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SUMMARY

Targeted patch-clamp recording is a powerful
method for characterizing visually identified cells in
intact neural circuits, but it requires skill to perform.
We previously developed an algorithm that auto-
mates ‘‘blind’’ patching in vivo, but full automation
of visually guided, targeted in vivo patching has
not been demonstrated, with currently available ap-
proaches requiring human intervention to compen-
sate for cell movement as a patch pipette ap-
proaches a targeted neuron. Here we present a
closed-loop real-time imaging strategy that automat-
ically compensates for cell movement by tracking
cell position and adjusting pipette motion while ap-
proaching a target. We demonstrate our system’s
ability to adaptively patch, under continuous two-
photon imaging and real-time analysis, fluorophore-
expressing neurons of multiple types in the living
mouse cortex, without human intervention, with
yields comparable to skilled human experimenters.
Our ‘‘imagepatching’’ robot is easy to implement
and will help enable scalable characterization of
identified cell types in intact neural circuits.

INTRODUCTION

Targeted patch-clamp recording of visually identified neurons

(Dittgen et al., 2004; Kitamura et al., 2008; Margrie et al., 2003)

is a powerful technique for electrophysiological characterization

of cells of a given class in the living mammalian brain and is in

increasing demand for its ability to link a cell’s molecular and

anatomical identity with its electrophysiological characteristics
in the context of specific behaviors, states, and diseases

(Chen et al., 2015; Li et al., 2015; Pala and Petersen, 2015; Run-

yan et al., 2010; van Welie et al., 2016). However, the manual

labor and skill required to perform visually guided patching in vivo

have limited widespread adoption of the technique. Previously,

we discovered that non-image guided (i.e., ‘‘blind’’) patching

in vivo could be reduced to an algorithm, and we accordingly

built a robot, which we called the ‘‘autopatcher,’’ that automati-

cally performs blind patch-clamp recordings of single neurons in

the intact brain by detecting cells based on changes in pipette tip

impedance (Kodandaramaiah et al., 2012, 2016). Since then,

several attempts have been made to automate visually guided

patch-clamp recordings of targeted neurons. Although these

attempts have enabled automatic positioning of a patch pipette

near a visually identified neuron, all currently available systems

either need a human to perform the final patching process itself

(Long et al., 2015) or require human adjustment of the patching

process for about half of the trials (Wu et al., 2016). We realized

that a system that can achieve the whole-cell patch-clamp

configuration from a targeted cell without human intervention

needs to address a key technical challenge: as a patch

pipette moves toward a target cell for patch clamping, the cell

moves as well, causing the pipette to miss its mark without

manual adjustments of pipette motion that compensate for cell

movement.

We therefore designed a new kind of algorithm, which we call

‘‘imagepatching,’’ in which real-time imaging in a closed-loop

fashion allows for continuous adaptation of the pipette trajectory

in response to changes in cell position throughout the patching

process. We constructed a simple robotic system and software

suite implementing imagepatching that can operate on a con-

ventional two-photon microscope with commercially available

manipulators and amplifiers, and show that we can obtain in vivo

patch-clamp recordings from fluorescently labeled neurons, of

multiple cell types, in the living mouse cortex without any human

intervention, and with a quality and yield similar to or even
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exceeding that obtained by skilled human experimenters. Our

imagepatching robot is easy to implement and will help enable

scalable electrophysiological characterization of identified cell

types in intact neural circuits.

RESULTS

Closed-Loop Real-Time Imaging Algorithm for
Compensation of Target Cell Movement during Image-
Guided Patch Clamping
In the anesthetized mouse cortex, we found that moving a patch

pipette by 300–400 mm from above the brain surface into layer

2/3 along the axial direction (i.e., parallel to the pipette axis,

30� below the horizontal) resulted in a target cell displacement

of 6.8 ± 5.1 mm (mean ± SD used throughout; n = 25 cells in

6 mice; Figure S1A) in the transverse plane. In addition, we

observed that pipette navigations in the vicinity of a targeted

cell (i.e., pipettes moving by �5–10 mm when starting �20–

30 mm away from the cell) caused the targeted cell to move by

2.2 ± 1.4 mm (n = 27 cells in 17mice; Figure S1B) in the transverse

plane. These findings suggested that to correctly place the

pipette tip on a targeted cell and patch it in a fully automated

fashion, the displacement of the target cell resulting from pipette

movement needs to be compensated for as the pipette

is advanced toward the cell. Accordingly, we developed a

closed-loop real-time image-guided algorithm that involves

repeated target cell imaging followed by centroid detection (Fig-

ure 1Ai) and pipette movement (Figures 1Aii and 1Aiii) stages, to

continuously compensate for cell movement as the pipette ap-

proaches the target. We found that with the closed-loop algo-

rithm supporting pipette navigation to a targeted cell, the entire

image-guided patching process could be reduced to a six-stage

‘‘imagepatching’’ algorithm (Figure 1B; full flowchart in Fig-

ure S2). Imagepatching fuses closed-loop real-time image-

guided pipette positioning with our earlier impedance-based

cell detection strategy (Kodandaramaiah et al., 2012, 2016) to

enable automated cell-attached or whole-cell patch-clamp

recording of visually identified cells in the intact mamma-

lian brain.

To implement imagepatching, we built a robotic system

(‘‘imagepatcher’’) on a commercial two-photon microscope,

which we controlled using ScanImage software (Pologruto

et al., 2003) integrated with our MATLAB code that performs

the real-time closed-loop image analysis. We chose ScanImage

as the core software for the imagepatcher, since it works

with two-photon systems from multiple vendors and because

its open code allowed us to incorporate real-time analysis

of ScanImage-acquired images. The imagepatcher hardware
Figure 1. Imagepatching: Closed-Loop Real-Time Image-Guided Patc

(A) The closed-loop algorithm for continuous cell centroid localization and pipe

flowchart, see Figure S2). Green, patch pipette filled with fluorescent dye; red, flu

pipette movement.

(B) The six stages of the image-guided automated patching algorithm (for step

fluorescent cells; green, patch pipette filled with fluorescent dye; light red, laser

arrow, cell movement; yellow, target cell filled with the fluorescent dye from the

(C) Schematic of the imagepatcher hardware, composed of a conventional two-ph

control box (Kodandaramaiah et al., 2012, 2016). Arrows indicate the direction o
shown in Figure 1C was assembled by augmenting a conven-

tional two-photon image-guided patch-clamp rig with an auto-

patcher control box (Kodandaramaiah et al., 2012, 2016) that

was modified to provide a wide range of pressure values (see

STAR Methods for details of this, as well as other technical im-

plementation points summarized in the following section). We

validated the imagepatcher by using it to obtain targeted in vivo

recordings from tdTomato-expressing cells in somatosensory

and motor cortices of anesthetized Cre-dependent reporter

mice, namely parvalbumin (PV)-positive interneurons in PV-

Cre x Ai14 mice and calcium/calmodulin-dependent protein ki-

nase II isoform alpha (CaMKIIa)-positive pyramidal neurons in

CaMKIIa-Cre x Ai14 mice (Clarke, 1993; Hippenmeyer et al.,

2005; Tsien et al., 1996). PV-positive and CaMKIIa-positive cells

had different cortical densities (9.6 ± 6.3 tdTomato-expressing

cells per volume of 200 3 200 3 100 mm3 in 9 PV-Cre x Ai14

mice versus 47.0 ± 31.8 tdTomato-expressing cells in this vol-

ume in 7 CaMKIIa-Cre x Ai14 mice) and morphologies (example

two-photon images of tdTomato-expressing cells in layer 2/3

somatosensory cortex of each mouse line are shown in Figures

4A and 4B) and thus allowed us to explore the degree of gener-

ality that the imagepatcher offers to an end user.

Imagepatcher Operation
The imagepatcher starts by executing a target cell detection and

selection stage (Figure 1Bi), in which two-photon images of the

mouse brain are acquired and then analyzed to identify fluores-

cent cells. From these candidate cells, the end user can select a

neuron of interest using the imagepatcher’s graphical user inter-

face (see Methods S1, related to STAR Methods, in the Supple-

mental Information for details). The imagepatcher thenmoves on

to the pipette tip detection stage (Figure 1Bii), where a dye (e.g.,

Alexa 488)-filled patch pipette is brought into the field of view

above the brain, and the tip of the patch pipette is automatically

located. The pipette tip is identified using a pipette tip detection

algorithm (Figure 2A) derived from our finding that the cluster of

bright pixels in the pipette image (Figure 2Aii, area bounded by

yellow outline), which represents the fluorescence from the dye

inside the pipette, robustly changes its position as the focal

plane of the microscope objective is moved downward from

above the pipette tip. Accordingly, we developed a pipette tip

detection algorithm to acquire a z stack around the pipette tip

(Figure 2Ai) and to identify the image in the stack capturing the

cluster of bright pixels that is furthest away from the far end of

the pipette (represented by the centroid of the cluster in the

topmost image in the stack; Figure 2Aii.i, black x), assigning

the z coordinate of this farthest-cluster image as the z coordinate

of the pipette tip (Figure 2Aiii, zpipette). The portion of the pipette
h Clamping In Vivo

tte position adjustment while approaching the targeted cell (for step-by-step

orescent cell targeted for patching; black x, target cell centroid; black arrows,

-by-step flowchart, see Figure S2). ACSF, artificial cerebrospinal fluid; red,

for two-photon imaging; black solid arrows, pipette movements; black dotted

pipette.

oton image-guided patch-clamp rig and our previously developed autopatcher

f information flow. PMT, photomultiplier tube.
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Figure 2. Key Algorithms for Closed-Loop Real-Time Image Analysis

(A) Steps of the pipette tip detection algorithm. (Ai) A z stack with 20 images and 2 mm step between consecutive images is acquired around a pipette filled with a

dye (e.g., Alexa 488, green). (Aii) Each image in the z stack is analyzed to identify the cluster of bright pixels (area bounded by yellow outline, corresponding to the

fluorescence from Alexa 488 inside the pipette) and the centroid of the cluster (x). The centroid in the topmost image of the z stack (Aii.i, black x) is used as a

reference location corresponding to the far end (i.e., end opposite to the pipette tip) of the pipette. Images 1 (Aii.i), 10 (Aii.ii), and 20 (Aii.iii) of the z stack, numbered

from top to bottom, are shown as examples. (Aiii) The distance between the cluster centroid (x in Aii) and the reference centroid (black x in Aii.i) is calculated for

each image in the z stack. The image at which this distance is the largest is identified as the image focused on the pipette tip (magenta line). The z-coordinate of

the focused image corresponds to that of the pipette tip (zpipette). (Aiv) The image focused on the pipette tip is analyzed to yield the location of the pipette tip in the

transverse plane (yellow star). For image analysis steps used to locate the pipette tip in the transverse plane, see Figure S3A.

(B) Steps of the cell position detection algorithm. (Bi) A z stack is acquired around a tdTomato-expressing cell (red), with N images and Dz step between

consecutive images (N = 25, Dz = 3 mm for cell position detection in the brain penetration stage; N = 15 or 25, Dz = 2 mm for cell position detection in the closed-

loop real-time image-guided pipette positioning stage). (Bii) Each image in the z stack is analyzed to detect the boundary of the cell body (red outline). Images 8

(Bii.i), 12 (Bii.ii), and 16 (Bii.iii) of the z stack, numbered from top to bottom, are shown as examples. (Biii) The mean intensity of pixels representing the cell body

(i.e., pixels surrounded by the detected boundary in Bii) is calculated for each image in the z stack. The image at which this mean intensity is the highest is

identified as the image focused on the centroid of the cell body (magenta line). The z-coordinate of the focused image corresponds to that of the cell centroid

(zcell). (Biv) The image corresponding to the z-coordinate of the cell centroid is analyzed to yield the centroid position in the transverse plane (red x). For image

analysis steps used to detect the boundary and the centroid of the cell body, see Figure S3B.
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tip detection algorithm responsible for the identification of the

pipette tip in the image at zpipette (Figure 2Aiv) was developed

based on the fact that an image focused on the pipette tip

shows a triangular object corresponding to the pipette shank

converging to a point (i.e., the pipette tip). We therefore designed

the pipette tip detection algorithm to find the cluster of bright

pixels that captures three vertices of the pipette from the image

at zpipette (Figure S3Aii.ii), which is then analyzed to identify the

pixel corresponding to the pipette tip (Figure S3Aiii). When tested

on 16 z stacks (2 mm step size, 20 images, 173 zoom), each of

which captured the tip of a separate Alexa 488-filled patch

pipette (angled at 30� below the horizontal) at a distinct position

within the stack, the pipette tip detection algorithm was capable

of accurately extracting the pipette tip, with the tip location

determined by the algorithm deviating from the visually assessed

tip position by –1.0 ± 0.8 mm, –0.2 ± 0.4 mm, and 1.0 ± 2.4 mm

in the x, y, and z directions, respectively. The algorithm’s perfor-

mance was similar for patch pipettes at different angles below

the horizontal (see STAR Methods, ‘‘Performance of the pipette

tip detection algorithm at angles other than 30� below the hori-

zontal,’’ for details).

The pipette tip location determined during the pipette tip

detection stage is usedby the imagepatcher to compute the ideal

trajectory to the target cell at the start of the brain penetration

stage (Figure 1Biii), and also to calculate the pipette tip position

in subsequent stages of imagepatching; we decided not to utilize

thepipette tip detection algorithm (Figure 2A) to locate thepipette

tip from the brain penetration stage onward, because a pipette

that entered the brain without contamination ejected a plume of

fluorescent dye that obscured the exact location of the pipette

tip, whichmade it difficult to robustly resolve the pipette tip using

an image-based algorithm. To enter the brain, the imagepatcher

applies high positive pressure (600 mBar) to the pipette and

moves it along the calculated trajectory at about 600 mm/s (i.e.,

at the maximum speed that our four-axis micromanipulator can

generate under software control; the same speed is used to

move the pipette throughout imagepatcher operation) until the

pipette tip is within 75 mm from the initial target cell location. At

this point, the pipette pressure is quickly reduced to 300 mBar

to prevent excessive background fluorescence, but if little or no

dye is ejected around the pipette tip, or a drastic resistance in-

crease is observed, the pipette is deemed contaminated and

brief pulses of positive pressure (>300mBar) are applied to clean

the pipette tip (as described in Komai et al., 2006). The pressure

value of the pulse is increased until the pipette tip is cleared,

but no more than 800 mBar is applied, as a pipette ejecting the

dye at this high pressure can cause excessive background

fluorescence that interferes with cell detection in subsequent

steps of imagepatcher operation. If the clogged state persists

even after two pulses of high positive pressure, the contaminated

pipette is automatically retracted. For an uncontaminated or a

cleared pipette, the imagepatcher applies a pipette pressure of

300mBar while moving the pipette tip to the vicinity of the target,

as we found this pressure value to be high enough to keep the

pipette tip clean inside the brain, but not so high as to cause a

lingering flood of dye that would lead to excessive background

fluorescence (see STAR Methods, ‘‘Derivation of pipette pres-

sure for brain entry and cell approach,’’ for details).
Once the pipette tip is within 50 mm from the target cell’s initial

location, the imagepatcher re-images and re-detects the target

cell to account for cell movement resulting from pipette entry

into the brain, using the cell position detection algorithm

described in Figure 2B. The algorithm was derived based on

the fact that in fluorescence microscopy, a fluorescent object

looks the brightest when it is in focus (i.e., an image of a fluores-

cently labeled cell captures pixels corresponding to the fluores-

cence of the cell, and these pixels have higher intensities in an

image focused on the cell compared to out-of-focus images).

We thus built the cell position detection algorithm to detect the

cell body in each image of a z stack of the target cell (Figure 2Bii)

and then to identify the image with the highest mean pixel inten-

sity within the cell body (Figure 2Biii, magenta line), which yields

the z-coordinate of the target cell (Figure 2Biii, zcell). We also

designed the cell position detection algorithm to identify the

centroid (i.e., center of mass) of the cell body in the image at zcell
(Figure 2Biv, red x), which is then assigned as the cell position in

the transverse plane, because the cell body centroid is where in-

vestigators manually performing image-guided patching would

aim with the tip of a patch pipette (H€ausser and Margrie, 2014;

Komai et al., 2006). When tested on 21 z stacks (2 or 3 mm

step size, 15 or 25 images, 173 zoom; from five mice), each

capturing a PV-positive neuron at a different position within the

cortex, the cell position detection algorithm correctly yielded x,

y, and z coordinates of the cell centroid in all 21 stacks (visually

assessed). Following cell position detection, the pipette is

moved so that its tip is 25 mm above the updated target cell

centroid, and the pipette tip is checked again for contamination.

With the clean pipette tip in place, the closed-loop real-time

image-guided pipette positioning stage (Figure 1Biv) begins by

lowering the pipette pressure (to 100 mBar) to prevent the target

cell from being blown out of place and by performing another cell

position detection (as in Figure 2B) to update the location of the

target cell. The imagepatcher then repeatedly finds the target

cell centroid (Figures 1Ai and 2Biv) and repositions the pipette

in the transverse plane according to the offset from the pipette

tip to the cell centroid (Figure 1Aii) before each downward

3 mm z-step toward the target cell (Figure 1Aiii; example data

from multiple steps of this closed-loop operation are in Figures

3A and 3B, with corresponding imagepatching impedance tra-

jectory in Figure 3C). Similar to manual image-guided patching

in vivo (H€ausser and Margrie, 2014; Komai et al., 2006; Margrie

et al., 2003), both visual (pipette tip within the boundary of the

target cell soma; Figure 3Aiii) and electrical (resistance increase

that exceeds a certain threshold; Figure 3Ciii) parameters are

repeatedly checked while the pipette advances toward the

target cell to determine when the pipette tip touches the target

cell membrane. The imagepatcher maintains the pipette pres-

sure at 100 mBar until the pipette tip makes contact with the

cell membrane, because we found that this pressure helped

prevent pipette tip clogging and allowed a detectable change

in pipette resistance to be observedwhen the pipette tip touched

the cell membrane (as in Figure 3Ciii), while not blowing

the target cell out of place and not resulting in excessive

background fluorescence (see STAR Methods, ‘‘Derivation of

pipette pressure for brain entry and cell approach’’ and ‘‘Optimi-

zation of cell-pipette contact detection, gigaseal formation, and
Neuron 95, 1037–1047, August 30, 2017 1041
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break-in,’’ for details). Once the pipette tip makes contact with

the cell membrane, the imagepatcher dynamically changes the

pipette pressure from 100 mBar to 30 mBar to prepare for giga-

seal formation. We found that this lowering of pressure resulted

in reduction of, and fluctuation of, the amplitude of current pulses

that were observed in response to the application of voltage

steps to the pipette tip, corresponding to the heartbeat modula-

tion that has been reported previously (H€ausser and Margrie,

2014; Komai et al., 2006; Margrie et al., 2003). We also found

that the amount of amplitude reduction, which we computed

by comparing the pipette resistance before and after the pres-

sure change, and the amount of amplitude fluctuation, which

we quantified by calculating the SD of the amplitude of current

pulses, were useful predictors of gigaseal formation when they

each exceeded a certain threshold (see STAR Methods, ‘‘Opti-

mization of cell-pipette contact detection, gigaseal formation,

and break-in,’’ for details). The imagepatcher therefore checks

if resistance change and the SD of the current pulse amplitude

following the lowering of pipette pressure to 30 mBar are high

enough before advancing to the gigaseal formation stage

(Figure 1Bv).

During gigaseal formation, the positive pressure is removed

and 20mBar suction is applied while hyperpolarizing the pipette.

When a gigaohm seal is established (Figure 3Civ), the image-

patcher operation may be halted to obtain cell-attached extra-

cellular recordings. For whole-cell mode, the imagepatcher

advances to the break-in stage (Figure 1Bvi), in which increasing

pulses of suction (starting at 25 mBar and increasing up to

350 mBar) are applied to achieve the whole-cell configuration

(Figure 3Cv). As done at the completion of manual image-guided

patching in vivo (H€ausser and Margrie, 2014; Komai et al., 2006;

Margrie et al., 2003), the imagepatcher checks if the dye from the

pipette is filling the target cell, by first acquiring a z stack around

the target cell, then identifying pixels corresponding to the cell

body (as in Figure 2Bii), and finally calculating the mean pixel in-

tensity of the cell body in the microscope channel corresponding

to the pipette dye, to verify successful break-in (an example of a

dye-filled cell at the end of successful imagepatching is shown in

Figure 3D).

Imagepatcher Performance
Using the imagepatcher, stable cell-attached extracellular and

whole-cell intracellular recordings could be obtained from

PV-positive neurons (example recordings in Figures 4C and 4E)

and CaMKIIa-positive neurons (example recordings in Figures

4D and 4F) in layer 2/3 of somatosensory and motor cortices of

anesthetized mice, enabling in vivo observations of supra- and
Figure 3. Imagepatcher Operation

(A) Two-photon images of a parvalbumin (PV)-positive neuron acquired at three

during closed-loop real-time image-guided pipette positioning. White, sketch of p

the upper right, vector (x, y, z) from the pipette tip to the target cell centroid (in m

(B) Pipette current traces in response to 10 mV voltage pulses, with Roman num

(C) Pipette resistance during imagepatching over time, with Roman numerals corre

target cell centroid, (Cii) pipette is 6 mm above the centroid, (Ciii) pipette is 0 mmab

and (Cv) cell is broken into.

(D) Maximum intensity projection (MIP) of a z stack (48 images, 2 mm step size) of

(middle, green), and overlay (right).
subthreshold activities of these cells. Access resistance, resting

potential, and holding current (Figures 4G–4I) of imagepatched

cells (n = 24 PV-positive neurons from 14 PV-Cre x Ai14 mice

and 13 CaMKIIa-positive neurons from seven CaMKIIa-Cre x

Ai14 mice) were comparable to those reported by previous

studies involving two-photon image-guided patching of cortical

neurons in vivo (Atallah et al., 2012; Gentet et al., 2010, 2012;

Mateo et al., 2011; Pala and Petersen, 2015) and were not signif-

icantly different from the cells that we manually patched (n = 11

PV-positive neurons from 8 PV-Cre x Ai14 mice; Figures S4A–

S4C; p = 0.49 for access resistance, p = 0.08 for resting potential,

p = 0.19 for holding current when comparing imagepatched and

manually patched PV-positive cells; two-sided Student’s t test

with 95% confidence level, assuming unknown and unequal var-

iances). Other properties of imagepatched neurons, such as

input resistance and spontaneous firing rate (Figures S4D and

S4E; n = 9 PV-positive neurons from 5 PV-Cre x Ai14 mice and

13 CaMKIIa-positive neurons from seven CaMKIIa-Cre x Ai14

mice), also showed distributions of values that overlapped with

those obtained in previous in vivo studies of cortical neurons

(Mateo et al., 2011; Pala and Petersen, 2015).

The imagepatcher obtained targeted patch-clamp recordings

in 10 ± 3min from the brain penetration stage onward (n = 24 PV-

positive neurons from 14 PV-Cre x Ai14 mice and 13 CaMKIIa-

positive neurons from seven CaMKIIa-Cre x Ai14 mice; each of

the two preceding stages of the algorithm takes around

1–2 min extra), with the recordings lasting for 7–30 min for PV-

positive neurons (n = 9 cells, 5 PV-Cre x Ai14 mice; Figure 4J)

and 5–41 min for CaMKIIa-positive neurons (n = 13 cells, seven

CaMKIIa-Cre x Ai14 mice; Figure 4J). When targeting PV-posi-

tive cells, the gigaohm seal was obtained 42 times out of 108 at-

tempts, and 24 of the 42 gigaohm seals successfully led to the

whole-cell configuration (from 17 PV-Cre x Ai14 mice, of which

16 yielded one or more gigaohm seals and 14 yielded one or

more whole-cell configurations). For CaMKIIa-positive cells,

from 65 trials, the gigaohm seal was achieved 19 times, out of

which the whole-cell configuration was achieved 13 times

(from 10 CaMKIIa-Cre x Ai14 mice, of which 10 yielded one or

more gigaohm seals and seven yielded one or more whole-cell

configurations). These success rates (for PV-positive neurons,

38.9% for obtaining gigaohm seals, and 22.2% for the whole-

cell configuration; for CaMKIIa-positive neurons, 29.2% for

obtaining gigaohm seals and 20.0% for the whole-cell configura-

tion) are comparable to or higher than that obtained by manually

performing two-photon image-guided patching of fluorescently

labeled neurons in vivo (for us, 10.6% success rate for

manual whole-cell patching of tdTomato-expressing PV-positive
different time points (indicated by Roman numerals for reference in B and C)

ipette tip; green, Alexa 488; red, tdTomato; x, target cell centroid; numbers in

m).

erals indicating the corresponding images in (A).

sponding to time points referenced in (A) and (B): (Ci) pipette is 12 mmabove the

ove the centroid (i.e., in contact with the cell), (Civ) gigaohm seal is established,

an imagepatched PV-positive neuron, showing tdTomato (left, red), Alexa 488
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Figure 4. Imagepatching of Multiple Cell Types in Mouse Cortex

(A) Maximum intensity projection of a z stack (20 images, 5 mm step size) of tdTomato (red)-expressing PV-positive cells in layer 2/3 somatosensory cortex of a

PV-Cre x Ai14 mouse.

(B) Maximum intensity projection of a z stack (20 images, 5 mm step size) of tdTomato (red)-expressing CaMKIIa-positive cells in layer 2/3 somatosensory cortex

of a CaMKIIa-Cre x Ai14 mouse.

(C) Cell-attached current recording from an imagepatched PV-positive neuron.

(D) Cell-attached current recording from an imagepatched CaMKIIa-positive neuron.

(E) Whole-cell voltage recordings from an imagepatched PV-positive neuron under current injection (left, –100 and +200 pA), and at rest (right).

(F) Whole-cell voltage recordings from an imagepatched CaMKIIa-positive neuron under current injection (left, –100 and +200 pA), and at rest (right).

(G–J) Recording quality of imagepatched PV-positive neurons (white symbols; n = 24 cells from 14 PV-Cre x Ai14 mice for G–I; n = 9 cells from five PV-Cre x Ai14

mice for J) and imagepatched CaMKIIa-positive neurons (gray symbols; n = 13 cells from seven CaMKIIa-Cre x Ai14 mice) in somatosensory and motor cortices

of isoflurane-anesthetized mice. Square and error bars are mean ± SD.

(legend continued on next page)
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neurons; n = 11 out of 104 attempts, 19 PV-Cre x Ai14 mice; a

10%–20% success rate for obtaining a whole-cell recording

from an EGFP-labeled PV-positive neuron was reported in Mar-

grie et al., 2003). During our imagepatching experiments, some

pipettes were occluded after brain penetration (n = 22 out of

108 when targeting PV-positive neurons; 14 out of 65 when tar-

geting CaMKIIa-positive neurons; detailed breakdown of unsuc-

cessful patching attempts in Table S1) and were automatically

retracted by the imagepatcher; focusing on trials that entered

the closed-loop stage (Figure 1Biv), the rates of successfully

achieving the gigaohm seal and the whole-cell configuration

were 48.8% and 27.9%, respectively (n = 42 gigaohm seals

and 24 whole-cell configurations out of 86 trials) for PV-positive

neurons and 37.3% and 25.5%, respectively (n = 19 gigaohm

seals and 13 whole-cell configurations out of 51 trials),

for CaMKIIa-positive neurons. These success rates did not

vary substantially with target cell depth (Table S2), nor with the

density of labeled cells around a target cell (Table S3), suggest-

ing that the imagepatcher performance was consistent.

DISCUSSION

We developed an algorithm and a robotic system that fully auto-

mates targeted patch clamping of visually identified cells in vivo,

by implementing closed-loop real-time imaging to dynamically

adjust the pipette position to hone in on a cell of interest. Our

strategy makes the imagepatcher the first system that enables

fully hands-free navigation of a patch pipette to a targeted cell

and subsequent automated patch clamping in the intact brain.

Unlike other previous systems that heavily rely on human

intervention for successful patch-clamp recordings of visually

identified cells (Long et al., 2015; Perin and Markram, 2013;

Steinmeyer and Yanik, 2012; Wu et al., 2016), the imagepatcher

eliminates the need for manual adjustments and corrections dur-

ing the entire patching process, making the robot a powerful tool

that can facilitate systematic electrophysiological characteriza-

tions of specific classes of cells. Certain factors that can prevent

investigators performing manual patching from achieving the

whole-cell patch-clamp state, such as variations in pipette tra-

jectory, pipette movement speed, and pipette pressure levels,

are also reduced in our automated system. The reduction of vari-

ation in these factors provides consistency in patch-clamping

procedures that may be difficult to obtain manually and may

prove particularly beneficial for studies targeting very sparse

populations of cells.

With our software designed to work in parallel with ScanImage

operation, and our hardware designed to augment a conven-

tional two-photon microscope in a modular way, the image-

patcher may be adapted to work on any microscope that

ScanImage (or another openly modifiable software package)

supports. Although our current study focused on targeted patch-

ing guided by two-photon microscopy in the intact brain, the
(G) Access resistance.

(H) Resting potential.

(I) Holding current.

(J) Recording duration.
imagepatcher could, in principle, also be used to automate

and enable experiments utilizing other imaging modalities (e.g.,

one-photon fluorescence microscopy) and/or other tissues or

preparations—as long as a target provides fluorescence corre-

sponding to its size and position. In the case of experiments

involving targeted patching of non-fluorescent, unlabeled cells

(i.e., ‘‘shadowpatching’’ developed by Kitamura et al., 2008),

the cell position detection algorithm (Figure 2B), as it currently

stands, may lead to incorrect identification of the target cell’s

z-coordinate, because we found from our shadow images

that the mean pixel intensity of the cell body shadow does not

vary with a defined pattern as a function of microscope focus

(unlike cells labeled with a photostable fluorescent marker,

which look the brightest when in focus). A new cell position

detection algorithm that identifies the z-coordinate of a target

cell based on its other properties (e.g., cell body size, cell body

shape) might permit, in the future, automation of shadowpatch-

ing. The open nature of the imagepatcher code allows for inte-

gration of such an algorithm, in addition to tuning of software

settings that might be required for different microscopes and im-

aging conditions.

Integrating our robot with patch pipette cleaning protocols for

repeated patch pipette use (Kolb et al., 2016) may enable the

elimination of some of the manual preparatory steps required

to utilize imagepatching (e.g., filling a patch pipette with intracel-

lular solution and inserting it into a pipette holder). By developing

and using a bright pipette dye that has a fluorescence emission

spectrum overlapping minimally (or, ideally, not overlapping at

all) with that of the target cells’ fluorescent marker, the high level

of background fluorescence that results from multiple penetra-

tions into the brain may have little or no effect on cell position

detection and targeting by the imagepatcher, enabling many im-

agepatching trials and thus many patch-clamp recordings per

animal. Further augmentation of the imagepatcher hardware

(i.e., integration of multiple autopatcher control boxes, each

linked to an individual pipette, with a single two-photon micro-

scope) and refinement of the software (e.g., code development

for simultaneous micromanipulator control in response to multi-

ple pipette impedances and imaged positions of target neurons)

may also enable multi-cell targeted patch-clamp recordings

in vivo (Jouhanneau et al., 2015; Pala and Petersen, 2015; van

Welie et al., 2016), which will provide information on how cells

communicate with each other in an intact brain network.

Although we have not obtained patch-clamp recordings in the

awake brain using the imagepatcher, with an appropriate re-

straint habituation strategy (to reduce brain motion), a robust im-

age analysis approach (which compensates for large motion

artifacts), or a strategy for real-time switching of target cell iden-

tity (which enables targeting of an alternative cell, if present,

when motion artifacts are large enough to displace the originally

targeted cell out of the field-of-view), the imagepatcher may

enable patch clamping of targeted neurons in awake animals.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

ScanImage Pologruto et al., 2003 http://scanimage.vidriotechnologies.com/display/

SIH/ScanImage

Imagepatcher code This paper Included as Methods S1

Other

Code, schematics, and parts lists for the imagepatcher This paper http://autopatcher.org
CONTACT FOR REAGENT AND RESOURCE SHARING

All code, schematics, and parts lists will also be posted to http://autopatcher.org at time of publication. Further requests and inquiries

should be directed to, for fulfillment by, the Lead Contact, Dr. Edward S Boyden (esb@media.mit.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were performed on 6 – 8 week old transgenic mice, male and female used equally, of PV-Cre (Jax

strain #: 017320) x Ai14 (tdTomato; Jax strain #: 007914) genotype or CaMKIIa-Cre (Jax strain #: 005359) x Ai14 (tdTomato; Jax

strain #: 007914) genotype, in accordance with protocols approved by the Massachusetts Institute of Technology (MIT) Committee

on Animal Care (CAC). Six PV-Cre x Ai14 mice were used to quantify neuron movements in response to a pipette entering the brain

(Figure S1A), and seventeen additional PV-Cre x Ai14 mice were used to measure how much neurons change their locations when a

pipette is navigated toward them inside the brain (Figure S1B). Eight PV-Cre x Ai14 mice were used to find the set of optimal pipette

pressure levels for brain entry and cell approach during patching (see STAR Methods, ‘‘Derivation of pipette pressure for brain entry

and cell approach’’). Z stacks of tdTomato-labeled parvalbumin (PV)-positive neurons, which were used to validate our cell detection

algorithm (Figure 2B), were obtained from somatosensory and motor cortices of five PV-Cre x Ai14 mice. We used twenty PV-Cre x

Ai14 mice to optimize the portion of the closed-loop image-guided pipette positioning stage responsible for resistance-based detec-

tion of the pipette tip-cell membrane contact, as well as the gigaseal formation and the break-in stages (see STAR Methods, ‘‘Opti-

mization of cell-pipette contact detection, gigaseal formation, and break-in’’). Three PV-Cre x Ai14 mice were used to derive the

dye-based pipette blockage test (see STAR Methods, ‘‘Derivation of dye-ejection based pipette blockage test’’). For comparing

the cortical density of calcium/calmodulin-dependent protein kinase II alpha (CaMKIIa)-positive neurons to that of PV-positive neu-

rons, z stacks of tdTomato-expressing cells were obtained from somatosensory and motor cortices of seven CaMKIIa-Cre x Ai14

mice and nine PV-Cre x Ai14 mice. To validate the robotic system running the imagepatching algorithm (Figure 4), seventeen PV-

Cre x Ai14 mice and ten CaMKIIa-Cre x Ai14 mice were used, while nineteen PV-Cre x Ai14 mice were used for the manual patching

experiments (Figures S4A–S4C).

METHOD DETAILS

Surgical procedures
Throughout the surgery, mice were anesthetized with 1 – 2% (vol/vol) isoflurane in oxygen and maintained at 37�C using a heating

pad. After shaving the scalp, the mouse was placed in a custom-built stereotax, with its eyes covered with ophthalmic ointment. Be-

tadine and 70% ethanol were then applied to the shaved area for sterilization. A polycarbonate recording chamber was implanted on

the skull using dental acrylic, and a 1 – 2mm diameter craniotomy, contained inside a 3 mmdiameter window of the recording cham-

ber, was made 1.5 – 2 mm posterior to bregma and 1.5 – 2 mm to the right of the midline. The dura was then carefully removed to

expose the brain surface. Right before starting an imaging or a patch-clamp experiment, 1.5% (vol/w) agar in HEPES buffered arti-

ficial cerebrospinal fluid (ACSF, containing 145mMNaCl, 5.4 mMKCl, 10mMHEPES, 1.8mMCaCl2, 1 mMMgCl2 (Chen et al., 2015)

or 150 mM NaCl, 2.5 mM KCl, 10 mM HEPES, 2 mM CaCl2 and 1 mM MgCl2 (van Welie et al., 2016); pH adjusted to 7.3 – 7.4 with

NaOH) was applied on top of the brain to dampen pulsations caused by respiration and heartbeat, and then the craniotomy was

covered with ACSF to keep the brain moist throughout the experiment. We took extra care to minimize bleeding throughout the sur-

gery as blood on the cortical surface can greatly diminish optical clarity during two-photon imaging (Komai et al., 2006). In case of

bleeding, the brain surface was irrigated with ACSF to stop the bleeding and remove as much blood as possible from the cortical

surface. At the end of the experiment, mice were euthanized under anesthesia.
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Electrophysiology
Cell-attached and whole-cell patch-clamp recordings were performed onmice under 1 – 1.5% isoflurane anesthesia on a 37�C heat-

ing pad (DC Temperature Control System, FHC). Patch pipettes with resistance values between 5 – 7.5 MUwere prepared by pulling

filamented borosilicate glass capillaries (Warner orWPI) using amicropipette puller (Flaming-BrownP97model, Sutter Instruments or

PC-10 vertical puller, Narishige). These pipettes were filled with an internal solution containing (in mM): 135 K-gluconate, 4 KCl,

10 HEPES, 10 Na2-phosphocreatine, 4 MgATP, 0.3 Na3GTP (pH adjusted to 7.3 – 7.4 with KOH; osmolarity 280 – 290 mOsm),

and 50 mM Alexa 488 dye (ThermoFisher; for pipette visualization under the two-photon microscope) or 125 K-Methanesulfonate,

7 KCl, 10 HEPES, 2 MgATP, 2 Na2ATP, 0.5 Na2GTP, 0.05 EGTA (pH adjusted to 7.3 with KOH; osmolarity 280-290 mOsm), and

50 mM Alexa 488 dye. Fully manual patch clamp experiments (Figures S4A–S4C) were performed following previously reported pro-

tocols (H€ausser and Margrie, 2014; Komai et al., 2006).

Hardware and software setup
Wemodified a standard two-photon image-guided in vivo patch-clamp rig to construct the imagepatching system (Figure 1C). Hard-

ware for the standard rig included a two-photon laser scanning microscope (Ultima moving IV, Prairie Technologies), a mode-locked

Ti-sapphire laser (Mai Tai HP; Spectra-Physics), a water-immersion objective (CFI75 LWD 16x W NA 0.8 WD 3.0mm objective,

Nikon), a programmable 4-axis micromanipulator comprised of a single-axis micromanipulator (SMX-SA, Sensapex) mounted at a

30� angle below the horizontal on a left-handed three-axis micromanipulator (SMX-L-RS-50-HL-US, Sensapex), a pipette holder

(Warner) mounted on the single-axis micromanipulator and connected to the CV-7B headstage of a patch amplifier (Multiclamp

700B,Molecular Devices) via an intermediate cable (IM-SMB, Sensapex), and a digitizer (Digidata 1440A,Molecular Devices) relaying

signals between the amplifier and a computer. The laser was set to emit 960 nm (�900mWaverage output power), which could excite

both tdTomato and Alexa 488. To minimize bleed-through, we replaced the user-exchangeable PMT filters in the Ultima (which are

optimized for dual labeling using Alexa 594 and Alexa 488) with red (630/30 nm, Chroma) and green (510/10 nm, Semrock) filters. The

4-axis micromanipulator was connected to a rotary knob controller (SMXS-K-2-RS-US) that communicated with the computer

through a USB port.

The patch amplifier and the digitizer of the standard rig were connected to our autopatcher control box as previously described

(Kodandaramaiah et al., 2012, 2016) (Figure 1C). The autopatcher control box was constructed as previously described (Kodandar-

amaiah et al., 2012, 2016), with a slight modification; potentiometers mounted on the front panel of the original autopatcher control

box, each of which is used to manually pre-set a pressure value to be used during the autopatcher operation (see Kodandaramaiah

et al., 2016 for details), were replaced by analog outputs from a standard data acquisition (DAQ) device (PCIe-6343, National Instru-

ments) that can be programmed to send a command voltage of an arbitrary value to electronic pressure regulators inside the auto-

patcher control box, thus enabling automated, real-time control of the pipette pressure to any desired level at any rate (e.g., in a ramp)

during imagepatcher operation (note that the PCIe-6343 can be replaced by any programmable device that can generate analog out-

puts ranging from 0 to 5 VDC, and up to 400 mA).

To operate the microscope with ScanImage 3.8, a MATLAB-based open-source software package, previously reported instruc-

tions (Wilson et al., 2013) were followed to make necessary connections between the microscope hardware and the computer.

ScanImage was configured such that each acquired image has a single frame with 256 lines per frame and 256 pixels per line,

and each line is scanned in 2.64 ms for a frame rate of 1.48 frames per second. To acquire high quality images of a neuron at the

end of the imagepatching experiment (example image in Figure 3D), ScanImage was configured to produce 2048 lines per frame

and 2048 pixels per line at a frame rate of 0.18 frames per second.

We used MATLAB R2013b (MathWorks) to write and run our program executing the imagepatching algorithm. Our program was

divided into twomainmodules: (i) a graphical user interface (GUI) that allows the user to start the imagepatching algorithm and to view

the results of image acquisition as well as analysis during the algorithm execution (see Methods S1, ‘‘find_cells_gui_SI.m’’); (ii) image

analysis code that is executed upon the completion of image acquisition to perform real-time image analysis (see Methods S1,

‘‘image_autopatcher_v1.m’’; MATLAB scripts can be bound to one or more ScanImage events, such as the start of the ScanImage

software and the completion of image acquisition, by adding them as user functions; see Methods S1, ‘‘Imagepatcher User

Manual.docx’’ and the ScanImagewebsite [https://openwiki.janelia.org/wiki/pages/viewpage.action?pageId=29524376] for details).

A ScanImage function responsible for image frame generation, called makeFrameByStripes, was augmented with our code to direct

raw image data acquired by themicroscope to our image analysis code (seeMethods S1, ‘‘makeFrameByStripes.m,’’ for the function

with our code).

During imagepatcher operation, when the pipette resistance had to be measured, the autopatcher digital board (USB-6211,

National Instruments) was used to apply 50 Hz, 10 mV square waves to the pipette tip and to record the resulting current pulses

at 20 kHz. 10 mV (i.e., the amplitude of the applied voltage) was divided by the amplitude of each current pulse, and the average

of the resulting values was assigned as the pipette resistance while the standard deviation of the resulting values was used as a

metric quantifying the amount of heartbeat modulation. We performed whole-cell recordings of patched cells using Clampex 10.4

(Molecular Devices), acquiring data through a low-pass filter (Bessel filter, 10 kHz cutoff) at a rate of 40,000 samples per second.

The acquired signals were analyzed using MATLAB 2013b (MathWorks) and Clampfit 10.5 (Molecular Devices).
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Assessment of target cell movements in response to pipette navigations into and inside the brain
Cell movements following the pipette navigation into the brain (Figure S1A) were observed by first locating a tdTomato-labeled cell

�150 – 250 mm below the brain surface and recording the coordinates of the cell centroid (visually assessed). Using trigonometric

functions in MATLAB, the pipette trajectory parallel to the pipette axis (i.e., 30� below the horizontal) was then calculated, setting

the start and the end of the trajectory to the locations 25 mm above the brain surface and 50 mm directly above the cell centroid

respectively. Subsequently, a patch pipette whose resistance value was between 5 – 7.5 MU was filled with internal solution

and installed into the pipette holder that was positioned on the left side of the craniotomy. While applying low positive pressure

(�15 – 30mBar), the pipette wasmoved into the ACSF covering the brain, positioning the pipette tip at the start position of the calcu-

lated trajectory. A high positive pressure (�200 – 300 mBar) was then applied to the pipette, and the single-axis micromanipulator

(i.e., the micromanipulator whose axis is parallel to the pipette axis) was controlled using MATLAB code (Methods S1, ‘‘move_

sensapex_manipulator_HJS.m’’) interacting with a software development kit from Sensapex (the software development kit available

on the Sensapex website [http://www.sensapex.com/support/downloads-updates/]) to automatically and accurately move the

pipette along the calculated trajectory at �600 mm/s. When the pipette movement was complete, a z stack (20 or 24 images,

2 mm or 3 mm step size, 17x zoom) was acquired around the original cell centroid coordinates that were recorded before the pipette

movement. The z stack was analyzed post hoc to determine the new coordinates of the cell centroid (visually assessed), and these

coordinates were compared to those of the cell centroid before the pipette movement into the brain to quantify the amount of cell

displacement.

To determine the amount of cell movement in response to the pipette navigation inside the brain (Figure S1B), a patch pipette

(resistance value 5 – 7.5 MU) filled with the internal solution was first placed inside the brain, with its tip located �20 – 30 mm above

a tdTomato-labeled cell and�5 – 13 mmaway from the cell centroid in the transverse plane, simulating an offset from the pipette tip to

the target cell that can result from the pipette entry into the brain. After recording the coordinates of the cell centroid (visually as-

sessed), themicromanipulator was automaticallymoved usingMATLAB code (Methods S1, ‘‘move_sensapex_manipulator_HJS.m’’)

in the x, y, and z directions to place the pipette tip�10 – 20 mmdirectly above the cell centroid, which is where an investigator manu-

ally performing patching would aim to bring the pipette tip to approach the targeted cell in the vertical direction (H€ausser andMargrie,

2014; Komai et al., 2006). Once the micromanipulator movement was complete, a z stack (20 or 24 images, 2 mm or 3 mm step size,

17x zoom) was acquired around the cell centroid coordinates that were recorded prior to the pipette navigation. Post hoc analysis of

the z stack was then performed to locate the new cell centroid (visually assessed), coordinates of which were compared to those of

the cell centroid before the pipette navigation inside the brain to quantify the amount of cell movement.

Details of the pipette tip detection algorithm
The pipette tip detection algorithm first applies a 2D Gaussian filter (193 19 window; 9/2 variance) to each image in the z stack of a

patch pipette to remove the background noise. The filtered topmost image of the stack is then subjected to a range of threshold

values (corresponding to 1 – 95% of the maximum pixel intensity of the filtered image) to determine the maximum threshold value

at which the resulting cluster of bright pixels (Figure 2Aii.i, area bounded by yellow outline) has a characteristic shape (i.e., has 3 end-

points when subjected to the bwmorph function with ‘endpoints’ operation in MATLAB); in case of multiple clusters for a single

threshold value, the largest cluster (i.e., the cluster composed of the highest number of pixels) is analyzed for the endpoint detection.

Subsequently, the cluster obtained from the filtered topmost image at this threshold value is analyzed to determine its area (i.e., num-

ber of pixels in the cluster; usingMATLAB’s bwboundaries function) and centroid (Figure 2Aii.i, black x; usingMATLAB’s regionprops

function with ‘centroid’ as an input argument). The detected centroid is also considered as the pixel corresponding to the far end of

the pipette (i.e., the end opposite to the pipette tip) and used as the reference point in the subsequent stages of the algorithm. The rest

of the filtered images in the stack are then subjected to a range of threshold values, identifying the threshold value for each image at

which the resulting cluster has an area closest to that obtained from the topmost image (Figures 2Aii.ii and 2Aii.iii, areas bounded by

yellow outlines); in case of multiple clusters for a single threshold value, the largest cluster (i.e., the cluster composed of the highest

number of pixels) is used for the area comparison. Each of the resulting clusters is subsequently subjected toMATLAB’s regionprops

function (with ‘centroid’ as an input argument) to locate its centroid (Figures 2Aii.ii and 2Aii.iii, yellow x’s). The distance between this

cluster centroid and the reference point (i.e., cluster centroid in the topmost image of the stack; Figure 2Aii.i, black x) is calculated for

each image, and the calculated values are sorted according to the image number (Figure 2Aiii), with the images in the stack numbered

from top to bottom (i.e., the topmost image was image 1). After filtering the sorted distance values with a 5-point moving average

filter, the algorithm identifies the image number at which the filtered distance value starts to flatten (Figure 2Aiii, magenta line) by first

calculating the approximate derivative of the filtered values (i.e., difference between two consecutive filtered values), then filtering the

approximate derivative using a 19-point moving average filter, and finally finding the first instance where the filtered derivative value

exceeds the original derivative value. The algorithm assigns the z-coordinate of the corresponding image as the z-coordinate of the

pipette tip (Figure 2Aiii, zpipette).

After assigning the z-coordinate of the pipette tip, the algorithm calculates the angle between the cluster centroid in image 1 (Fig-

ure 2Aii.i, black x) and the cluster centroid in the image at zpipette, which is assigned as the pipette angle in the transverse plane. Sub-

sequently, the image at zpipette, smoothed by a 2D Gaussian filter (193 19 window; 9/2 variance) (Figure S3Ai), is segmented using a

range of threshold values (corresponding to 5 – 75%of themaximumpixel intensity of the filtered image). The algorithm then analyzes

the resulting clusters (Figure S3Aii, white) for the endpoint detection (using the bwmorph function with ‘endpoints’ operation in
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MATLAB; Figure S3Aii, yellow boxes); in case of multiple clusters for a single threshold value, the largest cluster (i.e., the cluster

composed of the highest number of pixels) is analyzed for the endpoint detection. The lowest threshold value at which the resulting

cluster has 3 vertices or endpoints (Figure S3Aii.ii, yellow boxes) is considered optimal for isolating the pixels that accurately repre-

sent the entire body of the pipette tip, and the corresponding cluster of pixels (Figure S3Aii.ii, white) is further analyzed for the pipette

tip detection; other threshold values that are higher or lower than the optimal value result in clusters that have less or more than 3

endpoints, and are not further analyzed (example images of the clusters resulting from a threshold value higher and lower than

the optimal value shown in Figure S3Aii.i and S3Aii.iii, respectively, with the yellow boxes representing the endpoints of these clus-

ters). Out of all the pixels in the cluster resulting from the optimal threshold value, the one that is the furthest away from the centroid of

the cluster is identified. Its distance to the centroid is then used as the length of a line (Figure S3Aiii, yellow dotted line) pointing in the

direction of the pipette angle in the transverse plane (the angle that was determined earlier as described above) and emanating from

the cluster centroid (Figure S3Aiii, yellow x). The pixel in the cluster closest to the endpoint of the line is assigned as the tip of the

pipette in the transverse plane (Figure S3Aiii, yellow star; Figure 2Aiv, yellow star), and the location of the pixel in the image is assigned

as the x and y coordinates of the pipette tip. See ‘‘find_one_pipette_HJS.m’’ and ‘‘pipette_tip_detection_HJS.m’’ in the Methods S1

for MATLAB codes running the algorithm.

Details of the cell position detection algorithm
The cell position detection algorithm begins its operation by subjecting each image in the z stack of a tdTomato-expressing cell to a

2DWiener filter (33 3 window), removing the background noise. Each filtered image (example filtered image shown in Figure S3Bi) is

then segmented using a range of threshold values (corresponding to 5 – 95%of themaximumpixel intensity of the filtered image), and

the area of (i.e., the number of pixels in) the resulting clusters of pixels (Figure S3Bii, white) is compared to a reference area (i.e., the

area of the target cell chosen by the user during the target cell detection and selection stage); in case of multiple clusters for a single

threshold value, the cluster whose centroid is the nearest to the image center and whose area is the closest to the reference area is

used for the area comparison. The threshold value at which the resulting cluster of pixels has the area closest to the reference area is

considered optimal for identifying the pixels accurately representing the target cell soma, and is isolated by the algorithm from other

threshold values that lead to clusters of pixels that represent only a small portion of the cell body (example image of such a cluster

shown in Figure S3Bii.i) or capture background pixels (example image of such a cluster shown in Figure S3Bii.iii). The cluster obtained

by using the optimal threshold value (Figure S3Bii.ii) is then subjected to MATLAB’s bwboundaries function to determine the pixels

that represent the boundary (Figure S3Bii.ii, red outline; Figure 2Bii, red outline) and the interior (Figure S3Bii.ii, white; Figure 2Bii, area

inside the red outline) of the cross-section of the cell body captured by each image in the stack. The centroid of the cluster (Fig-

ure S3Biii, red x) is also determined using MATLAB’s regionprops function (with ‘centroid’ as an input argument). The algorithm

then calculates the mean intensity of pixels representing the interior of the cell body from each image and sorts the calculated values

according to the image number, with the images in the stack numbered from top to bottom (i.e., the topmost image was image 1;

example plot of the mean pixel intensity as a function of image number shown in Figure 2Biii). The image capturing the cross-section

of the cell body with the highest mean pixel intensity (i.e., the brightest cross-section of the cell body; Figure 2Biii, magenta line) is

considered to be focused on the centroid of the cell body, and its z-coordinate is assigned as the z-coordinate of the cell centroid

(Figure 2Biii, zcell). Subsequently, the x and y coordinates of the cluster centroid in the image at zcell (Figure S3Biii, red x; Figure 2Biv,

red x), which is determined along with the pixels representing the boundary and the interior of the cluster as described above, are

assigned as the x and y coordinates of the cell centroid. See ‘‘soma_contour_detection.m’’ and ‘‘image_autopatcher_v1.m’’ in

Methods S1 for MATLAB codes running the algorithm.

Micromanipulator-microscope platform calibration
Before performing imagepatching experiments, step sizes of motion and axis angles of themicromanipulator were automatically cali-

brated to those of the motorized platform of the two-photon microscope, which moved the microscope objective relative to the sam-

ple to be imaged, using the imagepatcher. In the first stage of calibration, which was performed once upon initial hardware setup, a

patch pipette filled with 50 mMAlexa 488 dye (in deionized water) was installed into the pipette holder, and its tip wasmanually moved

to the center of the field-of-view using the rotary knob controller of the 4-axis micromanipulator. The expected angle below the hor-

izontal for each of the 4 micromanipulator axes was then specified by typing in a value in the corresponding text box on the image-

patcher GUI (for our micromanipulator, 30 for diagonal, 0 for x, 0 for y, and 90 for z axis). Subsequently, the calibration of one of the

micromanipulator axes was initiated by clicking one of four pushbuttons displayed on the GUI, each button corresponding to the

calibration of each of the 4 axes of the micromanipulator. Pressing the pushbutton started the acquisition of a z stack (20 images,

2 mm step size, 17x zoom) around the pipette. The location of the pipette tip was then automatically identified using the pipette

tip detection algorithm (Figure 2A), and the imagepatcher program sent a command to the micromanipulator to move the axis being

calibrated forward by a pre-set distance (30 mm for the diagonal axis; 25 mm for x, y, and z axes). Following the micromanipulator

movement, the microscope objective was moved to the expected pipette tip position; the expected pipette tip position was calcu-

lated by first mapping the micromanipulator axis movement to the x, y, and z directional movements of the motorized platform of the

microscope, using both the pipette angle in the transverse plane, which was obtained from the z stack using the pipette tip detection

algorithm (Figure 2A), and the expected angle below the horizontal of the moved axis (e.g., when a pipette facing dead-right moves

along the diagonal axis by 30 mm, the pipette tipmoves by 30∙cos(30�)∙cos(0�)z26 mm in the x-direction, 30∙cos(30�)∙sin(0�) = 0 mm
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in the y-direction, and 30∙sin(30�) = 15 mm in the z-direction), and then adding the mapped values to the original pipette tip location.

With the microscope objective at the expected pipette tip position, another z stack (20 images, 2 mm step size, 17x zoom) was ac-

quired, and the actual pipette tip location was determined using the pipette tip detection algorithm (Figure 2A). The angle and the

distance between the new tip location and the original tip location were then calculated in the angle and distance units of the micro-

scope’s motorized platform. Subsequently, the calculated values were assigned to the forward movement of the micromanipulator

axis being calibrated. For the backwardmovement calibration, the programmoved the axis of themicromanipulator backward by the

pre-set distance (30 mm for the diagonal axis; 25 mm for x, y, and z axes) and then detected the resultant pipette tip location. As done

for the forward movement calibration, the angle and the distance between the tip locations before and after the backward movement

were calculated in the microscope’s motorized platform units, and the calculated values were assigned to the backward movement

of the micromanipulator axis being calibrated. The forward and backward movement calibrations were then repeated for other pre-

set distances (55, 150, 320, 350, 420, and 480 mm for the diagonal axis; 150, 325, 400, and 460 mm for x and y axes; 50, 150, 200, and

250 mm for the z axis). Once the calibration for the axis was complete, the calibration results were saved into a .m file, which we could

load to our program for future imagepatching experiments. Without replacing the patch pipette, each of the rest of the micromanip-

ulator axes was calibrated in the same way as described above.

The second stage of calibration was implemented to account for a variability in the locked position of the pipette, which stemmed

froma lever-based lockingmechanismof ourmicromanipulator. Unlike the first stage thatwas performed only once, the second stage

of calibration was automatically executed for each imagepatching experiment at the start of the brain penetration stage (Figure 1Biii).

Right before performing the second stage of calibration, the amount that eachmicromanipulator axis would have tomove to reach the

targetedposition inside thebrain (i.e., 50mmdirectly above the target cell centroid)wascalculatedusing thecalibration results from the

first stage of calibration. Subsequently, the newcalibration results were obtained bymoving eachmicromanipulator axis by the calcu-

lated amount and finding the new pipette tip location following the axis movement; the new pipette tip location was determined using

the same procedure implemented for the first stage of calibration, except the expected pipette tip position after themicromanipulator

movement was calculated using the calibration results from the first stage of calibration instead of the expected angle below the hor-

izontal specified in the imagepatcher GUI. See ‘‘find_cells_gui_SI.m’’ in Methods S1 for MATLAB code executing the calibration.

Details of the imagepatcher operation
At the start of the imagepatching experiment, we opened ScanImage and imaged the brain inside the craniotomy to visually deter-

mine the location of the brain surface. The z-position of the objective corresponding towherewe found the brain surfacewas denoted

as the z-coordinate of the brain surface by the imagepatcher. We then specified the number of images (5 – 10), the step size between

two consecutive images (5 – 10 mm), and the starting depth (100 – 250 mm) of a z stack to be acquired inside the brain by using the

corresponding text boxes on the imagepatcher GUI. The z stack acquisition (and the target cell detection and selection stage; Fig-

ure 1Bi) was started by pressing the corresponding pushbutton on the imagepatcher GUI, and a display window inside the GUI

sequentially showed the most recently acquired image during the stack acquisition. At the end of the stack acquisition, the GUI

also showed the list of acquired images, which could be used to select images to display in the display window and to run automated

cell detection on. After choosing 1 – 3 images, each capturing at least one or two bright cells (visually assessed), by clicking the im-

ages in the list, we set the minimum brightness (specified as percentage of the maximum pixel intensity of each of the selected im-

ages) of cells to detect to any value between 10 and 75% while setting the desired minimum and maximum cell body radii to 3

and 15 mm respectively by using the corresponding text boxes on the GUI. Out of all the tdTomato-expressing neurons captured

by the images, only those that met our detection criteria were identified by the imagepatcher and shown with red outlines in the

display window of the GUI; the imagepatcher detected the cells by smoothing each of the selected images using a 2D Wiener filter

(33 3 window), then segmenting each of the filtered images using the minimum brightness as the threshold value, and finally deter-

mining the boundary of resulting objects that met our radii specifications (see ‘‘find_center_and_circle_soma_cell_radius_range.m’’

in Methods S1 for MATLAB code responsible for the cell detection). To conclude the target cell detection and selection stage, we

chose a target cell to patch by clicking the interior of one of the outlined cells in the display window, which turned the outline of

the selected cell to yellow and registered the information about the target cell (x, y coordinates of the target cell centroid, z-coordinate

of the target cell depth, area of the target cell, minimum brightness threshold for the cell detection) in the imagepatcher.

Following the target cell selection, we initiated the pipette tip detection stage (Figure 1Bii) by clicking the corresponding pushbut-

ton on the GUI. This stage began with the autopatcher control box outputting 15 mBar to the pipette while the imagepatcher moved

the microscope objective vertically to position the objective away from the brain surface and to provide enough space for a patch

pipette. We then filled a pipette with the internal solution, installed it into the pipette holder, and used the rotary knob controller of

the 4-axis micromanipulator to manually move the pipette tip to the center of the objective field-of-view (FOV). While imaging the

pipette via ScanImage, we used a slider presented on the imagepatcher GUI to adjust pipette pressure to a value that minimized

a plume of dye at the pipette tip and subsequently made the pipette tip clearly visible (visually assessed; typically 6 to 8 mBar).

A z stack (20 images, 2 mm step size, 17x zoom) was then acquired around the pipette tip by pressing the corresponding pushbutton

on the GUI. From this stack of images, the imagepatcher detected the pipette tip (using the pipette tip detection algorithm described

in Figure 2A) and logged the maximum intensity of pixels representing the pipette in the image focused on the pipette tip.

Next, the brain penetration stage (Figure 1Biii) was started by clicking the corresponding pushbutton on theGUI. Beforemoving the

pipette into the brain, step sizes of motion and axis angles of the micromanipulator were automatically calibrated to those of the
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motorized platform of the two-photon microscope (i.e., the second stage of micromanipulator calibration was performed; see

‘‘Micromanipulator-microscope platform calibration’’ section for details); in subsequent steps of the imagepatching process, the im-

agepatcher calculated the pipette tip location by adding calibrated micromanipulator axes displacements to the original pipette tip

location. Following the calibration, the imagepatcher calculated a linear path along the diagonal axis of the micromanipulator (i.e., a

trajectory parallel to the pipette axis) with the start and end points located 25 mmabove the brain surface and 50 mmdirectly above the

target cell centroid respectively. The micromanipulator was then automatically moved to bring the pipette tip to the start point of the

calculated path, and 600 mBar was applied to the pipette by the autopatcher control box. At this point, the imagepatcher measured

the pipette resistance for 5 s and displayed the result; if the displayed value was outside of an acceptable range (e.g., 5 – 7.5 MU), it

was assumed that the pipette was clogged with some undesired particles (in case of resistance greater than 7.5MU) or the pipette tip

was broken (in case of resistance less than 5 MU), and we retracted the pipette to install a new one. For the pipette with a resistance

value within the acceptable range, the imagepatcher logged the pipette resistance and then moved the pipette along the calculated

path into the brain. Once the pipette tip entered the brain and was positioned 75 mm above the target cell centroid (i.e., 25 mm above

the endpoint of the calculated trajectory), dye ejection at the pipette tip was examined by the imagepatcher to check the pipette tip

quality; if an image (17x zoom) capturing the pipette tip at the center of its FOV had either the maximum pixel intensity at least 2 times

higher than that logged at the end of the pipette tip detection stage (i.e., maximum intensity of pixels representing the pipette in the

image focused on the pipette tip, acquired outside the brain), or the median of pixel intensities at least 40% of the maximum pixel

intensity of the image and the maximum pixel intensity at least as high as the maximum intensity logged at the end of the pipette

tip detection stage, the imagepatcher considered the pipette tip to be clean (see STAR Methods, ‘‘Derivation of dye-ejection based

pipette blockage test’’ for derivation of these criteria). Once the clean pipette tip reached the end point of the calculated path (i.e.,

50 mmabove the target cell centroid), its pressure was automatically lowered to 300mBar, and the imagepatcher checked the pipette

tip for clogging by measuring the pipette resistance and comparing the measured value to the value obtained outside the brain (i.e.,

25 mm above the brain surface), and by performing another evaluation of dye ejection. After this quality check, the imagepatcher ac-

quired a z stack (25 images, 3 mm step size, 17x zoom) around the original target cell centroid (i.e., target cell centroid logged at the

end of the target cell detection and selection stage) and determined the target cell position (using the cell position detection algorithm

described in Figure 2B) to update the target cell location. The imagepatcher then logged this new cell position andmoved the x, y, and

z axes of the micromanipulator such that the pipette tip would be 25 mm directly above the updated target cell centroid. After the

micromanipulator movement, the dye ejection and the pipette resistance were again examined by the imagepatcher to check the

pipette tip for clogging, concluding the brain penetration stage.

At the start of the closed-loop real-time image-guided pipette positioning stage (Figure 1Biv), the pipette pressure was automat-

ically lowered to 100 mBar, and another z stack (15 or 25 images, 2 mm step size, 17x zoom; 15 images were obtained if the micro-

manipulator movement along the z axis at the end of the brain penetration stage was less than 30microns; 25 images otherwise) was

automatically acquired around the target cell centroid logged during the brain penetration stage. After finding the coordinates of the

target cell centroid from the stack (using the cell position detection algorithm described in Figure 2B), the imagepatcher entered the

closed-loop (Figure 1A), repeatedly updating the cell centroid location and positioning the pipette tip directly above the cell centroid

following each 3 mm-pipette step in the z-direction. Every z-step of the pipette was followed by automatic acquisition of two images;

to support repeated cell centroid detection whileminimizing image acquisition time, one image, instead of a full z stack, was captured

at the z-coordinate of the cell centroid determined at the start of the stage, with an assumption that small z-steps used in the closed-

loop would cause negligible movement of the cell in the z-direction; the second image was acquired at the calculated location of the

pipette tip to check for dye ejection and subsequently verify the pipette tip quality as done in the preceding stage. The imagepatcher

also measured the pipette resistance and logged the measured value after each pipette step in the z-direction to monitor changes in

the pipette resistance. When the imagepatcher detected a small resistance increase while approaching the target cell, the pipette

pressure was automatically lowered to 30 mBar and the current pulses at the pipette tip were checked for another increase in resis-

tance as well as heartbeat modulation, both of which indicated tight contact between the pipette tip and the cell membrane.

Once this resistance increase and heartbeat modulation were detected, the imagepatcher initiated the gigaseal formation stage

(Figure 1Bv). In this stage, the pipette movement was stopped, and suction as well as hyperpolarizing voltage were automatically

applied to form a gigaohm seal between the pipette and the cell membrane. Once a stable gigaseal was established (i.e., the pipette

resistance stayed above a gigaohm and did not increase by more than 15% over a 15 s period), the imagepatcher GUI displayed a

pushbutton for starting the break-in process. By clicking this pushbutton, we started the break-in stage (Figure 1Bvi). If we required

cell-attached extracellular recordings, signals from the cell were recorded before initiating the break-in stage (i.e., before clicking the

pushbutton). At the start of the break-in stage, the imagepatcher established a baseline of cell filling by the pipette dye (i.e., deter-

mined the amount of pipette dye inside the target cell) by acquiring a z stack (10 images, 2 mm step size, 17x zoom) around the cell,

identifying pixels corresponding to the cell body in the focused image of the stack using the cell position detection algorithm

described in Figure 2B, and calculating the mean pixel intensity of the cell body in the microscope channel corresponding to the

pipette dye (channel 2 for ourmicroscope). Subsequently, suction pulses were applied in a rampby the autopatcher control boxwhile

monitoring the seal resistance. Once the resistance dropped below a value characteristic of the whole-cell state, the imagepatcher

imaged the target cell again (around the cell depth and centroid determined from the previous z stack; 10 images, 2 micron step size,

17x zoom) to calculate the mean pixel intensity within the cell boundary in channel 2. When the new mean pixel intensity value of the

cell body in the focused image of the stack was at least 15% higher than the original value obtained before the suction pulses, the
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imagepatcher considered the cell to be filled sufficiently with the pipette dye and concluded the break-in stage. Once the image-

patcher operation was complete, we recorded signals from cells that had achieved a successful whole-cell state, which we defined

as that requiring no more than 500 pA current injection to hold the cell at –65 mV (i.e., exhibiting holding current less than or equal to

500 pA) in the voltage-clamp mode, as we did previously (Kodandaramaiah et al., 2012). See Imagepatcher User Manual in

Methods S1 for detailed description on how to interact with the imagepatcher GUI for an imagepatching experiment.

Performance of the pipette tip detection algorithm at angles other than 30� below the horizontal
15 pipettes all angled at 25� below the horizontal were each imaged using a z stack (2 mm step size, 20 images, 17x zoom), with each

z stack capturing the pipette tip at a distinct position within the stack. By applying the pipette tip detection algorithm (Figure 2A) to

each of the 15 z stacks, we found that the algorithm yielded pipette tip locations that were close to those determined visually, with the

tip positions from the algorithm and from visual assessment differing by (mean ± s.d.) –1.5 ± 1.4 mm, 0.1 ± 1.0 mm, and 1.6 ± 3.0 mm in

the x, y, and z directions respectively. The pipette tip detection algorithm also enabled accurate tip detection from another 15 z stacks

(2 mm step size, 20 images, 17x zoom) that each captured the tip of a separate pipette angled at 35� below the horizontal at a

distinct position within the stack; the tip locations determined by the pipette tip detection algorithm from the 15 z stacks were

(mean ± s.d.) –0.7 ± 0.5 mm, –0.5 ± 0.8 mm, and 0.4 ± 1.4 mm off of the visually assessed tip positions in the x, y, and z directions

respectively.

Derivation of pipette pressure for brain entry and cell approach
To determine the optimal pipette pressure for entering the brain during the brain penetration stage (Figure 1Biii), a few penetrations

were performed with 100 mBar, 200 mBar, 400 mbar, 600 mBar, and 800 mBar pressure applied at the back of the pipette (these

pressure values were chosen based on previously reported protocols for fully manual two-photon image-guided or blind patch-

clamp recordings in vivo (H€ausser and Margrie, 2014; Komai et al., 2006; Lee et al., 2009; Margrie et al., 2002), in which pipette pres-

sure ranging from 100 mBar to 800 mBar were typically used). For our experiments, we used Alexa 488-filled patch pipettes angled

at 30� below the horizontal, moving 300 – 400 mm in the diagonal direction (i.e., parallel to the pipette axis), from outside the brain near

the brain surface to inside the brain (i.e., 150 – 200 mmdeep in the cortex; layer 2/3 for adult mouse brain (Altamura et al., 2007;Mount-

castle, 2003)), at �600 mm/s (i.e., the maximum speed that our 4-axis micromanipulator could generate under software control). As

expected, higher pressure (i.e., 600 mBar and 800 mBar) produced less pipette blockage compared to lower pressure values. How-

ever, 800 mBar led to much background signal that caused bleed-through of the Alexa 488 signal into the imaging channel used to

visualize tdTomato, making it difficult to resolve tdTomato-expressing cells after brain penetration. As a result, we decided to focus

on 600mBar and found the pressure to cause a reasonably low pipette blockage rate (12.5%; 2 out of 16 trials; 3 PV-Cre x Ai14mice)

when used as the pipette pressure for brain penetration. We therefore chose to implement 600mBar as the pipette pressure for brain

entry during the brain penetration stage of the imagepatching algorithm (Figure 1Biii).

The optimal set of pipette pressure levels for approaching the cell once inside the brain was determined based on our manual

patching experiments as well as the values provided in previously reported protocols for manual patching (H€ausser and Margrie,

2014; Komai et al., 2006). During our manual slice and in vivo patching experiments, we had a few trials in which a gigaohm seal

was quickly obtained with an Alexa 488-filled pipette that continuously ejected a plume of dye at its tip until right before it made con-

tact with the target cell. From these trials, we inferred that one of the most critical prerequisites of gigaseal formation might be main-

taining a ‘‘clean’’ pipette tip throughout its movement inside the tissue, all the way up to the point where it makes contact with the

target cell (this assumption agrees with what has been briefly described in Margrie et al., 2002). During our initial experiments, we

observed that the pipette would often cease to eject the dye at its tip (i.e., the pipette was contaminated, as described in Komai

et al., 2006) while moving inside the tissue at 20 – 40 mBar, which is the range of pipette pressure values used in previously reported

protocols for two-photon image-guided patching in vivo (H€ausser and Margrie, 2014; Komai et al., 2006). We tried a few different

pressure values that were higher than 40 mBar, and found 100 – 300 mBar to be high enough to keep the pipette tip blockage

rate reasonably low (21.7%; 5 out of 23 trials; 5 PV-Cre x Ai14 mice) while navigating the pipette inside the tissue, but not so high

as to cause bleed-through of the pipette dye fluorescence into the tdTomato imaging channel. However, we also noticed that

when the pipette pressure was �300 mBar, the cells were often ‘‘blown away’’ by the pipette even when the pipette tip was some-

what distant from the target cell (e.g., �10 – 20 mm from the target cell membrane, which corresponded to �20 – 30 mm distance

between the pipette tip and the center of a 20 mm diameter cell). To prevent the pipette blowing away the target cell, we tried a

few combinations of distances and pressure values for approaching the target cell. As a result, we found a pressure of

�100 mBar to keep the cell in place right until the pipette tip made contact with the cell membrane (contact between the pipette

tip and the cell membrane was visually assessed by observing the presence of heartbeat modulation as in Komai et al., 2006;

n = 17 tdTomato-expressing PV-positive cells from 3 PV-Cre x Ai14 mice). We therefore decided to implement three different pres-

sure values in the brain penetration (Figure 1Biii) and closed-loop real-time image-guided pipette positioning (Figure 1Biv) stages of

the imagepatching algorithm while approaching the target cell: (i) 600 mBar for moving the pipette into the brain through upper

cortical layers to 75 mm away from the center of the target cell; (ii) 300 mBar for moving the pipette to 25 mm away from the center

of the target cell; (ii) 100 mBar for making the final approach to the cell.
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Optimization of cell-pipette contact detection, gigaseal formation, and break-in
Akin to manual two-photon image-guided patching (H€ausser andMargrie, 2014; Komai et al., 2006; Margrie et al., 2003) and our pre-

viously developed blind autopatching method (Kodandaramaiah et al., 2012, 2016), imagepatching uses an increase in pipette resis-

tance as a signal for when the pipette tip contacts the cell membrane. To determine the amount of resistance increase corresponding

to a cell membrane-pipette tip contact amenable to a gigaohm seal, we tried forming a gigaseal (by applying slight suction to the

pipette and hyperpolarizing the pipette) after observing resistance increases over consecutive z steps (3 mm step size). After a

few trials on tdTomato-expressing PV-positive neurons in somatosensory and motor cortices of anesthetized PV-Cre x Ai14 mice,

we found that a 20 – 50% increase in pipette resistance, which is the amount visually assessed during manual patching when the

pipette tip-cell membrane contact is amenable to gigaseal formation (H€ausser and Margrie, 2014; Margrie et al., 2002, 2003), was

hard to observe when the increase in resistance was calculated over a single z step (i.e., over 3 mm; step size of 3 mm was used

for single z steps throughout cell-pipette contact detection optimization described below) of a pipette at 100 mBar. This character-

istic resistance increase was observable by taking one or more additional steps toward the target cell after seeing some resistance

increase over 3 mm, but these extra steps sometimes damaged the cell membrane, resulting in cell lysis. Even when the cell seemed

intact, releasing the positive pressure and applying light suction following the 20 – 50% resistance increase over 2 or more consec-

utive z steps (i.e., over 6 mm or more) did not improve the rate of forming a gigaseal compared to the same pressure modulation

following a single z step with less resistance increase, maybe because the pipette tip was pushed too much into the target cell,

damaging the cell membrane. As expected, there were instances in which analyzing the pipette resistance over a single z step

seemed ‘‘noisy,’’ showing some resistance increase even when the pipette tip was far away from the target cell membrane. However,

we could minimize the number of such false positives by analyzing the resistance increase only when the distance between the

pipette tip and the cell centroid was small enough that a contact was likely (e.g., the pipette tip-cell centroid distance was less

than the radius of the target cell). As a result, we decided to closely examine the resistance increase over a single z step of a patch

pipette as the tip of the pipette at 100 mBar was brought in contact with the cell membrane, aiming to determine the amount of resis-

tance increase that subsequently maximized the rate of forming a gigaseal. Sincemost of the single z steps led to a pipette resistance

increase of less than 1%when the pipette tip was far away from the cell membrane, we studied the relationship between the amount

of resistance increase of at least 1% over a single z step and the likelihood of successful gigaseal formation. By analyzing 46 gigaseal

formation attempts (in 14mice), in which we released positive pressure and applied suction using the autopatcher control box imme-

diately after observing a resistance increase by 1% or more over a single z step, we found that resistance increases by 4% or more

over a single z step led to successful gigaseal formation 22.2% of the time (n = 4 gigaseals out of 18 attempts), while single z steps

with a resistance increase between 1%and 4%yielded a higher rate of successful gigaseal formation of 32.1% (n = 9 gigaseals out of

28 attempts). Out of the 28 attempts with a resistance increase between 1% and 4% over a single z step, we also found that single

z steps with a resistance increase between 1 and 2%weremore likely to result in successful gigaseal formation (50%; n = 4 gigaseals

out of 8 attempts) compared to those with higher amounts of resistance increase (e.g., 27.3%, or n = 3 gigaseals out of 11 attempts,

for single z steps with a 2 – 3% resistance increase; 22.2%, or n = 2 gigaseals out of 7 attempts, for single z steps with a 3 – 4%

resistance increase). As a result, we decided to use a resistance increase by 1% over a single z step (i.e., an increase by �60 –

70 kU over 3 mm for 6 – 7 MU pipettes) as the threshold in the imagepatching algorithm for the detection of contact between the

pipette tip and the cell membrane.

Once the pipette tip made contact with the cell membrane, themicromanipulator was halted to keep the pipette stationary, and the

pipette pressurewas lowered from 100mBar to 30mBar to prepare the target cell for gigaseal formation. Froma fewmanual patching

experiments, we found that this reduction in pipette pressure led to an increase in pipette resistance by �1.5% or more when the

pipette tip was in close contact with the cell membrane, perhaps because the lower positive pressure allowed the cell membrane,

which had been displaced away from the pipette tip due to the higher positive pressure, to spring back toward the pipette tip. In addi-

tion to the resistance increase, we could also observe heartbeat modulation of the pipette current pulses as described before

(H€ausser and Margrie, 2014; Komai et al., 2006; Margrie et al., 2002). The metric used to quantify heartbeat modulation was derived

based on our finding during manual patching that, when the pipette tip was in close contact with the cell membrane, current pulses

resulting from 50 Hz square waves of injected voltage had a characteristic variation in their resistance values when obtained over 1 s.

Specifically, we observed that when the pipette tip at�30mBar was in tight contact with the cell membrane, the resistance values of

50 current pulses (corresponding to a 1 s long measurement; resistance was calculated by dividing the amplitude of the injected

voltage by the amplitude of an observed current pulse) showed a standard deviation of at least 0.1 MU, and a subsequent suction

led to a gigaseal (n = 6 neurons, 6mice). We therefore used the standard deviation of the current pulse resistances calculated over 1 s

at 30mBar pipette pressure as a second criterion for detecting contact between the pipette tip and the cell membrane. Evenwhen the

resistance increase was less than 1.5% or the amount of heartbeat modulation was less than 0.1 MU, a tight contact amenable to

gigaseal formation could be achieved by first increasing the pipette pressure back to 100 mBar (to clear the pipette tip in case it

became partially occluded while at 30 mBar) and then advancing the pipette tip by one or more additional z steps until a resistance

increase by 1.5% or more was observed. We mimicked this resistance-based check for the pipette tip-cell membrane contact at

30 mBar in the imagepatching algorithm by first performing two consecutive resistance measurements in response to 50 Hz square

waves, each for 1 s, then comparing each of the average resistance values (each taken over 1 s) to the pipette resistance observed
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before reducing the pipette pressure to 30mBar, and finally resuming the pipette z steps if the resistance increasewas less than 1.5%

or if the standard deviation of current pulse resistances was less than 0.1 MU (see Figure S2, ‘‘closed-loop real-time image-guided

pipette positioning,’’ for details).

After checking the pipette tip-cell membrane contact at 30 mBar, a ramp of suction (–20 mBar/s) was applied to reach a final suc-

tion value of –20 mBar, to achieve a gigaohm seal. If the rate of resistance increase was slow (i.e., the pipette resistance measured

10 s after the suction reached the final value of –20 mBar was less than 8 times the resistance measured right before applying the

ramp of suction), stronger suction up to –100 mBar was applied in a ramp at –20 mBar/s; negative pressure stronger than –100

mBar was not implemented based on our observation during manual trials that suction levels stronger than –100 mBar did not

help to form a gigaseal, but instead led to premature and leaky break-ins. The holding voltage was also set to –65 mV as the seal

was being formed. If the pipette resistance did not reach 300 MU within 5 s after applying the hyperpolarizing voltage, the pressure

level was modulated among 0, 25, and –20 mBar to ‘‘coax’’ the cell membrane into forming a gigaseal. This coaxing process was

developed from our manual patching experiments in which alternating the pipette pressure among 0, 25, and –20 mBar led to a

gigaseal formation for some of the trials that seemed to be failing (with the pipette resistance increasing very slowly or becoming

stagnant following the suction and hyperpolarization), and it was required for 8 out of 42 gigaseals when targeting PV-positive neu-

rons (in 16 PV-Cre x Ai14 mice) and for 4 out of 19 gigaseals when targeting CaMKIIa-positive neurons (in 10 CaMKIIa-Cre x Ai14

mice) during the imagepatching algorithm validation. If more than 5 min were needed for the pipette resistance to exceed a gigaohm,

the pipette was retracted from the brain to start a new trial. Otherwise, the pipette resistance was continuously recorded until it

reached a stable value, not increasing by more than 15% over 15 s (see Figure S2, ‘‘gigaseal formation,’’ for details).

The break-in process was developed based on a combination of previously developed protocols (H€ausser and Margrie, 2014;

Komai et al., 2006; Margrie et al., 2003) and our experience with manual patching. Three consecutive pulses of suction were

applied, with each pulse increasing in suction from 0 mBar to –25 mBar at –20 mBar/s and then returning to 0 mBar. These suc-

tion pulses were repeatedly applied every 5 s until the whole-cell configuration was verified with both visual (i.e., the target cell

being filled with the pipette dye, indicated by an increase by at least 15% in the mean pixel intensity inside the patched cell

boundary in the pipette dye channel) and electrical (i.e., resistance recorded < 250 MU) indications. If the whole-cell state could

not be achieved after three consecutive pulses, the suction endpoint was lowered by 25 mBar, and suction pulses were again

applied to the cell. If a suction endpoint lower than –350 mBar had to be applied, the pipette was retracted to start a new trial.

With this algorithm, we were able to achieve the whole-cell configuration successfully from a gigaseal �57% of the time when

targeting PV-positive neurons (n = 24 out of 42 gigaseals in 16 PV-Cre x Ai14 mice) and �68% of the time when targeting

CaMKIIa-positive neurons (n = 13 out of 19 gigaseals in 10 CaMKIIa-Cre x Ai14 mice) during the imagepatching algorithm vali-

dation, where a successful whole-cell state is defined as that with less than 500 pA of leakage current when held at –65 mV in

voltage-clamp mode.

Derivation of dye-ejection based pipette blockage test
We derived an algorithm for determining the amount of dye being ejected at the pipette tip, which indicates the pipette tip quality

(Komai et al., 2006), from test images of clean and contaminated pipettes inside the somatosensory and motor cortices of anes-

thetized PV-Cre x Ai14 mice (3 mice). We used 12 pipettes, angled at 30� below the horizontal, positioned �150 – 200 mm deep

inside the brain, applying �300 mBar at the tip, to obtain test images (17x zoom), from which characteristic features were

analyzed. We captured images of these pipettes both outside the brain (at �6 – 8 mBar to make the pipette tip visible) and inside

the brain (at �300 mBar, right after entering the brain at �600 mm/s). Out of 12 pipettes, 7 were ‘‘clean,’’ clearly showing the dye

being ejected at the tip, while the rest were occluded. By comparing these two groups, we found that all of the images capturing

a clean pipette possessed either or both of the following characteristics: (i) the maximum pixel intensity of the image captured

inside the brain was at least 2 times higher than the maximum pixel intensity of the image captured outside the brain; (ii) the

maximum pixel intensity of the image captured inside the brain was at least as high as the maximum pixel intensity of the image

captured outside the brain, and the median of the pixel intensities of the image captured inside the brain was at least 40% of the

maximum pixel intensity of the image captured inside the brain. In contrast, none of the blocked pipette images showed the

above characteristics. We thus decided to use conditions (i) and (ii) for the pipette tip quality check during the imagepatching

operation.

Quantification of PV-positive and CaMKIIa-positive cell densities
Z stacks of two-photon images (each z stack with five 223.53 223.5 mm2 images and 10 mm step between consecutive images) were

acquired at a depth of �100 – 250 mm in somatosensory or motor cortex of anesthetized PV-Cre x Ai14 mice or CaMKIIa-Cre x Ai14

mice. One or more z stacks were acquired per mouse, with each stack at different depth and lateral location within the craniotomy.

Cells expressing tdTomato were counted manually from each of the z stacks and then scaled to give the number of cells in a volume

of 200 3 200 3 100 mm3.

Input resistance and spontaneous firing rates of imagepatched cells
Input resistance (Figure S4D) of an imagepatched cell was determined by repeatedly injecting a hyperpolarizing current pulse

(–100 pA, 1 s long) to the cell right after achieving the whole-cell configuration, then calculating the average of membrane voltage
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over two 100 ms periods (one right before current injection and another at the end of current injection), and finally dividing the ab-

solute value of the difference between the average values of two 100 ms periods by 100 pA. Spontaneous firing rate (Figure S4E)

of an imagepatched cell was determined by calculating the frequency of action potentials about 4 to 5min after break-in over a period

of one minute.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical details for comparing the recording quality metrics between the imagepatched and fully manually patched PV-positive

neurons (Figures S4A–S4C) are provided in the Results section. The p values associated with the Student’s t-Test were calculated

using ttest() function in Excel 2013, with Tails parameter = 2 for two-tailed distribution and Type parameter = 3 for two-samples with

unequal variance.

DATA AND SOFTWARE AVAILABILITY

The Imagepatcher software and the user guide are included as Methods S1.
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Figure S1, related to Figure 1. Cell movements following pipette navigations into the brain.  

(A-B) Target cell displacements in the transverse plane (left) and their magnitude (right), 

following pipette navigations into the brain. ∆x, change in the x coordinate of the target cell 

centroid, with a positive value corresponding to a cell movement to the right relative to the 

original location; ∆y, change in the y coordinate of the target cell centroid, with a positive value 

corresponding to a cell movement in the anterior direction relative to the original location. Each 

circle represents a movement of a single cell, while squares and error bars are mean ± standard 

deviation. 

(A) Target cell movements following pipette navigation along a linear trajectory parallel to the 

pipette axis (n = 25 cells in 6 anesthetized mice), with the pipette moving from above the brain 

surface to cortical layer 2/3. 

(B) Target cell movements following pipette navigation in the x, y, and z directions (n = 27 cells 

in 17 anesthetized mice), with the pipette moving from a point 20 – 30 µm away from the target 

cell centroid to a point 10 – 20 µm directly above the target cell centroid. 
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Figure S2, related to Figure 1. Step-by-step flowchart, showing the entire imagepatching 

process.  

Dotted lines frame each of the stages of the algorithm; within the dotted line frames, symbols 

represent task, logging, and choice points, along with text explaining the individual steps and 

consequences of each decision (see “KEY” for definition of symbols). Abbreviations: Z, depth 

inside the brain, in microns (with more positive Z values indicating deeper positions inside the 

brain); Zcell, depth of the target cell, Xcell, x-coordinate of the target cell centroid at Zcell; 

Ycell, y-coordinate of the target cell centroid at Zcell; x, movement direction along the x-axis of 

the 4-axis manipulator; y, movement direction along the y-axis of the 4-axis manipulator; z, 

movement direction along the z-axis of the 4-axis manipulator; d, movement direction along the 

diagonal axis (i.e., axis parallel to the pipette) of the 4-axis manipulator; R(Z), pipette resistance 

at depth Z; Np, counter for the pipette clearing pressure pulse; Ncl, total number of times the 

closed-loop is run; Nclmax, limit on the number of times the closed-loop is run; Zcll, depth at 

which pipette pressure is lowered to 30 mBar; R(Zcll), pipette resistance at Zcll; HBM(Zcll), 

amount of heartbeat modulation at Zcll; R(Zseal), pipette resistance at the depth at which a 

gigaseal and the whole-cell state are being achieved, which will vary over time as the algorithm 

progresses; T1, time, in seconds; T2, time, in seconds; Ns, total number of times a suction pulse 

is applied for break-in; Nsmax, limit on the number of times a suction pulse is applied for break-

in; Id, mean pixel intensity inside the target cell contour, in the microscope channel 

corresponding to the pipette dye; Idg, Id when R(Zseal) is higher than 1 GΩ; Idb, Id when 

R(Zseal) is less than 250 MΩ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure S3, related to Figure 2. 2D image analysis algorithms for detecting pipette tips and 

cell centroids.  

(A) Steps used to detect the tip of a fluorescent dye filled patch pipette from an image focused on 

the pipette tip. (i) An image of the pipette at the z-coordinate of the pipette tip (i.e., an image 

focused on the pipette tip) is filtered using a 2D Gaussian filter. (ii) Threshold values 

corresponding to 5 – 75% of the maximum pixel intensity of the filtered image are applied to the 

filtered image, and the resulting clusters (white) are subjected to MATLAB’s endpoint detection 

function (bwmorph function with ‘endpoints’ operation) to identify the endpoints (yellow boxes). 

Clusters and endpoints resulting from threshold values corresponding to 75 (ii.i), 13 (i.e., optimal 

threshold value; ii.ii), and 3% (ii.iii) of the filtered image’s maximum pixel intensity are shown 

as examples. (iii) The cluster resulting from the optimal threshold value is analyzed to locate its 



centroid (yellow x) and extrapolate a line from the centroid in the direction of the pipette angle 

(yellow dotted line). The pixel in the cluster that is closest to the endpoint of the extrapolated line 

(i.e., endpoint opposite to the centroid) is designated as the pipette tip (yellow star). 

(B) Steps used to detect the cell boundary and centroid from each image in a z-stack acquired 

around a fluorescent cell. (i) An image in a z-stack acquired around a tdTomato-expressing cell 

is filtered using a 2D Wiener filter. (ii) Threshold values corresponding to 5 – 95% of the 

maximum pixel intensity of the filtered image are applied to the filtered image, and the resulting 

clusters (white) are analyzed to determine their areas (i.e., numbers of pixels in the clusters). The 

cluster whose area is the closest to that of the cell chosen by the user during the target cell 

detection and selection stage ((ii.ii), white) is further processed to determine its boundary ((ii.ii), 

red outline). Clusters resulting from threshold values corresponding to 50 (ii.i), 20 (i.e., optimal 

threshold value; ii.ii), and 3.5% (ii.iii) of the filtered image’s maximum pixel intensity are shown 

as examples. (iii) The cluster obtained by applying the optimal threshold value to the filtered 

image is processed to yield its centroid (red x), designated as the centroid of the cell in the 

image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure S4, related to Figure 4. Recording quality and electrophysiological properties of 

imagepatched neurons.  

(A-C) Recording quality of imagepatched (white symbols; n = 24 cells from 14 mice) vs 

manually patched (black symbols; n = 11 cells from 8 mice) tdTomato-expressing PV-positive 

interneurons in somatosensory and motor cortices of isoflurane-anesthetized PV-Cre x Ai14 

mice. Squares and error bars are mean ± standard deviation. 

(A) Access resistance. 

(B) Resting potential. 

(C) Holding current. 

(D-E) Electrophysiological properties of imagepatched tdTomato-expressing PV-positive 

neurons (white symbols; 9 cells from 5 PV-Cre x Ai14 mice) and imagepatched tdTomato-

expressing CaMKIIα-positive neurons (gray symbols; 13 cells from 7 CaMKIIα-Cre x Ai14 

mice) in somatosensory and motor cortices of isoflurane-anesthetized mice. Squares and error 

bars are mean ± standard deviation. 

(D) Input resistance. 

(E) Spontaneous firing rate. 

 

 

 

 

 



Failure Modes PV CaMKIIα 

Pipette Blockage 20.4% (n = 22) 21.5% (n = 14) 

Failed Gigaseal Formation 37.0% (n = 40) 43.1% (n = 28) 

Loss of Seal During Break-in 16.7% (n = 18) 9.2% (n = 6) 

Untargeted Patch 3.7% (n = 4) 6.2% (n = 4) 

 

Table S1, related to Figure 4. Four failure modes of the imagepatcher. 

Imagepatching attempts that did not result in successful whole-cell recordings (84 out of 108 

attempts targeting PV-positive neurons, from 17 PV-Cre x Ai14 mice; 52 out of 65 attempts 

targeting CaMKIIα-positive neurons, from 10 CaMKIIα-Cre x Ai14 mice) can be grouped into 4 

failure modes: (i) ‘pipette blockage’ includes imagepatching attempts in which a pipette failed to 

eject enough dye at its tip or experienced a significant rise in its resistance value after entering 

the brain or while approaching the target cell; (ii) ‘failed gigaseal formation’ includes 

imagepatching attempts in which contact between an uncontaminated pipette tip and the target 

cell membrane, followed by pipette pressure modulation and hyperpolarization, did not result in 

a gigaseal; (iii) ‘loss of seal during break-in’ includes imagepatching attempts in which 

application of suction pulses following successful gigaseal formation led to a loss of gigaseal or 

cell lysis; and (iv) ‘untargeted patch’ includes imagepatching attempts in which an unlabeled cell 

(i.e., a cell that was not fluorescently tagged), sitting right on top of a targeted cell, was patched 

instead of the target cell. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Target Cell Depths Below 

The Brain Surface 

Success Rates 

PV CaMKIIα 

Gigaseal Whole-cell Gigaseal Whole-cell 

≥100 and <200 µm 

50.0% 

(n = 24  

out of 48) 

29.2% 

(n = 14  

out of 48) 

40.0% 

(n = 14  

out of 35) 

25.7% 

(n = 9  

out of 35) 

≥200 and <300 µm 

48.6% 

(n = 18  

out of 37) 

27.0% 

(n = 10  

out of 37) 

31.3% 

(n = 5  

out of 16) 

25.0% 

(n = 4  

out of 16) 

 

Table S2, related to Figure 4. Success rates at different target cell depths, for trials that 

entered the closed-loop stage of imagepatching.  

One unsuccessful attempt targeted a PV-positive cell at a depth below 300 µm and is not 

included in the table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PV CaMKIIα 

Number of  

Labeled Cells in  

200 x 200 x 100 µm3 

Volume 

Success Rates Number of  

Labeled Cells in  

200 x 200 x 100 µm3 

Volume 

Success Rates 

Gigaseal 
Whole-

cell 
Gigaseal 

Whole-

cell 

<6 

42.1% 

(n = 8  

out of 19) 

31.6% 

(n = 6  

out of 19) 

<20 

40.0% 

(n = 4  

out of 10) 

30.0% 

(n = 3  

out of 10) 

≥6 and <10 

57.1% 

(n = 16 

out of 28) 

32.1% 

(n = 9  

out of 28) 
≥20 and <35 

30.8% 

(n = 4  

out of 13) 

15.4% 

(n = 2  

out of 13) 

≥10 and <14 

33.3% 

(n = 8  

out of 24) 

20.8% 

(n = 5  

out of 24) 
≥35 and <65 

47.1% 

(n = 8  

out of 17) 

35.3% 

(n = 6  

out of 17) 

≥14 

66.7% 

(n = 10 

out of 15) 

26.7% 

(n = 4  

out of 15) 
≥65 

27.3% 

(n = 3  

out of 11) 

18.2% 

(n = 2  

out of 11) 

 

Table S3, related to Figure 4. Success rates for different labeling densities of cells around a 

target cell, for trials that entered the closed-loop stage of imagepatching.  

The number of labeled cells around a target cell in a 200 x 200 x 100 µm3 volume was determined 

by scaling the number of tdTomato-expressing cells in a z-stack (5 images, 10 µm step size, field 

of view of 223.5 x 223.5 µm2) that captured the target cell near the center of its field of view.  
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