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Abstract—The precise identification of loss of consciousness
(LOC) is key to studying the effects of anesthetic drugs in neural
systems. The standard behavioral assay for identifying LOC
in rodents is the Loss of Righting Reflex (LORR), assessed
by placing the animal in the supine position every minute
until it fails to right itself. However, this assay cannot be
used when the rodents are head-fixed, which limits the use
of powerful techniques such as multi-electrode recordings, in-
vivo patch clamp, and neuronal imaging. In these situations, an
alternative way to assess LOC is needed. We propose that loss of
movement (LOM) in whiskers and paws of head-fixed animals
can be used as an alternative behavioral assay in head-fixed
animals. Unlike LORR, LOM in whiskers and paws is much
harder to detect by visual inspection. Therefore, we developed a
method to automatically assess for LOM of whiskers and paws
in head fixed rodents during in vivo patch clamp recordings.
Our method uses an algorithm based on optical flow and point-
process filtering which can be run on images acquired on regular
cameras at low frame-rates. We show that the algorithm can
achieve at least comparable accuracy in detecting LOC when
compared with consensus among human observers, as well as
improved precision when compared with individual observers.
In the future, we aim to to expand the method to detect more
behavioral end-points during anesthesia such as paradoxical
excitation. Eventually, we hope to enable multi-modal anesthesia
studies, which incorporates behavioral and neurophysiological
data.

Index Terms—anesthesia, optical flow, point-process, motion
detection, image feature extraction.

I. INTRODUCTION

Precisely identifying loss of consciousness (LOC) is key to
studying its neural correlates. In clinical practice, simple tests
such as responsiveness to verbal commands are often used.
In research settings, more complex tasks such as response
to combinations of auditory stimuli can be used to define
LOC [1]. These behavioral assays are used in multi-modal
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anesthesia studies in combination with with EEG, fMRI, and
other physiological recordings [2] to examine mechanisms
by which anesthetic drugs produce LOC.

In contrast to humans, the repertoire of behavioral assays
for LOC in rodents is much more limited. The standard
measure is the Loss of Righting Reflex (LORR), which is
assessed by quickly placing the animal in the supine position
every minute until it fails to right itself [3]. While LORR is
a reliant measure, it is incompatible with techniques with
high temporal and spatial resolutions that can be used in
rodents to obtain even more insights about anesthetic actions
and LOC. For example, targeted multisite recordings can
be used to assess the temporal dynamics of large cortical
and subcortical networks during LOC [4]; in vivo patch
clamp recordings [5] can be used to study the effects of
anesthetics on membrane potential, and invasive neuronal
imaging techniques such as calcium imaging [6] can be used
to produce highly detailed observations of neurophysiological
dynamics during anesthesia. These methods all require that
the animal be head-fixed, which precludes the possibility of
performing the LORR assessment.

We propose a new behavioral assay to assess LOC in head-
fixed rodents using the loss of movement (LOM) in whiskers
and paws. This proposal is inspired by previous work in
which we established a strong correlation between LORR
and LOM [4]. We demonstrate a proof-of-concept of this
new assay in head-fixed rodents undergoing in vivo whole-
cell current clamp recordings. Because LOM in whiskers
and paws is challenging to detect by visual inspection, we
developed an algorithm based on optical flow and point-
process filtering to perform this task automatically.

II. METHODS.
A. Animal preparation and video acquisition

All procedures were performed in agreement with federal,
state, and local regulations. The protocol #0113-008-16 was
approved by the Committee on Animal Care at the Mas-
sachusetts Institute of Technology. The methods have been
published in detail in Kodandaramaiah et al. [5]. In short,
adult male C57BL/6 mice, 8 weeks old, were implanted with
metallic head plates under anesthesia and sterile conditions.
After a week of post-surgical recovery, where analgesics were
administered, the mice were behaviorally acclimated to the
head-fixed set-up in sessions of increasing duration from 10
minutes to 30 minutes over a period of 7 days. Mice were
given diluted condensed milk during the acclimation sessions
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to minimize stress and provide positive reinforcement. On the
day of the experiment, an indwelling cannula was placed in
the peritoneal cavity, and the mice were placed in the head-
fixed recording set-up for in vivo whole-cell current clamp
[5].

A scientific grade camera (Firefly MV 0.3 MP Mono
FireWire 1394a, Flir Machine Vision) was installed in front
of the mice, together with an off-the-shelf infrared illumi-
nation source. The camera’s shutter was triggered at 20
frames per second using a computer interface board (NIDAQ
NI-USB 6259, National Instruments) controlled via custom-
written LabView Software (National Instruments). Frames
were acquired at a resolution of 800×600 pixels. A copy
of the trigger signal was send to the patch amplifiers for
synchronization with the neurophysiological recordings. The
full set-up for the experiment and video acquisition is shown
in Fig. 1.

Fig. 1. Schematics of experimental setup.

The video acquisition was started simultaneously with the
cellular recordings. Four minutes of baseline data were ac-
quired before the mice were dosed with either dexmedetomi-
dine (200 mcg/kg) or ketamine (150 mg/kg). The recordings
continued for a variable period until the whole-cell state was
lost.

B. Movement detection using optical flow analysis

We used optical flow to extract movement of whiskers and
paws from the videos acquired. To do so, we first manually
marked the regions of interest (ROIs) in the videos to include
either the right paw or the right whiskers. The head-fixed set-
up constrained the ROIs to a fixed area while allowing full
range of movement for the whiskers and front paws. Next, we
sub-sampled the ROI by a factor of two, and computed the
optical flow using the Lucas-Kanade Difference-of-Gaussian
algorithm as implemented in MATLAB [7], [8]. We set the
number of frames for temporal smoothing to the minimum
value of 3 because the original video was acquired at a low
frame rate. The rest of the parameters were left at their
default values (image smoothing σ = 1.5 pixels; temporal
smoothing σ = 1 pixel-frame; noise threshold = 0.0039
arbitrary luminance units). We chose the Lucas-Kanade
derivative of Gaussian algorithm because by visual inspection
it produced a sparse optical flow field that was relatively
unaffected by respiration-induced motions in comparison
to other commonly used optical flow algorithms, such as
the Horn-Schunk algorithm, or the standard Lucas-Kanade
algorithm (see Fig. 2). Finally, we computed the median

Fig. 2. Typical examples of optical flow vectors (green arrows) computed
applying three different algorithms. A) ROI corresponding to the front paws.
B) Lucas-Kanade Difference-of-Gaussian algorithm. C) Conventional Lucas-
Kanade algorithm. D) Horn-Schunk algorithm. The scaling factor for the
vectors produced by the conventional Lucas-Kanade algorithm is a fourth
of the scaling factor applied to the vectors produced by the other two
algorithms.
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Fig. 3. State-space model for estimating the movement probabilities given
median optical flow data.

magnitude of the optical flow vectors within each ROI, yi,τ
(where i = w for whiskers and i = p for paws), to summarize
the optical flow measurements.

Next, we adapted a previously validated recursive variance
algorithm (RVS) to convert yi,τ into binary signals where
zeros represent non-movement and ones represent movement
[9]. This algorithm computes a recursive estimate of the local
signal variance and threshold the estimate as follows:

µi,τ = βµi,τ−1 + (1− β)yi,τ (1a)

υ2i,τ = βυ2i,τ−1 + (1− β)(yi,τ − µi,τ )2 (1b)

bi,τ = δ[υ2i,τ < θ] (1c)

here yi,τ is the median magnitude of the optical flow vectors,
µi,τ is its local mean, υ2i,τ is its local variance, and bi,τ is the
binary signal for whiskers (i = w) or paws(i = p) at time τ .
The algorithm has two parameters: the “forgetting factor” β
which determines the relative influence of current data and
past estimate on the current estimates; and the classification
threshold θ which determines the outcome of the indicator
function δ[ · ] (which is 1 if the inequality is satisfied and 0
otherwise). We set the value of β to the globally-optimal
value reported in [9] and customized the value of θ for
each data set. Specifically, we applied a bisectional search
algorithm to find the threshold θ such that at baseline the
total duration of movement detected was between 25 – 75%.
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C. Computing the movement probability (MVP)

We introduce the concept of movement probability (MVP)
of the whiskers and paws which describes the instantaneous
probability for movement. This is a statistically rigorous way
to generate a denoised and scale-free measure from binary
data [10] and can be used to classify the behavior states
into LOC or non-LOC. MVP is derived based on a state-
space model as shown in Fig 3. Let ∆p be the sampling
period of MVPs and ∆b be the sampling period of the binary
observations. In our model, the MVP (denoted as pt) drives
the generation of the binary observations through a binomial
probability model:

f(pt) =

(
N

kt

)
pktt (1− pt)N−kt ,

where N = ∆p/∆b and kt =
∑tN
j=(t−1)N bj . pt also relates

to an underlying state zt through a sigmoid function

g(zt) = pt =
1− exp(−zt)
1 + exp(−zt)

.

We model the dynamics of the states as a random walk
process:

h(zt−1) = zt = zt−1 + εt

where εt are independent Gaussian random variables with
mean 0 and variance σ2

ε . This definition of the state transition
provides a stochastic continuity constraint to ensure that the
states (and hence the MVPs) that are close in time are close
in value. We adapted the algorithm for estimating the MVPs
from our previous work on point-process filters [11]. The key
steps of the filtering algorithm are shown below:

Prediction: zt|t−1 = zt−1|t−1

σ2
t|t−1 = σ2

t−1|t−1 + σ2
ε

Update: zt|t = zt|t−1 + σ2
t|t`t

dpt
dzt

∣∣∣∣
zt|t−1

σ−2t|t = σ−2t|t−1 + g2t [pt|t−1(1− pt|t−1)]−1

where

zt|t−1 = E[zt|kt−11 , σ2
ε , z0]

σ2
t|t−1 = E[(zt − zt|t−1)2|kt−11 , σ2

ε , z0]

zt|t = E[zt|kt1, σ2
ε , z0]

σ2
t|t = E[(zt − zt|t)2|kt1, σ2

ε , z0]

`t =
kt − npt|t−1

pt|t−1(1− pt|t−1)

dpt
dzt

=
xt(1− pt) exp(xt)

exp(xt) + 1

gt =
xt|t−1 exp(xt|t−1)

exp(xt|t−1) + 1
(1− pt|t)

We computed MVPs separately for whiskers and paws. To
initialize the algorithm, an EM-algorithm was used on the
four minutes of baseline data to find parameters σ2

ε and z0.

Fig. 4. Example of data processing. Panel A (B) show the median optical
flow y obtained from the movement of paws (whiskers) in a video using
the Lucas-Kanade derivative of Gaussian algorithm, the movements detected
from these b, and the associated MVPs (p). Panel C shows the periods of
LOC identified by our algorithm and three human observers.

D. Identification of LOC and performance assessment

We defined LOC as having a MVP of less than 0.1 in
either whiskers or paws and identified the period of LOC in
each animal using the fully automated algorithm described
in Sections II-B and II-C. We also defined the minimal time
for a period of LOC identified to be at least 3 minutes. We
compared the performance of the algorithm to the annotations
of LOC and non-LOC periods provided by three independent
and experienced human observers who were provided with
the videos only. We defined human consensus as having
agreement between at least two of the three observers. Then
we computed the percentage time when there was inter-
human Ahh, human-algorithm Aha, and algorithm-human
consensus agreement Aac on the labels of LOC or non-
LOC. From this analysis, we obtain 7 comparisons. Each of
these is characterized by a distribution of the percentage time
in which the pair compared was in agreement. Finally, we
computed the 95% confidence interval for the median value
of each of these distributions using non-parametric bootstrap.
We defined two distributions as statistically significant only
when there is no overlap between the confidence interval of
their median values.

III. RESULTS

We conducted 10 experiments in total. Dexmedetomidine
was used in one half of the experiments and ketamine in
the other half. The duration of the experiments ranged from
19.7 – 48.5 min with a median of 30.2 min. We processed the
videos using the algorithms described in Sections II-B and
II-C, and automatically identified periods of LOC using the
criteria described in Section II-D. Figure 4 shows the whisker
and paw median optical flow, movement detected, and MVP,
as well as the LOC identified by the algorithm and human
observers for one experiment.
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Fig. 5. Boxplot showing distributions of inter-human agreement
(A12, A13, andA23), human-algorithm agreement (Aa1, Aa2, andAa3), as
well as algorithm-human consensus agreement Aac based on data obtained
from 10 experiments.

We show a box plot summarizing inter-human agreement
Ahh, human-algorithm agreement Aha, and algorithm-human
consensus agreement Aac for all experiments in Fig 5. The
whisker length is set to 1.5 times of the interquartile range
(IQR). Table I summarizes the median, 95% confidence
interval (CI) of the median, mean, and standard deviation
(std) for each of the seven comparisons. None of the com-
parisons made were statistically different from the others.
However, we can see that Aac has the smallest 95% CI of
the median and standard deviation while A23 has the largest
95% CI of the median and standard deviation. Interestingly,
the agreement between the algorithm and human consensus
was less variable than the agreement between the individual
human observers and human consensus. Therefore, the results
indicate that our algorithm perform at least as well as human
observers, and has improved precision when compared with
individual human observers.

IV. DISCUSSION AND CONCLUSION

We propose a new behavioral assay based on LOM for
examining LOC in head-fixed rodents where the traditional
assays such as LORR cannot be used. As evident from the
variability of the inter-human agreement in our results, the
task of identifying LOM in whiskers and paws is challenging.
This is probably because such movements are much less ob-
vious and harder to assess than LORR. The process of having
humans manually determine LOC by watching the video is
also labor intensive and subjected to bias [12]. Therefore we
are motivated to develop an automated algorithm to perform
this task.

We designed and implemented an algorithm based on
optical flow measures of motion and point-process filtering

Comparison Median 95% CI of median Mean Std

A12 95.4 [73.3 99.2] 82.9 23.4
A13 97.9 [73.3 99.4] 91.7 12.1
A23 98.7 [75.9 99.8] 84.3 26.6
A1a 93.1 [73.8 96.5] 83.2 21.3
A1a 96.3 [74.3 98.4] 90.6 10.6
A1a 95.8 [73.0 96.5] 90.9 11.4
Aac 96.2 [95.1 98.9] 94.3 7.7

TABLE I

toh estimate a novel index called movement probability.
We used the movement probability to detect LOC in 10
experiments, and confirmed that the proposed behavior assay
based on LOM is tractable. By comparing with human
annotated period of LOC versus non-LOC, we showed that
the algorithm is as accurate and more precise. The algorithm
was also applied successfully to recordings made at low
frame-rates and moderate resolution. Therefore, it is useful
without using cameras with high resolution and frame-rates.

In this analysis, we have limited ourselves to identifying
periods of LOC vs non-LOC for an initial proof-of-concept.
However, the movement probability is not a binary measure
but a continuous metrics and can be used to characterized
more subtle behavioral changes. This can be exploited in
future work to refine our current analysis of LOC, distinguish
between different depths of sedation during anesthesia, and
characterize other relevant behavioral states such as paradox-
ical excitation.

Finally, our proposed method will enable the combination
of behavioral and invasive neurophysiological measures in
head-fixed rodents. This is crucial for gaining new insights
about the neural mechanism of anesthesia and consciousness.
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