch spikes, to increase the
dynamic range around the area of interest for a spike sorter.
Specifically, it would likely make no difference to an electro-
physiologist if FPs exceeded true spikes by 10 times vs. 100
times; in either case the recording may simply be deemed
unworthy of further analysis, whereas knowing whether the FP
rate was 10 vs. 30% may be useful. So that this partial ROC
was comparable between recordings, we plotted FP on the
x-axis divided by total number of patch spikes (see MATERIALS
AND METHODs for further description and rationale). We plotted
this PROC for all the spikes (Fig. 3C, all spikes; the symbol
corresponds to the —150-uV threshold level in Fig. 3A, bot-
tom, and Fig. 3B, bottom). We then used the same method to
create a second PROC curve but this time excluded spikes
within a burst (as determined on the patch trace) in our
calculation of the TP rate (Fig. 3C, no burst spikes). We note
that the TP rate does not reach one in this PROC for all spikes
(Fig. 30), indicating that there is not a threshold such that all
patch spikes are detected before FP becomes greater than the
total number of patch spikes. When burst spikes are removed
from the PROC (Fig. 3C), the TP rate does approach 1. This

Fig. 4. Characterization of bursting in cortical cell layers 2/3 and 5. A: partial areas under the partial receiver operating characteristic (PROC) curves (PAUC)
for each of the 12 neurons, in the no-burst spikes vs. all spikes conditions, for layer 2/3 (green) and layer 5 neurons (magenta), as well as the mean across all
12 neurons from 7 mice (black). Neuron number, as in Fig. 2C, is shown in gray, and line darkness is determined by the amplitude ranking introduced in Fig.
2C (neurons are rank ordered within a cell layer, and the darkest shade represents the patched neuron with a highest mean spike amplitude on the closest electrode,
with decreasing darkness as indicated for smaller spike amplitudes). Inser: PAUC difference (A area) between the all-spikes vs. nonburst conditions (mean across
neurons; error bar is SE). *P = 0.0432, paired #-test (n = 12 neurons from 7 mice). B: mean amplitude of the intracellular spike derivative, normalized to mean
nonburst amplitude for each neuron, in the no-burst spikes vs. all spikes conditions, for layer 2/3 (green) and layer 5 neurons (magenta), with neuron numbers
as in A. Inset: normalized intracellular derivative of spike amplitude difference (A) between the all-spikes vs. nonburst conditions, for layer 2/3 vs. layer 5 neurons
(mean across neurons in each cell layer; error bars are SE). *P = 0.0195, 2-sample -test between layer 2/3 neurons (n = 5 neurons from 4 mice) and layer 5
neurons (n = 7 neurons from 5 mice). C: change in extracellular spike amplitude by spike number in burst. For each recording, mean extracellular amplitude
(Vg) is normalized to the mean amplitude of the first spike in the burst and plotted for burst spike numbers 1-6. Values are only plotted if there were at least
5 spikes at that burst number. Errors bars are SD, shifted slightly along the x-axis for better visibility. As in B, layer 2/3 neurons are shown in green and layer
5 neurons in magenta. D—F: as in Fig. 3, A, B, and D, but for a representative (in terms of extracellular spike amplitude) neuron in cortical layer 2/3 of an
anesthetized (0.5-1.2% isoflurane) mouse (neuron 6 from Fig. 2C). V,, intracellular voltage; — V;, negative derivative of intracellular voltage; 6MAD, 6 times
median absolute deviation. G—I: as in C-E, but for a representative cortical layer 5 neuron (neuron 7).
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indicates that many of the burst spikes are mixed in with other
deflections composed of spikes from other neurons and noise,
and a simple threshold is unable to tell them apart. Given that
bursting changes spike shape, spike sorting methods that de-
pend on spike shape might also struggle; however, an explicit
representation of burst spike number and timing might reveal
patterns that could be used to facilitate classification, because
clearly there is structure in how spike shape changes during a
burst (e.g., Fig. 3B).

To examine how the activity of the patched neuron com-
pared with the other electrical activity picked up on the
extracellular electrode for this exemplar neuron, we plotted an
amplitude histogram of extracellularly recorded nonburst and
burst spikes that corresponded to the patch-reported spikes, as
well as all other voltage deflections exceeding the 2-MAD
noise floor across the entire recording (Fig. 3D). These latter
voltage deflections may originate from other neurons or noise.
Whereas nonburst spikes formed a clear peak, burst spikes
were more mixed in with the other deflections. We note that for
this neuron, 1% of the nonburst spikes (28) and 27% of the
burst spikes (269) fall into our thresholding range, between 2
and 6 times MAD (Table 2, thresholding range) and thus have
a potential to be lost to spike sorting before the spike classifi-
cation process.

Characterization of bursting in cortical cell layers 2/3 and 5
using simple thresholding. One opportunity offered by our
automated dual recording system is the ability to examine how
a given electrode array functions in different brain regions or
cell layers. Our close-packed electrode arrays spanned multiple
cortical cell layers, so we had an opportunity to assess whether
spiking properties differed across cell layers in a way that
would differentially confound attempts at spike detection and
classification. Different brain regions contain different neurons
with variable firing rate, spike shapes, and neural densities.
Spike sorting algorithms may perform better or worse when
based on these variables, but little data exists characterizing
these differences. Biases introduced by varying spike sorting
performance may impact downstream analyses of spike trains
between different brain regions or between different neuron
types in the same region. In this paper, we use our technique to
explore one example of differences in spike sorting perfor-
mance between two brain areas that may bias downstream
analyses.

To systematically explore the population of 12 recordings,
we used PAUC as a performance measure (Krzanowski and
Hand 2009). The value of PAUC ranges from O to 1, where a
value of 1 indicates that there are no false positive or false
negative deflections for any given threshold (see MATERIALS AND
METHODS). For each recording, we calculated PAUC for all
spikes and nonburst spikes (Fig. 4A, left) for layer 2/3 and layer
5 neurons, as well as a group mean. When values for all
neurons were pooled, the PAUC value when all spikes were
considered was significantly less than the PAUC value when
only nonburst spikes were considered, indicating decreased
spike detection performance (Fig. 4A, inset; mean area of the
all spikes group minus the nonburst spikes group is —0.0416
with an SE of 0.0186, n = 12 neurons from 7 mice).

Although there was a significant effect of bursting on the
PAUC when all neurons were pooled, we noted that this effect
was more commonly observed in layer 5 neurons than in layer
2/3 neurons (Fig. 4A4). Whereas for some layer 2/3 neurons this
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can be explained by a low number of burst spikes (e.g., neuron
9), we also found that layer 2/3 neurons exhibited generally
lower spike amplitude modulation with bursting. We can see
this difference in the derivative of the amplitude of the intra-
cellular spike (Fig. 4B, left; n = 5 neurons from 4 mice for
layer 2/3 and n = 7 neurons from 5 mice for layer 5). Layer 5
neurons had a significantly greater burst-related decrease in
spike slope than layer 2/3 neurons (Fig. 4B, inset; derivative of
the amplitude of the intracellular spike for the all spikes group
minus the nonburst spikes group is —0.0193 for layer 2/3
neurons and —0.1515 for layer 5 neurons, with SE of 0.0065
and 0.0394, respectively). For the two cell-attached recordings,
we analyzed the raw spike height rather than its derivative. In
Fig. 4C we plotted the normalized mean extracellular ampli-
tude vs. burst spike number for each recording and found a
general trend where for many layer 5 neurons, the spike
amplitude decreases throughout a burst more than for layer 2/3
neurons. Thus spikes later in bursts have a greater potential to
be lost in the spike detection process, which we also see when
we look at which burst spike numbers are in the 2—-6-MAD
range (see mean burst spike number in Table 2). Finally, the
mean half-width ratio is also larger for layer 5 at 1.34 (0.16)
than layer 2/3 at 1.08 (0.12) [means (SD)], suggesting that the
shape of layer 5 burst spike waveforms, e.g., Fig. 4, G—J,
changes more than layer 2/3 (e.g., Fig. 4, D-F; half-width
ratios for each recording in Table 2). Layer specific spike
amplitude and shape modulation may result in more burst
spikes lost during spike sorting of layer 5 neurons than for
spike sorting of layer 2/3 neurons. This potential difference in
spike accuracy may bias measures in which spike times from
layers 2/3 and layer 5 are compared, e.g., spike-spike or
spike-field correlation measures.

A large drop in PAUC when burst spikes were included was
not always observed in the layer 5 neurons that exhibited large
spike modulation during bursting; this is particularly evident in
the neuron with the lowest PAUC (neuron 7 in Fig. 4, A, B, G,
H, and I). This low PAUC value is indicative of an extracel-
lular trace in which there were many other deflections in the
spike range (Table 2, other deflections in spike range, and Fig.
41), confounding the spike detection and classification of the
trace. The PAUC value did not change when including burst
spikes because it was already at a floor.

An algorithm for assessing potential spike sorting perfor-
mance as a function of electrode density and quantity. So far
we have only analyzed extracellular traces on single electrode
pads, to probe the limits of spike sorting, but of course one
might take advantage of many pads on an extracellular elec-
trode array in the quest to sort spikes. How might potential
spiking sorting performance change with electrode density and
number? We devised an automated algorithm (Fig. 5A) based
on a simple model in which a neuron’s intracellular voltage is
transformed by the resistances and capacitances of the mem-
brane, extracellular space, etc., and mixed with noise and
spikes from other neurons to create the extracellularly mea-
sured voltage (Fig. 5A, top, model). We then created an
estimator of the intracellular spikes from the extracellular
voltage, which in outline worked by first deriving a transfor-
mation from the extracellular to intracellular voltage (Fig. 5A,
bottom, reversing the model, steps I and 2). We then regressed
a specified set of transformed extracellular traces against the
actual intracellular trace to create an intracellular voltage
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estimator (Fig. 5A, bottom, reversing the model, step 3). In
detail, the algorithm involved the following steps. In step 1
(Fig. 5B), we calculated a convolution filter kernel that would
minimize the mean squared error between the extracellular and
intracellular signal (see MATERIALS AND METHODS for details of
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step 1 and AppENDIX for equations and derivation thereof). In
step 2, the extracellular voltage from a single electrode was
convolved with the convolution filter kernel, to create the
“convolved extracellular voltage.” In step 3, multiple linear
regression was performed between a specified set of convolved
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extracellular voltage traces, corresponding to a set of electrode
pads of interest, and the actual patch-clamp voltage trace. The
resulting regression coefficients were multiplied with their
respective convolved extracellular voltages and summed,
yielding a single estimator of patch voltage from extracellular
voltages from a given set of electrodes. The estimators by
design resembled the shape of the patch voltage traces, so for
the 10 whole cell recordings we analyzed, we took the deriv-
ative of the estimator to make it resemble the shape of an
extracellular recording for the following spike sorting analyses
(we did not use the derivative for cell-attached recordings). In
this way, we aimed to make a simple estimator of the power of
a given set of electrodes to support spike sorting, by seeing
how accurately they could recapitulate the information con-
tained in the patch trace.

We calculated the PAUC as before, with a sliding threshold,
for the intracellular voltage estimators processed in this man-
ner. The PAUC in this case represents potential spike sorting
performance using the specified set of electrodes. Calculating
the PAUC for different subsets of the electrode array allows us
to compare the potential spike sorting performance for differ-
ent possible electrode array layouts.

We chose the set of extracellular voltage traces to be
convolved as follows: working electrodes were ranked by their
mean extracellular spike amplitude, from largest to smallest, as
in Fig. 2C. With this ordering in place, groups of electrodes
were then chosen, depending on the analysis. The top 64
amplitude-ordered electrodes (“full density”), every 2nd elec-
trode (i.e., the 1st, 3rd, 5th, etc., electrodes, for a total of 32
electrodes; “half density”), or every 4th electrode (i.e., the 1st,
5th, 9th, etc., electrodes, for a total of 16 electrodes; “quarter
density”’) was used for Fig. 5C. The top N amplitude-ordered
electrodes were used for Fig. 5D, where N ranged from 1 to 64.
We chose this ordering scheme for the purposes of the current
study, rather than ordering by actual spatial location, because
we wanted to compare between recordings taken with different
electrode arrays, with electrode count varying from 64 to 256
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electrodes, spaced in a 2- or 4-column array, in each case
focusing on the 64 electrodes that sensed the patched neuron
most strongly. (An end user focused on a specific array may
well want to use actual spatial distance as the sorting
parameter.)

Increased electrode density improved potential spike sorting
performance. We explored whether there was a spike sorting
benefit to having electrodes packed at the high density of the
electrode arrays used in this study. This has practical implica-
tions, because given a fixed number of electrodes in a planar
array, there is a necessary trade-off between recording more
densely and recording from a greater amount of tissue. We
created an estimator of the patched neuron’s voltage generated
from the full, half, or quarter density of the ordered electrodes
(Fig. 5C). We observed a significant effect of electrode density
(repeated-measures one-way ANOVA, F = 5.656, P =
0.0104, n = 12 neurons from 7 mice). The mean PAUC of the
full-density group was significantly greater than that of the
quarter-density group (Fig. 5C, inset; mean of full-density area
minus mean of quarter-density area, or “mean difference,” was
0.03148), but not the half-density group (mean differ-
ence = 0.01722). With the caveat that our electrode ordering
was not based on raw spatial ordering, as described above,
practically speaking, this suggests that an array with two or
more columns with electrodes spaced 11 wm apart (center to
center, or “pitch”’) may be more amenable to spike sorting than
a similar array with 22-um spacing.

Increased electrode number, at fixed electrode density, im-
proved spike discriminability. Finally, we analyzed our data at
full electrode density while varying the number of electrodes
included in the analysis, using the amplitude ranking as de-
scribed above so that we could compare across multiple kinds
of electrode array. We included the top {1, 2, 4, 8, 16, 32, 64}
amplitude-ordered electrodes in the construction of the estima-
tor of patch voltage from extracellular voltages (Fig. 5D). We
observed a significant effect of number of electrodes (repeated-
measures one-way ANOVA, F = 7.003, P < 0.0001, n = 12

Fig. 5. An algorithm for assessing potential spike sorting performance as a function of electrode density and quantity. A, fop: a model in which the intracellular
voltage (V)) is transformed by membrane capacitance and resistance, conductance delays, etc., and mixed with noise and spikes from other neurons to produce
an extracellular voltage (V) as sensed on an electrode. Bottom: reversal of the model in A, in which the V. is transformed to better resemble the V, and is unmixed
from noise and spikes of other neurons to better approximate V,. Unmixing is performed by linearly regressing the transformed V against the V,. B: details of
the inverted model, zoomed on individual spike waveforms. Top: step 1, a transformation that minimizes the mean squared error between the V, from a single
electrode (we will consider each individual electrode in turn) and calculates V,, yielding a filter kernel (shown are 6 spikes from an actual recording for ease of
visualization.) Middle: step 2, the V. from the same electrode used in step I is convolved with its corresponding convolution filter kernel to create the “convolved
V" Bottom: step 3, electrodes are ordered by amplitude, as described for Fig. 2C, and the electrodes to be included in the analysis [i.e., 64, 32, or 16 electrodes
(full, half, and quarter density, respectively) for C or the first N electrodes for D) are chosen. Steps I (top) and 2 (middle) are applied to the voltage of each of
these chosen electrodes, and a multiple linear regression is performed between these convolved Vs and the bandpass-filtered patch voltage. The resulting
regression coefficients are multiplied by their respective convolved Vs and summed, yielding a single estimator of patch voltage from Vs (step 3, bottom). C:
partial areas under the curve (PAUC) for partial receiver operating characteristic s (PROCs) from each neuron, as in Fig. 44, but thresholding on the derivative
of the estimator of patch voltage. Inset: comparison of scenarios when the estimator of patch voltage was generated from the top 64 amplitude-ordered electrodes
in a recording as a full set (full density), when every 2nd electrode was skipped (i.e., the 1st, 3rd, 5th, etc., electrodes were included for a total of 32 electrodes;
half density), or when 4 electrodes at a time were skipped (i.e., the Ist, S5th, 9th, etc., electrodes were included for a total of 16 electrodes; quarter density). These
results and the results in D were generated when all spikes of the patched neuron were included (i.e., not excluding burst spikes). A significant effect of electrode
density was observed (repeated-measures one-way ANOVA, F = 5.656, P = 0.0104, n = 12 neurons from 7 mice). The mean PAUC of the full-density group
was significantly greater from that of the quarter-density group (mean of full-density area minus mean of quarter-density area, or “mean difference” was 0.03148;
Dunnett’s multiple comparisons test, with corrected **P = 0.0054), but not that of the half-density group [mean difference = 0.01722, P = 0.1401, n.s. (not
significant, P > 0.05)]. D, left: PAUC values derived from the derivative of the estimator of patch voltage generated from the top N amplitude-ordered electrodes
in a recording (individual neurons colored as in C, mean in black). /nset: PAUC differences from the 64-electrode group (light gray, with error bars representing
SE of the difference). A significant effect of number of electrodes was observed (repeated-measures one-way ANOVA, F = 8.364, P < 0.0001, n = 12
neurons from 7 mice). The mean PAUC for 64 electrodes was compared with that for N = 32, 16, 8, 4, 2, and 1 electrode(s). The mean differences from
subtracting the 2 values, and the P values, are as follows: 0.01407 and 0.9817 (N = 32 electrodes; n.s.), 0.04402 and 0.28332 (N = 16; n.s.), 0.07483
and 0.0149 (N = 8; *P 0.01-0.05), 0.1095 and 0.0002 (N = 4; ***P = (0.0001-0.001), 0.1187 and 0.0001 (N = 2; ****P =< 0.0001), and 0.1153 and
0.0001 (N = 1; ****P = (0.001; Dunnett’s multiple comparisons test).
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neurons from 7 mice). The mean PAUC for 64 electrodes was
significantly greater than that for 8, 4, 2, and 1 electrodes, but
not 32 or 16 electrodes. The mean of the 64 electrodes group
minus mean of the N electrode group (mean difference), where
N =1, 2,4, 8, 16, or 32, was as follows: 0.1153, 0.1187,
0.1095, 0.07483, 0.04402, or 0.01407. With the caveat that our
electrode ordering was not based on raw spatial ordering, as
described above, practically speaking, these data suggest that
increasing the number of close-packed electrodes may improve
spike sorting. To ground these results in different terms, if a
spike sorter were willing to accept 2 FPs for every 100 patch
spikes, he or she would collect 100 TPs for neuron 8, regard-
less of electrode configuration. However, for neuron 4, he or
she would collect 46 TPs with an estimator based off of 1
electrode vs. 74 TPs with an estimator based off of all 64
electrodes while accepting 2 FPs for every 100 patch spikes.
There was no obvious trend between extracellular amplitude of
the patched neuron’s spike and PAUC, or between amplitude
and increase in PAUC with more electrodes. This is likely due
to spike sortability depending on an interaction between many
factors, including spike amplitude on the electrode(s), co-
occurring activity of other surrounding neurons, bursting, and
how bursting manifests itself in different cell layers.

DISCUSSION

Our paper describes new automated techniques as well as
demonstrations of the utility of these techniques. On the
technique side, we have developed a novel approach to vali-
dating the performance of a given electrode architecture, in a
given brain region. By combining automatic patch clamping
(Kodandaramaiah et al. 2012) with extracellular recording
with arrays of electrodes, in our case, close-packed elec-
trodes capable of spatially oversampling neural activity
(Scholvin et al. 2016), in a fashion that allows these two
kinds of electrodes to be brought into extremely close
proximity (i.e., enough to enable dual recording) with min-
imal damage, we were able to obtain dual recordings with a
minimum of human intervention. This technique may enable
others to assess the potential spike sorting performance of
electrode designs in a diversity of brain regions and species.

We also pursued computational technique development, in-
cluding a method for reconstructing intracellular voltage from
extracellular voltages, using a minimal mean squared error
strategy and used it to evaluate potential spike sorting perfor-
mance when electrodes are systematically added or removed
post hoc from a densely recorded data set. In this way we were
able to examine the extent to which arrays of close-packed
electrodes exhibiting spatial oversampling help with data anal-
ysis of spike data recorded from the mouse cortex. Our results
suggest that further increasing the density and number of
electrodes beyond the current state of the art might provide
additional benefits for spike sorting. Electrodes positioned in
3D rather than 2D configurations may help, too, but that was
not explored here. These results, and the computational frame-
work we developed, should also be applicable to the field of in
vitro recording with high-density arrays, where arrays of tens
of thousands of sensors have been put to scientific use, with
electrode density that approaches that of the close-packed
electrodes in this study (Ballini et al. 2014; Jickel et al. 2017;
Tsai et al. 2015, 2017).
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Bursting, however, remains a challenge for spike sorting,
regardless of electrode count, because spike shapes change in
sometimes complicated ways during bursting, in ways that may
not be fully understood because the changes are cell type-
specific.

Bursting as a confound to spike sorting. It is well known that
bursting may pose a problem for spike sorting (Harris et al.
2000; Lewicki 1998). Using our technologies, we have dem-
onstrated a series of analyses of the impact of bursting on spike
detection and classification made possible by our colocalized
recordings. In almost all of our layer 5 recordings (e.g., Fig.
3B), we observed a pattern in which extracellular spike voltage
declined, sometimes to below commonly used thresholds,
during a burst of spiking. This decline was visible both in the
extracellular recordings and in the time derivative of the
intracellular voltage. Whether some or all of these low-ampli-
tude burst spikes, often with spike shapes different from that of
nonburst spikes, can be detected and correctly categorized is an
important question for spike sorting. One possibility is that the
dynamics of bursting could be computationally modeled, per-
haps biophysically, and incorporated into spike sorting algo-
rithms to detect and categorize spikes likely to belong to a
burst. Colocalized recording technologies will provide the data
sets necessary to test such spike sorting algorithms, enabling
evaluation of their performance on extracellular data from a
variety of cell types and brain regions, and under different
stimulus conditions.

The relatively higher waveform modulation in layer 5 vs.
layer 2/3 neurons during bursting may be accounted for by the
elevated, subthreshold depolarization envelope observed in
intracellular recordings of bursts. The latter has been associ-
ated with sensory-evoked dendritic calcium transients observed
in intrinsically bursting neurons in layer 5, but not in layer 2/3
neurons (Helmchen et al. 1999). Further studies could examine
whether such processes play a role here; in the current study,
we treated this phenomenologically, as an observation that
could be detected with our automated system.

Close-packed electrode arrays for improved spike sorting.
We found that close-packed electrodes which spatially over-
sample a given neuron from many sites in space improved
potential spike sorting performance. There is precedent for
spike sorting performance improving with increased number of
electrodes, e.g., when spike sorting is done on four electrodes
rather than one, using an estimator of optimal spike sorting
performance based on clustering (Harris et al. 2000). Our
approach, combined autopatching and dense electrode record-
ing, extends these results to high channel counts and could help
with systematic assessment of different electrode types in the
future.

In sum, our hope is to offer a strategy that is automated and
simply deployed for understanding the meaning of a given
extracellular recording in the brain. We have shown several
examples of how it can help clarify the interpretation of
electrical signals recorded on a given electrode, but such a
technique may be generally of importance for analyzing a
diversity of electrode types.

APPENDIX

We are interested in estimating the patch-clamp voltage time series
¥(#) from a series of extracellular voltage recordings x,(r) from differ-
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ent electrodes i = 1, 2, .... We assume that the relation between the
functions x,(¢), y(f), and noise is time independent and linear, which
implies that

y(t) = (w,-*x,-)(t) + n,-(t),

where the star denotes convolution, for some convolution kernel w,(7)
that we want to estimate and some random noise term n,(f) that
includes both voltage contributions from other neurons and any noise
from the detector system electrical properties. Fourier transforming
this equation and using the convolution theorem simplifies it to

(@) = w(0)&(0)* +iw),
where w = 27f denotes angular frequency, hats denote Fourier

transforms, and £;(w)* is the complex conjugate of £;(w). We use the
normalization convention where the Fourier transform is unitary, i.e.,

where f£(w) = 2m)~'/? fef"“”x(t)dt. This formulation allows us to

estimate our kernel w for each frequency separately. In practice, we
split our time series into chunks of 512 samples each, overlapping
twofold (i.e., the first chunk contains samples 1-512, the next chunk
is 257-768, the next is 513—1,024, and so on), and evaluate £(w)* and
$(w) separately for each chunk. If we focus on a particular frequency
and plot all the points {£;(w)*, f(w)} in a two-dimensional scatter plot,
the desired coefficient Wj(w) is simply the slope of the relation, with
the residual scatter around the best-fit line corresponding to the noise
contribution 77,(w). We estimate this slope W;(w) using simple linear
regression, which provides the optimal estimator in the sense of
minimizing the mean squared error. Via Parseval’s theorem, the
optimal (mean squared error minimizing) estimator of our desired
real-space convolution kernel w,(7) is simply the inverse Fourier
transform of these regression coefficients, Wi(w).

In summary, each electrode time series x,(f) gives us a prediction
(w;%x;)() of the patch-clamp time series. We linearly combine them
into a single estimate y.(7) of the patch-clamp time series y(7):

Veul1) = 25 a(wpk) (1)

where «; are determined via simple linear regression to minimize the
mean squared prediction error.
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