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Abstract
Using a DNA polymerase to record intracellular calcium levels has been proposed as a
novel neural recording technique, promisingmassive-scale, single-cell resolutionmonitoring
of large portions of the brain. This technique relies on local storage of neural activity in
strands of DNA, followed by offline analysis of that DNA. In simple implementations of this
scheme, the time when each nucleotide was written cannot be determined directly by post-
hocDNA sequencing; the timing data must be estimated instead. Here, we use a Dynamic
TimeWarping-based algorithm to perform this estimation, exploiting correlations between
neural activity and observed experimental variables to translate DNA-based signals to an
estimate of neural activity over time. This algorithm improves the parallelizability of tradi-
tional Dynamic TimeWarping, allowing several-fold increases in computation speed. The
algorithm also provides a solution to several critical problems with the molecular recording
paradigm: determining recording start times and coping with DNA polymerase pausing. The
algorithm can generally locate DNA-based records to within <10% of a recording window,
allowing for the estimation of unobserved incorporation times and latent neural tunings. We
apply our technique to an in silicomotor control neuroscience experiment, using the algo-
rithm to estimate both timings of DNA-based data and the directional tuning of motor cortical
cells during a center-out reaching task. We also use this algorithm to explore the impact of
polymerase characteristics on system performance, determining the precision of a molecu-
lar recorder as a function of its kinetic and error-generating properties. We find useful ranges
of properties for DNA polymerase-based recorders, providing guidance for future protein
engineering attempts. This work demonstrates a useful general extension to dynamic align-
ment algorithms, as well as direct applications of that extension toward the development of
molecular recorders, providing a necessary stepping stone for future biological work.
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Author summary
This work demonstrates a necessary computational tool for the development and imple-
mentation of molecular recorders, a promising potential technique for massive-scale neu-
roscience. Molecular recorders use proteins to encode levels of a substance we want to
measure (e.g. calcium in neural applications) as detectable changes in a linear cellular
structure, e.g. misincorporations in a strand of DNA, or fluorescent proteins traveling
down a microtubule. This encoding represents levels of the measured substance over
time, much like a ticker tape represents information linearly on a strip of paper. The
unique intracellular nature of this approach promises a significant scaling advantage over
current techniques. The molecular recording approach suffers a particular drawback
involving timing: unlike most methods of recording signals, in simple molecular record-
ing systems we do not observe when each data point was recorded. This timing informa-
tion is almost always required in order to make associations between our recorded data
and the rest of the experiment. In this work, we propose a method to estimate the timing
of these data points using easily-observable experimental measurements. We demonstrate
the application of this method in a simulated neuroscience paradigm, investigate the effect
of experimental design on this method, and determine protein properties that would be
desirable in molecular recorders. These findings are useful both as a computational proof-
of-concept, and as guidelines for current efforts to engineer proteins for molecular
recording.

Introduction
As we seek to understand complex questions in neuroscience, we are increasingly interested in
the feasibility of massive-scale methods for neural recording [1±5]. One such proposed method
is molecular recording, which uses engineered DNA polymerases (DNAPs) to encode infor-
mation about neural activity onto a newly synthesized DNA strand, such that the position in
the DNA sequence corresponds to the order and approximate timing of recorded events [6±8].
Rather than reading out neural activity from an electrode or photodiode during an experi-
ment, molecular recorders would store neural activity intracellularly. This information would
not be read out in real-time, but post-hoc using high-throughput DNA sequencing. The
recording DNAPs could be genetically encoded and selectively expressed in neurons, allowing
us to obtain activity records from large populations of cells. DNAP-based recording techniques
promise an inherently ultrahigh-scale neural recording technique, building off of advances in
biotechnology and computational power. However, significant hurdles remain in realizing
such a technology.

While molecular recorders promise massive-scale neural recording, they do not inherently
provide all the data obtained using current recording techniques. With current techniques, e.g.
electrical or optical recording, data about the timing of each sample is recorded alongside the
desired recording. With DNAP-based recorders, we sample data using DNA sequencing,
which occurs after an experiment has concluded. That is, without any inherent clocking mech-
anisms, the output from molecular recorders lacks any explicit timing information about what
it recorded. Without timing information, recorded neural activity cannot be interpreted in the
context of other signals observed during experiments, e.g. movement or delivered stimulus.
The central problem here is that we do not know which nucleotides were written at which
times, i.e. we cannot link our representation of neural activity to things we observe in the
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outside world. Thus, the timing of data from molecular recorders must be inferred or esti-
mated before it can be useful to understand the brain.

Due to the stochasticity inherent in DNAP activity (or that of any protein), it is difficult to
predict when a nucleotide was incorporated de novo. Uncertainty in timing estimates result in
uncertainty about the underlying signal; without timing information, signal estimates become
highly inaccurate, providing at most a few seconds of reliable recording under common condi-
tions [7]. However, if we observe experimental data that should be correlated with neural activ-
ity during our experiments, we can generate predictions of what possible patterns of neural
activity we might observe given that data. This, in turn, can provide some information about
the timing of nucleotide incorporations: if we see a particular pattern of activity in our DNA-
based record, the DNA was likely written by a neuron whose tuning would generate a similar
activity pattern in response to the experimental variables we observe, and at a time where the
neuron would have generated that pattern. If we enumerate the ways in which we believe a
neuron could respond to the observed experimental variables in question, we can search for
the most-likely response given the DNA-based record we observe. It is worth stating that this
type of approach is not model-free, and there are many situations where this assumption of a
tuning model is inappropriate, i.e. in areas of the nervous system that we either model poorly
or do not know what form a model would take. However, in areas where we have reliable
modeling approaches or seek to evaluate particular models, a model-based approach may be
able to provide considerable insight.

One way to utilize these models to estimate timing is the one we use here: generate predic-
tions of neural activity with known timing using observed experimental variables, then find
the globally most-similar alignment between those predictions and our recorded data. This
class of alignment problems is frequently found in the time series analysis domain, e.g. in
speech or signature recognition [9±11]. Dynamic time warping (DTW) is an efficient solution
to this class of alignment problems, determining the optimal alignment between the template
and signal using dynamic programming principles. With a probabilistic interpretation, DTW
allows us to infer the most likely timing of a signal with respect to a given template, as well as
determining the most likely template from a set of possible templates [12]. These properties
make DTW-class algorithms uniquely suited for the determination of signal timings for
molecular recorders.

Given that we are interested in applying this algorithm to massive-scale datasets, we are
immediately interested in algorithms that can efficiently harness large-scale computing
resources. As DTW is a dynamic algorithm, with successive steps depending on previous cal-
culations, it is difficult to apply asynchronous computing approaches, at least on an algorithm
level. Thus many, though not all, parallel approaches to DTW have largely focused on task-
level parallelism rather than parallelizing cost computation [13±18]. As a result, for computa-
tionally-intensive individual alignments, it tends to be difficult to fully utilize the massively
parallel computing resources that are becoming more common. A highly-parallelized dynamic
alignment algorithm would be useful for a number of reasons.

Here we describe a parallelized step-pattern variant of DTWwith applications to the analy-
sis of molecular recorder output. We demonstrate the algorithm's ability to accurately deter-
mine incorporation times for single DNA strands generated by a simulated molecular
recorder, compensating for the timing issues inherent in protein-based molecular recorders.
We demonstrate the utility of this algorithm in practice through simulated neuroscience appli-
cations, and use simple simulated experiments to explore how DNAP parameters such as
speed and error rate affect the accuracy of our timing estimates. Through proposal and appli-
cation of this algorithm, we present findings relevant for current biological research into
molecular recording.
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Algorithm and experimental overview
Our algorithm solves a problem central to interpreting molecular recorder output in the con-
text of neural recording: it aligns a single DNA-based record to an estimate of neural activity.
We evaluate the local likelihood of each nucleotide being written at any time within some
recording window given some assumed neural and DNAP properties. Then, using a dynamic
programming-based technique, we attempt to find a global alignment given the local likeli-
hoods and a prior defined by the DNAP kinetics. This algorithm is similar in structure to
Dynamic Time Warping, utilizing a modified step pattern that reflects certain biological reali-
ties (See AlgorithmMethods,S1 Fig). The step pattern limits the possible search space by
enforcing these constraints: 1) nucleotides cannot be aligned to the same time point, 2) nucleo-
tides can only be aligned to one time point, and 3) there can be a variable amount of time
between incorporation of two adjacent nucleotides. We weight the potential options from this
step pattern so that alignments made more likely by DNAP kinetics are favored. Notably, this
approach enables significant algorithm parallelism, emerging from the constraint that nucleo-
tides can only be aligned to one time point. As there are no dependencies between possible
alignments of a given nucleotide, we can calculate the costs of all possible alignments of a
given nucleotide concurrently.

In order to demonstrate the utility of this algorithm, we apply our technique to simulated
output of molecular recorders (Fig 1A), demonstrating various aspects of algorithm perfor-
mance as well as exploring the ability of DNAPs to encode neural information. The general
experimental pipeline consists of four parts: (1) simulation of a molecular recording experi-
ment (Fig 1B and 1C), (2) alignment of single recorder outputs to a set of time-indexed
expected DNAP error rates, which represent potential neural tunings to observed experimental
covariates, (3) selection of a template that best matches the molecular recorder output
(Fig 1D), and (4) inference of neural parameters using time-aligned DNA-based signals (see
Methods).

We simulate a biologically-inspired generative model with several parts: (1) an explicit
parameterized model of how neural activity either depends on a stimulus or results in
observed behavior (Neural Tuning), (2) how this neural activity modulates DNAP error
rate, via Ca2+ concentration or other mechanisms (DNAP Tuning), and (3) a probabilistic
description of DNAP kinetic properties, e.g. incorporation rate and pausing (DNAP Kinetics).
This generative model can be parametrized using existing knowledge about neural and poly-
merase properties where known. In this paper, we use DNAPs with optimistic DNAP error
tuning, i.e. maximum error rates higher than many DNAPs with incorporation rates suitable
for recording, but with otherwise-realistic properties [19±21]. We also assume knowledge of
these system characteristics (apart from neural tuning) in order to parametrize the alignment
algorithm.

Given simulated DNA output and a time-varying input to the system, we iterate over poten-
tial neural tunings to find a tuning that provides an alignment most consistent with the
observed DNA-based signal. We then use thismaximum a posteriori alignment to generate a
time-indexed DNA signal, and use this signal to infer neural parameters. We evaluate algo-
rithm performance both by accuracy of timing estimation, i.e. how many seconds estimated
incorporation times differ from true incorporation times on average, and accuracy of inferred
neural tuning parameters, i.e. how the estimated behavior of a neuron differs from the true
neural behavior. Specifically, to evaluate accuracy of timing estimates, we examine the root-
mean square deviation (RMSD) between the estimated timings and the true incorporation
times for a given alignment.
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There is a highly non-linear relationship between alignment ªsuccessº and timing accuracy,
as nearby alignments do not necessarily have similar likelihoods. Thus, we provide both a
mean and median value for timing accuracy when those values differ by a large amount. To
evaluate tuning accuracy, we estimate tuning parameters from the aligned DNA data and
examine the distance between the algorithm-estimated parameters and those derived directly
from the recorded neural data, which we treat as ground-truth for these studies.

Fig 1. Procedural overview. A) Molecular recording overview. A DNAP (green) copies a template DNA strand of known sequence.
It can incorporate the correct Watson-Crick paired nucleotide (blue) or make an error and incorporate a non-paired nucleotide
(orange). These incorporations andmisincorporations can be read out via DNA sequencing. The time τ between these nucleotide
incorporations is variable and a function of DNAP kinetics. While these nucleotides have regular DNA-based indexing, they have
irregular indexingwith respect to time. B) Examples of nucleotide-timemappings, simulated as described in Methods. Stochastic
DNAP kinetics produce non-linear nucleotide-timemappings. Further, diffusion and other biological processes can lead to non-
uniform recording start times. C) Generativemodel for DNA-based error signals. Neural spikes lead to elevated calcium levels in the
neuron. These changes in calcium alter the instantaneous error rate of a molecular recorder. These changes in error rate are only
recordedwhen nucleotides are incorporated into a DNA strand, causing the resulting DNA-based record to be a function of cellular
calcium and DNAP kinetics. D) Overview of alignment and inference. We begin with a set of potential neural tunings and a time-
varying stimulus. The stimulus is transformed by the neuron to neural activity, which is then recorded as errors in a DNA strand by a
molecular recorder. In parallel, we use the set of potential neural tunings in combination with the observed stimulus to generate
estimates of neural calcium and the resulting instantaneous DNAP error rate. We use our algorithm to align the DNA-based errors to
each of the estimated error-rate traces, then select the maximum-likelihood alignment. Dashed box indicate biological processes
that are simulated in parts of these analyses.

https://doi.org/10.1371/journal.pcbi.1005483.g001
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Results
Performance comparison to traditional DTW
Before exploring algorithm applications, it is worth exploring the performance implications of
this approach. It bears mentioning again that, while they do not calculate the same cost func-
tion, our algorithm and traditional DTW are closely related; both are dynamic programming
algorithms with effective worst-case complexity ofO(NT) where N and T are the lengths of the
two inputs being aligned. As we have mentioned, our algorithm has significant differences in
implementation that allow it to be substantially parallelized; this allows for substantial perfor-
mance increases using modern computing devices (See AlgorithmMethods). While a naïve
implementation of our algorithm performs more slowly than traditional DTW for a given set
of inputs, parallelized implementations substantially outperform traditional DTW (S1 Fig).
We observe up to a 16x speedup over traditional DTW when using a GPU-based implementa-
tion of our algorithm on a personal computer, and up to a 5x speedup when using a CPU-
based implementation.

Acceptable parameters for DNAP-based recorders
The feasibility of a ªticker tapeº DNA-based recording scheme depends heavily on the proper-
ties of the DNAP used. For instance, the length of records (in base pairs) influences how much
information is contained about neural activity, and thus impacts algorithm performance. Simi-
larly, the speed, pausing, and fidelity properties of the DNAP used influence the information
about neural activity contained in a DNA-based record [7]. Here, we look to determine the
effect of these properties on the accuracy of our algorithm, and thus the expected performance
of a molecular recording setup. Determining these effects allow us to form guidelines as to
what kinds of DNAPs would be required for successful recording and alignment.

We use an entirely-simulated experiment here, i.e. we fully know the tuning linking stimu-
lus to neural activity. This allows us to isolate the effects of DNAP properties on alignment
from the effects of inaccurate neural activity estimates. We simulate a neuron with a linear
response to an artificial stimulus; we deliver random levels of stimulus in 5s blocks over the
course of 2000s (~30 minute recording window), and simulate the neuron's spiking activity
and intracellular calcium. We then simulate the output of a molecular recording system during
that time period. We then align the molecular recorder output to the true stimulus signal.
Using this simulation, we can focus on error induced by the DNAP and alignment algorithm
in isolation.

We aim to estimate nucleotide incorporation timings, as well as the strength of the neuron's
tuning to the stimulus, i.e. the slope of the neuron's tuning curve. The best alignments possible
under this scheme have timing error up to the size of the stimulus features (5s); alignments
with timing error less than this are generally considered to be accurate. Error with respect to
tuning parameter is presented as a proportion of the true parameter. Except for the DNAP
parameter being varied, the simulated DNAPs are identical (~100 Hz, mean pause duration of
2s; see Methods).

As record length increases, finding a randomly generated pattern that resembles the record
becomes less likely, and alignment to a unique site should become easier. However, from a bio-
logical perspective, generating longer sequences may be more difficult, requiring polymerases
with specialized properties, e.g. high processivity, high activity, or strand-displacement activ-
ity. Thus, it is useful to know minimal record lengths for successful alignment. When we
increase record length in our simulations, we indeed find a resulting decreasing timing error.
Generally, we find that records with length longer than 2.5K basepairs align with<5s median
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timing error (Fig 2A and 2B). Interestingly, we find that slope estimation is relatively constant
regardless of record length, suggesting that, while record length is crucial to timing estimation,
information about neural tuning in the record is not necessarily absent in shorter records
(Fig 2C).

DNAP speed effectively changes the sampling rate of our system; if we have a slow DNAP,
we can record for longer periods of time for a given strand length, but also record less informa-
tion about any given interval. If we are interested in longer time-scale phenomena (e.g. envi-
ronmental sensing, medical diagnostics) [22], we may wish to use slow DNAPs. However, due
to the low sampling rate, we may not be able to recover useful information about timing and
tuning in a neural paradigm. In our simulated stimulation paradigm, we find that slower
DNAPs in fact increase timing accuracy (Fig 2D). However, median timing error stays rela-
tively constant as speed decreases, implying that slow DNAPs simply decrease the amount of
extreme timing errors we observe (Fig 2E). This runs parallel to our observations about record
length; aligning to a longer time-indexed template is easier than aligning to a short one. How-
ever, our accuracy in determining tuning parameters decreases as we use slower DNAPs

Fig 2. Effect of DNAP parameters on alignment and tuning estimation. Examining alignment performance using simulatedDNAPs with
varying parameters. Bootstrapped 95% confidence intervals of displayed values are indicated by blue silhouettes.A,B) Themean and
median timing RMSD of alignments for DNA-based records of increasing length.C) Error in slope estimation for DNA-based records of
increasing length.D,E) Themean andmedian timing RMSD of alignments for DNAPs with decreasing nucleotide incorporation rates. F)
Error in slope estimation for DNAPs with decreasing nucleotide incorporation rates.G,H)Mean andmedian timing RMSD of alignments for
DNAPs with increasing sensitivity to [Ca2+]. I) Error in slope estimation for DNAPswith increasing sensitivity to [Ca2+]. J,K) Themean and
median timing RMSD of alignments for DNAPs of increasing maximum error rate. L) Error in slope estimation for DNAPs with increasing
maximum error rate.

https://doi.org/10.1371/journal.pcbi.1005483.g002
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(Fig 2F). This indicates that we should, in general, be using fast DNAPs if we are interested in
recovering tunings [19]. Meanwhile, slower DNAPs can provide longer records for a given
strand length at the expense of diluting the information they carry about underlying
phenomena.

Another property of DNAPs that can affect the quality of recordings is the transfer function
relating analyte (e.g. calcium) concentration to error rate, f(�). We have modeled f(�) as a sig-
moid with three parameters:

f ðCÞ ¼ Rmax �
1

1þ exp½bðC � C0Þ�
ð1:1Þ

where C0 denotes the [Ca2+] that leads to half-maximum error rate, b denotes the steepness of
the response curve, and Rmax denotes the maximum error rate of the DNAP. When selecting
(or engineering) DNAPs to record with, we will need to optimize over these parameters. Here,
we analyze DNAPs with varying transfer function slopes b, i.e. varying sensitivities to [Ca2+],
ranging from step-like DNAPs to DNAPs with a wide dynamic range. We find that DNAPs
with moderate sensitivities to [Ca2+] provide the most accurate timings, while both step-like
and overly shallow transfer functions decrease alignment accuracy (Fig 2G and 2H). We find
similar results for parameter estimation (Fig 2I), where appropriately-sloped DNAP tunings
provide better estimates of neural parameters than DNAPs that are either too insensitive
(low |b|) or too step-like (high |b|) with respect to [Ca2+]. This adds evidence to an assumption
many investigating molecular recording techniques have been working under: DNAPs will
have to be tailored in order to achieve optimal recording of even simple signals.

We are also interested in how the maximum error rate Rmax affects alignment accuracy.
This is of particular interest from a biological perspective: many natural DNAPs with incorpo-
ration rates suitable for high-resolution recording have low error rates. It is useful to under-
stand what minimal error rates would be feasible for molecular recorders, as well as examine
system performance as Rmax scales. Here, we consider DNAPs that have near-zero error rates
at low [Ca2+], and increase to some maximum error rate Rmax under high [Ca2+] conditions.
We find that alignment accuracy increases as maximum error rate increases (Fig 2J and 2K), as
expected. Interestingly, we find that parameter estimation is relatively insensitive to Rmax.
Again, this seems to suggest that while timing accuracy tends to degrade with unfavorable
DNAP parameters, molecular recorder output tends to retain information about underlying
neural tuning.

Application to a center-out reaching task
Here, we demonstrate the feasibility of molecular recorders in a conventional neuroscience
experimental paradigm. We analyze single-unit neural data recorded fromM1 and pre-motor
cortex during a center-out reaching task in a rhesus macaque, estimating the preferred move-
ment directions of recorded neurons (data obtained from the DREAM reaching experiment
database, see Flint 2012 for details [23±25]). We use the recorded spikes as the basis for simu-
lated calcium transients and molecular recorder output. We also generate a set of estimates of
neural activity from the kinematic data recorded during the task, with estimates representing
velocity-tuned neurons with preferred directions distributed uniformly on [0, 2π]. Here, we
use eight activity estimates as alignment templates. We apply our alignment algorithm to this
data, aligning the molecular recorder output to each of the estimates, then selecting the maxi-
mum-likelihood alignment. The result, an estimated mapping of nucleotides to time, allows us
to generate tuning curves for the recorded neurons. From this, we can estimate neural tuning
parameters and infer how neural activity is modulated with respect to the recorded kinematics
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(details in Methods). The alignments here encounter alignment- and DNAP-based error, as in
the previous section, but also encounter biology-based error when estimating neural activity
from kinematic data. Thus, these experiments serve as an estimate of molecular recorder per-
formance in a real-world scenario.

Using a plausible set of DNAP parameters (~100 Hz incorporation rate, mean pause dura-
tion of 2s, ~17% of time spent paused; see Methods for further details), we find that we are gen-
erally able to recover rough timing estimates and accurate tuning parameters from the
simulated molecular recording experiment. As an initial demonstration, we examine several
neurons that exhibit high firing rates and significant directional tuning (Fig 3A). Under
these conditions, we are able to estimate nucleotide timings to within an average of ~15s (95%
confidence intervals for average trial RMSD: [10.0,16.5], [12.1,20.3], and [14.8,22.5] seconds,
Fig 3B). While timing accuracy is lower than desired, particularly for experiments that require
sub-second precision using current techniques, these alignments still allow us to generate the
estimated neural tuning direction θ� with error of ~10% (average errors of 0.5, 0.3, and 0.3
radians, Fig 3C). Median timings are substantially better than average timings across the board
(95% confidence intervals for median trial RMSD: [3.8,7.2], [3.1,8.7], and [6.5,13.7] seconds).

Fig 3. Determination of tuning parameters in neurons.Data for each of the three analyzed neurons are displayed as
columns.A)Neural activity plotted as a function of cursor velocity in 3 selected neurons from the Flint 2012 dataset. Points
represent neural spikes, locations indicate hand velocity during the spike time.B) Timing error (RMSD) as a function of
alignment likelihood for model-derived timings in 3 selected neurons. Each point represents the most-likely alignment of the
DNA-based record to one of eight activity estimates. Each point represents one of 100 trials.C) Estimated neural preferred
direction as a function of alignment likelihood for the 3 selected neurons. Each point represents the preferred reach
direction generated from the best alignment of the DNA-based record. Dashed lines indicate the preferred direction of the
neuron, estimated from neural activity data. Each point represents one of 100 trials.

https://doi.org/10.1371/journal.pcbi.1005483.g003
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Some of the error we encounter when generating alignment estimates may stem from our
discrete parametrization of neural tunings. That is, we may not provide an estimate of neural
activity similar enough to the true activity in order to generate accurate alignments. We can
examine the contributions of this effect to algorithm accuracy by supplying a neural activity
estimate generated using the neural tuning estimated from electrophysiology data, the best
possible estimate we can provide given a particular model. Indeed, if we supply a neural activ-
ity estimate generated using the ground-truth neural preferred direction in our motor control
experiment (rather than the 8 naïve preferred directions), we substantially reduce both timing
error and error in θ� (S2 Fig). While we do not know the true preferred direction a priori and
this kind of analysis could not be performed in practice, this suggests that a large portion of
observed error can be attributed to the discrete parametrization of the search space. Increasing
the resolution of the search space should improve alignment accuracy at the expense of execu-
tion time.

We apply our algorithm to each neuron in the dataset, examining aggregate performance
over a population of recorded neurons. We find that the technique has middling performance
on the whole dataset, only able to estimate timings to within 24s for 12% of neurons recorded
(S3 Fig). If we limit the set of analyzed neurons to those that have substantial reach-modulated
activity (model pseudo-R2> 0.05, firing rate λ> 20 spikes/s), this improves to 47%. We are
able to estimate preferred direction to within ±0.2π (±36Ê)for 39% of the dataset; this improves
to 59% of the reach-modulated neurons (S3 Fig). While this filtering does not explain all
observed error, it is useful when reconciling the results for individual neurons in Fig 3 with the
larger dataset. This improvement upon filtering for active, well-modeled neurons demon-
strates two things: 1) this method performs poorly on sparse-firing neurons, and 2) this
method performs poorly on neurons that are not well-described by the set of models we con-
sider. Both of these shortcomings are as expected given the algorithm. The former can be
addressed by evaluating average neural activity represented by a DNA-based record, which
can be done in a naïve, model-free manner. The latter, an inability to align signals that we can-
not already model accurately, remains a shortcoming of this approach when attempting the
interpretation of molecular recorder output.

We also analyze recording systems with a hypothetical DNAP that exhibits no pausing, but
is otherwise identical to the previous DNAPs (see Methods). When examining the same neu-
rons as above, we find drastically decreased timing errors (RMSD 95% CIs of [0.17,0.18],
[0.31,0.39], and [0.47,3.0] seconds) and parameter estimation errors (average errors of 0.1, 0.2,
and -0.04 radians, S4 Fig). Using these highly optimized DNAPs, we approach the timing reso-
lution that would seem to be useful for high-precision neuroscience experiments, and retain
high-accuracy prediction of neural tunings. A conclusion from this analysis is that much of the
error we observe with our technique resolves when DNAPs behave more regularly. These
results are of particular interest to us because of their biological implications: DNAP pausing
generally has both DNAP-based and sequence-dependent components, and can be ablated
using sequence context, chemical, or temperature-based means [19,26,27]. This significant
improvement in both timing accuracy and parameter estimation suggest that decreasing
DNAP pausing through these or other methods could be a useful approach to improve the
accuracy of molecular recording systems.

Influence of experimental design on algorithm performance
We observe that errors in tuning parameter estimation in our simulated reaching experiments
are not always normally distributed; rather, in a number of neurons, there appear to be several
preferred directions that alignments converge upon, including peaks at a neuron's anti-tuned
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direction (Fig 3C). This effect persists, although less prominently, when using a non-pausing
DNAP (S4 Fig). This is useful to consider given the underlying center-out task in our experi-
ment, where subjects reach in a direction then immediately make a reach back to the center,
i.e. the opposite direction of the initial reach. It seemed possible that pathologic alignments
could arise from this repetitive temporal structure, where alignments to tuned and anti-tuned
templates are effectively identical save for a time-lag. Disrupting this structure through appro-
priate experimental design could lead to improved accuracy.

We generated a dataset composed of shuffled 2-second-long patches of neural and kinetics
data such that the temporal structure of the original dataset was disrupted. We find that shuf-
fling the data can both reduce selection of anti-tuned preferred directions (Fig 4A and 4B), as

Fig 4. Effects of shuffled dataset on alignment accuracy.Evaluation of synthetic shuffled dataset on alignment performance. Preferred
directions were determined using the best alignment to a set of 8 estimates of neural activity. True neural preferred directionswere
determined using a generalized linearmodel trained on x- and y-direction hand velocity. A)Histograms of algorithm-determined preferred
directions of 4 selected neurons using the original dataset. Histograms represent relative frequencies over 100 simulatedDNA-based
records. Dashed line indicates true neural preferred direction.B)Histograms of algorithm-determined preferred directions of 4 selected
neurons using a dataset consisting of random 2-second patches of the original dataset. Histograms represent relative frequencies over 100
simulatedDNA-based records. Dashed line indicates true neural preferred direction.C) Average absolute error in estimating the preferred
directions of 4 selected neurons using either the original or shuffled dataset. Error bars represent bootstrapped 95% confidence intervals
over 100 trials.

https://doi.org/10.1371/journal.pcbi.1005483.g004
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well as decrease overall tuning estimation error (Fig 4C). However, it is important to note that
the shuffling scheme we describe here does not improve alignment for all neurons, and can
even disrupt alignment of neurons that are otherwise predicted correctly (S5 Fig). While this
argues against naïve shuffling as a universal strategy, it further demonstrates the effect of an
experiment's temporal structure on alignment accuracy. These findings suggest that experi-
mental design cognizant of alignment-based analysis can improve robustness to pathologic
alignments, and thus the feasibility of molecular recording-type experiments.

Discussion
We describe an algorithm that generates estimates of nucleotide incorporation times for a
molecular recording system, along with estimates of parameters that characterize the underly-
ing recorded system. We improve upon naïve estimates of these values by incorporating
observed experimental data along with a probabilistic description of recorder properties. We
apply the algorithm to simulated neuroscience experiments, demonstrating the viability of this
algorithm (and the general molecular recording scheme) in a number of scenarios. Our find-
ings suggest that single-strand molecular recording is statistically feasible in neuroscience con-
texts. Further, by introducing experimental information into our estimation techniques, we
improve upon previously-understood limits on the technique. Single-strand recording prom-
ises to be a useful technique in neuroscience and biology in general for a number of reasons;
establishing a statistical framework for the interpretation of those signals is an important step
towards the realization of this technology.

This algorithm is computationally novel, as it incorporates dynamic programming, proba-
bilistic inference, and biologic constraints into a single framework. We modify existing DTW
approaches to signal alignment, constraining our action space to physiologically possible
actions (e.g. two nucleotides cannot be incorporated at the same time), as well as incorporating
beliefs about DNAP kinetics. These constraints have a convenient property in that they restrict
our action space to a set that can largely be calculated independently, allowing for paralleliza-
tion of a dynamic algorithm. While the algorithm maintains the same approximate time com-
plexity of traditional DTW (worst-case of O(NT)), its inherent parallelism can lead to
dramatically decreased runtime.

Further, while not discussed at length here, if recording start or end times are known, vari-
ance of incorporation times scale with

ffiffiffiffi
N
p

assuming a Poisson-like DNAP. Path-constraint
techniques could take advantage of this property, reducing effective worst-case time complex-
ity toO N1

2T
� �

and allowing further speed increases [10,28]. These speed improvements are of
particular importance due to the inherently large scale of molecular recording: if we want to
record from hundreds-of-thousands to millions of neurons, the computational techniques
necessary to interpret these signals should scale well.

To this end, there are a number of different biological methods that could be used to explic-
itly mark the start or end of molecular recorder output, e.g. by delivered analyte pulses or by
optogenetic manipulation. These methods could also be used to provide time-coding through-
out an experiment, making timing inference substantially easier. Similarly, designing behav-
ioral tasks to modulate neural activity at levels significant enough to be detected, but low
enough not to alter behavior, e.g. temporally modulating the brightness of visual stimuli, could
be used as an implicit time-coding technique. These experimental methods for encoding tim-
ing information into molecular records can work alongside algorithmic alignment methods to
improve both timing and parameter inference.

This work also has implications on current work in the biological space. It is useful to
understand the effects of DNAPs with different behaviors (e.g. speed, error rate) on the ability
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to record information, both for our application to molecular recorders, as well as for other
approaches that aim to record continuous signals intracellularly. Understanding the general
space where recorders work (or fail) is useful not only for determining what kinds of DNAPs
we need to find or design, but also for determining which kinds of phenomena might be ame-
nable to study using molecular recorders.

Biological feasibility and implementation
There are many ways in which existing DNAPs already satisfy the requirements necessary for
a single-strand biological recorder, e.g. processivity, speed, calcium-sensitive error rates, and
pausing kinetics [19,26,29]. The one property that we have not observed in DNAPs is a cal-
cium-sensitive error rate at physiological concentrations [20]. Further, natural DNAPs tend to
be either fast or error-prone, but not generally both; the highest error rates we see in high-
incorporation-rate DNAPs are at the low end of what we simulate here [21,30]. In order to
develop practical molecular recorders, we will both need to understand how to substantially
increase DNAP error rates in processive, high-speed DNAPs, as well as develop a scheme to
make DNAP error rates calcium-sensitive at physiologically relevant scales. Alternatively,
schemes that do not rely on calcium-tuned error rates, but rather modulate other DNAP prop-
erties via calcium, may provide an easier way forward.

Caveats
Need for good predictive models. The success of alignment approaches in this context is

dependent on having estimates of neural activity that span the classes of neurons we are inter-
ested in recording. That is, we generally have to know the class of phenomenon we are looking
for before we are able to look for it. For the recording of more well-characterized brain areas,
e.g. V1 or M1, we have at least a general knowledge of the neural response to stimulus or
behavior. In these systems, molecular recording would allow for characterization of large pop-
ulations of neurons based on existing models of neural behavior. Further, ongoing refinement
of these models promises to more accurately model neural activity in more areas of the brain,
which in turn will increase the applicability of these model-based alignment approaches. For
less-well understood tasks however, we run the risk of biasing our recordings toward currently
understood neuronal behaviors. While our approach is useful in neuroscience paradigms
where we are seeking to classify neurons according to known models or learn their tunings
under an assumed model, it does not obviate the need for prior-free exploration of unknown
behaviors. This technique will not necessarily allow us to discover unheard-of neural behav-
iors; rather, it allows us to sense neural activity from neurons we already somewhat understand
while greatly increasing the scale at which we study them.

Need for tailored experimental design. We have also shown that the success of temporal
alignment for molecular recording relies heavily on experimental design. That is, many experi-
mental paradigms may need to be reworked in order to be compatible with this type of analy-
sis, and some may be entirely incompatible with these techniques. Our work provides some
general guidelines for experimental design for experiments that utilize molecular recorders. In
particular, it suggests that experiments can be manipulated to create unique signatures in their
resulting records, given some set of likely neural tunings. As a quality control mechanism,
stimulus delivery (or subject activity) should be designed so as not to induce oscillation or
other regularities. In addition to designing experiments to avoid pathologic sequences, these
experiments could be actively designed to provide unique patterns or time-codes in order to
intentionally improve alignment accuracy. Through engineering input data in this way, we can
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increase the accuracy of this type of alignment algorithm, allowing for more accurate experi-
ments using molecular recorders.

Implications of work
While many caveats apply to this work, and to the prospect of molecular recorders in general,
the results described here are helpful on a number of fronts. On a technical side, we describe a
DTW-class algorithm that applies generally to point processes with variable temporal index-
ing. The algorithm is designed to allow probabilistic interpretation of its output, and can be
used to findmaximum a posteriori alignments to a set of known templates. We provide a
highly-parallelized implementation of this algorithm which leverages advances in asynchro-
nous computing techniques. With respect to molecular recorders, we provide a framework for
interpretation of recorder output in the face of uncertain recording times. We also provide
guidance to the ongoing research that looks to engineer DNAPs for this kind of recording. Per-
haps most importantly, we have shown that, should a DNAP with certain properties be devel-
oped, we can provide temporal indexing to its output and capture neural behaviors using a
molecular recording approach. While this is purely a simulation study, our work sets con-
straints and goals for the development of DNAPs for massive-scale neural data recording, and
outlines experimental scenarios for their successful use.

Methods
Algorithmmethods
This technique is intended to align a DNA-based recording with no temporal indexing to a
longer, time-indexed estimation of calcium activity, a template. It assumes the DNA sequence
as a binary ªerrorº/ºno errorº code, then assesses the similarity of that sequence to a discrete-
time continuously-valued estimate of neural activity, the template, via alignment. We use a
novel DTW-class algorithm to perform this alignment, incorporating beliefs about DNAP
kinetics to limit the space of potential actions.

Generative model. We assume some unknown discrete calcium signal, C = c1,. . .,cT,
where ct 2 [cmin, cmax] is the local calcium concentration at some time t, and T is the number
of time-indexed samples included in the recording window. We also have a sequence of
correctly- and incorrectly-copied nucleotides, D = d1,. . .,dN, dn 2 {0,1}, where N is the number
of nucleotides, dn = 1 denotes a mismatch (error) at position n, and dn = 0 denotes a nucleotide
with a correct Watson-Crick basepair.

The individual elements ofD have incorporation times T = τ1,. . .,τN where τn 2 {1,. . .,T}
and τn< τn+1 (Fig 5A). We can impose a prior over recording start times P(τ1 = t) = πt; we use
a uniform prior over an interval 0; T

4

� �
here to generate data. For 1< n� N, τn = τn-1 + U,

where U is drawn from a distribution representative of polymerase kinetics. That is, the distri-
bution of U is the distribution of times between nucleotide incorporations. dn is then drawn
from a distribution Pðdn ¼ 1Þ ¼ f ðctn

Þ, where f(�) is the calcium-dependent error function of
the polymerase, and ctn

is the calcium concentration at incorporation time τn (Fig 5B).
Of C,D, and T, we only observeD. We wish to infer C and T using the strandD and

observed experimental data. To do this, we generate an approximation of C, C� ¼ c�
1
; . . . ; c�T ,

using a model of neural activity that estimates neural calcium response from observed experi-
mental data. We use C� as a template for the alignment ofD. This alignment allows us to esti-
mate the temporal indexing T, which can be used to estimate C along with underlying system
parameters.
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Creation of similarity matrix. We generate a similarity matrix A between C� andD such
thatAn;t ¼ lnPðdnjc�t ; tn ¼ tÞ. That is, An,t is the log-likelihood of dn being written at time t
given the estimated calcium concentration c�t and DNAP error tuning f(�). Thus, A represents
local similarity between each element ofD and C�.

Matrix traversal. After we have generated a local similarity matrix A, we then want to
find the path T�, an estimate of T. To generate this estimate, we find a T� which traverses A
with maximum likelihood, visiting each n 2 {1,. . .,N} only once, given A and the distribution
of U. We utilize a dynamic programming approach to estimate the likelihoods of paths
through A, utilizing the physical requirement τn< τn+1 to constrain our step pattern, i.e. a
nucleotide cannot be incorporated earlier in time than its predecessor on the strand, and the
Markov assumption P(τn|τn−1,. . .,τ1) = P(τn|τn−1). This approach, similar to other dynamic
time warping algorithms, determines the most-likely path from some starting point to position
An,t by calculating the most-likely paths to some set of penultimate positions An−1,. . . and the
accumulated likelihood of those paths, then selecting the path from An−1,. . . to An,t that gives
the highest accumulated likelihood [9,31].

We initialize with log P(τ1 = t) = A1,t. At this step, a prior representing knowledge of when
reactions likely begin can be incorporated, but is not used here. We then evaluate a likelihood
function of some sequence τ1,. . .,τn that resembles traditional dynamic alignment cost

Fig 5. Overview of data generativemodel. A) Stochastic generation of T. The incorporation time of a nucleotide,
τn, is defined as τn-1 +UwhereU is a random variable with a distribution that describes the kinetics of the DNAP
being used.B) Stochastic generation of errors. At each incorporation time τn, an error is generated with probability
fðCtn

Þ. Errors in the nucleotide strand are represented by blue regions, correct incorporations are represented by
orange regions.

https://doi.org/10.1371/journal.pcbi.1005483.g005
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functions such that:

lnPðtn ¼ tÞ ¼ An;t þmaxt02t� k;...;t½ð1 � oÞlnPðtn� 1 ¼ t0Þ þ o � lnPðU ¼ t � t0Þ� ð1:2Þ

t0n;t ¼ argmaxt02t� k;...;t½ð1 � oÞ lnPðtn� 1 ¼ t0Þ þ o � ln ðPðU ¼ t � t0ÞÞ� ð1:3Þ

where t0n;t is the most likely time dn−1 was written given τn = t, ω is a parameter that adjusts the
relative strength of local similarity, previous similarity, and polymerase kinetics on likelihood,
and k defines how ªfar backº we choose to look for the best previous step. Effectively, for
any (n, τn), we calculate the most likely ðn � 1; t0n;tnÞ. We evaluate P(τn = t) for all pairs (n, τn),
n 2 {1,. . .,N} and τn 2 {1,. . .,T}. For each possible (n,t), we store P(τn = t) and t0n;t .

Once P(τn = t) has been calculated for each (n,t), we can reconstruct the most likely align-
ment T�. We find the most likely end point τN = argmaxt20,. . .,T P(τN = t), i.e. we select the path
T� that ends at the most likely τN. We then set tN� 1 ¼ t0N;tN and so on for τN−2,. . .,τ1. This algo-
rithm is implemented in pseudocode in Fig 6.

Fig 6. Pseudocode for alignment algorithm.

https://doi.org/10.1371/journal.pcbi.1005483.g006
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It is useful to note here a structural relationship between our algorithm and a DTW step-
pattern variant proposed by Itakura [32,33]. Both algorithms only use data from An−1,1. . .T to
calculate An,t, which implies that the calculations for any two elements in a row are indepen-
dent; we extend the Itakura action space and remove several other restrictions from potential
paths. The Itakura step pattern is intended as a path-bounding scheme; while we do not imple-
ment bounding explicitly here, it is performed implicitly with our choice of k. Thus, the algo-
rithm as described is an approximation of the truemaximum a posteriori solution, as we do
not evaluate the entire solution space. We also inherit several attractive attributes with respect
to parallelism from Itakura, which we discuss later.

Parallelization of alignment algorithm. We have described an algorithm with worst-case
time complexity O(NTk) and k threads that can be operated on concurrently, i.e. all operations
in the vector addition (1 − ω)p + ωq can be performed independently. In comparison, tradi-
tional DTW is worst-case time complexity O(NT) for our purposes, and has 3 threads that can
be operated on concurrently. To calculate an element Sn,t using our algorithm, we only require
values from row n − 1, indicating that the computations for Sn,t, t ∊ 1,. . ., T are independent. It
follows that that we actually have Tk threads that can be operated on concurrently, i.e. the
operation (1 − ω)p + ωq for each Sn,t, rather than k. To implement this, we pre-generate q and
p for each t ∊ 1,. . ., T; the algorithm can then be carried out for each t concurrently for a given
n. While algorithm complexity does not change, we improve runtime by a factor of up to T via
parallelization.

Maximum-likelihood template selection. In order to generate an accurate estimate C�,
we need to know how a neuron is tuned to its inputs. As we do not know this a priori, we
instead generate multiple candidates C

y

m from some set of possible neural tunings and let C�

be the estimate C
y

m with the most-likely alignment to the dataD. There are time-indexed
experimental variables X = x1, . . ., xT, and a set of tunings Θ = {g1(�), . . ., gM(�)}, where
C
y

m
¼ gmðXÞ. Simply, Θ enumerates the possible ways we believe a neuron transforms experi-

mental covariates (e.g. movement, delivered stimuli) into activity. We now select the tuning
gm(�) that provides the most likely alignment to our observed dataD. We do this by aligning
the observed D with each C

y

m
, selecting C

�
¼ argmaxCy2fg1ðXÞ;...;gM ðXÞg

PðT�jD;CyÞ, the intui-
tion being thatD should most closely resemble the signal that generated it. Once we have
selected a most-likely tuning from the ensemble Θ and alignment T�, we then estimate actual
neural tuning directly from aligned DNA.

Approximations. We significantly reduce the computational requirements of the algo-
rithm by using downsampled approximations ofD and C

y

m
. To abstract our data, we first deci-

mate C² , effectively taking a binned average with bin size LC. We then binD into bins of size

LD, letting dn0 ¼
XDðiþ1Þ

n¼Di

dn be the total number of errors in bin n0.

We then align the downsampled C
y

m
andD using the algorithm described above, altering

the cost-function for An,t:

An0 ;t0 ¼ logPðdn0 jc
y

m;t0 ; tn0 ¼ t0Þ ð1:4Þ

where dn0 � BinomialðLD; feðc
y

m;t0 ÞÞ. Through this, we generate an approximate most-likely
alignment T0a. Ta is a low-resolution alignment; we recover a full-nucleotide alignment T0 by
interpolating between points on T�a.
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Experimental methods
DNAP parameter evaluation. We generated an initial stimulation trace I by concatenat-

ing 400 periods of stimulation, length 5s with intensity Ie ~ Uniform(0, 1). We then simulate
neural firing rate λ, λt =mIt + λmin, withm = 0.05 spikes �ms−1 � unit of stim−1 and λmin = 0
spikes �ms−1, and generated spiking activity st ~ Bernoulli(λt). We then generate a calcium
trace C by convolving spikes with an exponential filter with decay τ = 200 ms. We can then cal-
culate the effective relationship C/mcaI. We also generate an accurate estimate of calcium,
C�, by convolving λ with the same exponential filter.

DNAP kinetic parameters were chosen to reflect DNAP extension and pausing behavior
used to generate the data. These parameters, other than calcium response, are generally reflec-
tive of known DNAPs [19,34]. We generate a DNA-based record D from C as above, using the
ªBase Parameter Evaluation DNAPº in Table 1. We then alignD to C� using the algorithm
parameters for ªParameter Evaluation Experimentsº in Table 2. Timing accuracy for each
alignment is evaluated as above. Slope accuracy is evaluated by first calculating the error-tun-
ing curve over the range of C, transforming the error-tuning curve with f−1(�), then calculating
the slope of the resulting calcium-tuning curve,m�ca. We report the ratio m�ca

mca
. 95% confidence

intervals were generated by bootstrapping over alignment results for 50 DNA strands at each
reported point.

Center-Out reaching experiments. We obtained kinetic and neural activity records from
Flint 2012 via the DREAM database, using data from Subject 1 [25]. We preprocess the data by
concatenating all 194 trials, discarding data where hand velocity either exceeded 0.4 m/s or fell
below 0.05 m/s, and truncating traces to 260 seconds. We generated a calcium trace C by
convolving spikes with an exponential filter with decay τ = 200 ms. To generate DNA-based

Table 1. DNAP simulation parameters.

Center-Out DNAP ªOptimizedº Center-Out
DNAP

Base Parameter Evaluation DNAP

Error function and
parameters

f(�) Rmax �
1

1þexp½bðC� C0Þ�
Rmax �

1

1þexp½bðC� C0Þ�
Rmax �

1

1þexp½bðC� C0Þ�

Rmax 0.5 0.5 0.5
b 1 1 1
C0 0 0 0

Kinetic distribution and
parameters

U (Distribution) pause� Exp(λp) + (1 − pause)
Gamma(α, β)

Gamma(α, β) pause� Exp(λp) + (1 − pause)
Gamma(α, β)

Pause
(Distribution)

Binomial(ppause) N/A Binomial(ppause)

λp 2s N/A 2s
α 1 1 1
β 10ms 10ms 10ms

ppause 0.001 N/A 0.01
# of basepairs 12,000 12,000 10,000

https://doi.org/10.1371/journal.pcbi.1005483.t001

Table 2. Default alignment parameters.

k (ms) ω Ca2+ downsample rate (ms/sample) DNA downsample rate (nt/sample)
Parameter Evaluation Experiments 2000 1

100
50 100

Center-Out Experiments 2000 1

240
50 25

https://doi.org/10.1371/journal.pcbi.1005483.t002
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signals, we first determine incorporation times T by drawing nucleotide incorporation times
from distribution U as described in Table 1, using either the ªCenter-Outº or ªOptimized
Center-Outº parameters. We then determine whether each nucleotide was a correct or incor-
rect incorporation as dn � Bernoulliðf ðCtn

ÞÞ, using the f(�) described in Table 1.
We select 8 candidate preferred directions, evenly spaced on [0, 2π], as the parametrization

Θ for our estimates of neural activity. We calculate expected firing rates λ0m for each of these
candidate preferred directions, using recorded hand velocities and a cosine-tuning model, set-
ting minimum and maximum firing rates to values representative of the recorded population;
we set λmin = 10 spikes � s−1 and λmax = 150 spikes � s−1, which generally represents the observed
neural population. We convolve λ0m with an exponential kernel described above to generate
estimated calcium C

y

m.
The generated DNA strandD is aligned to each estimated calcium trace C

y

m, using algo-
rithm parameters (ω, k, and downsample rates) as described in Table 2. The most likely align-
ment from these is selected for analysis. We calculate RMSD for a given alignment as

1

N

XN

n¼1

ðTn � T�nÞ
2

" #1=2

. We evaluate the preferred reach direction of the neuron directly from

neural data using standard generalized linear modeling techniques, fitting x- and y-
components of reach velocity to 1ms-binned spike counts. We use this direct preferred direc-
tion as a ground truth for evaluating algorithm performance. For the aligned DNA-based rec-
ords, we evaluate the estimated preferred direction of the neuron using a generalized linear
model, fitting reach instantaneous velocity to error counts at each nucleotide incorporation
time.

For each analyzed neuron, we generate 100 DNA-based records, align each record to each
estimated calcium trace, and evaluate timing and parameter estimates using the maximum-
likelihood alignment for each record. Confidence intervals for error estimates are generated by
bootstrap.

For all-neuron analysis, 100 strands were generated and aligned as above. Neurons were fil-
tered based on average firing rate> 20 spikes/s and a McFadden's pseudo-R2> 0.05, calcu-
lated for a Poisson generalized linear model fitting x- and y- hand velocities to spike rate.

Timing data. For each trial, a strand of given length is aligned to a 2,000s calcium trace
without downsampling. The total time elapsed for each alignment was recorded. 10 trials were
performed for each data point, averages are presented. Algorithms were implemented in
MATLAB (MathWorks Inc.), and evaluated on an Intel i7-3520M 2.9GHz CPU and an NVidia
NVS 5200M discrete graphics card.

Supporting information
S1 Fig. Relative algorithm performance. A) Schematic of considered algorithms. Dark purple
elements indicate the current element being calculated, light purple elements are elements still
to be computed. Grey elements represent previously computed results needed to evaluate the
current element. Traditional DTW consists of element-wise computation of an accumulated
cost function, iterated over both dimensions of the cost matrix. The looped version of our algo-
rithm implements element-wise computation of our modified accumulated cost function, also
iterated over both dimensions of the cost matrix. Our vectorized algorithm calculates the accu-
mulated cost functions of all elements along a given dimension, and iterates over the other
dimension. B) Computational speed of the GPU-implemented algorithm relative to other
implementations. We compare to a looped implementation of our algorithm, an implementa-
tion of traditional DTW, and our optimized algorithm using on a single CPU core. We
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evaluate computation time during the alignment of a single DNA input of a given length to a
constant-length (2,000 second) template; values plotted represent average over ten trials.
Dashed line indicates GPU-implemented performance.
(DOCX)

S2 Fig. Using optimal templates for alignment. Timing and neural parameter estimation
when using either the best alignment from a set of 8 templates generated from potential neural
preferred directions on [0,2π] (blue), or from a template generated using the true neural pre-
ferred direction (orange). Results are shown for each of the three individual neurons analyzed
in the main text. Histograms represent distribution over 100 trials. A) Distribution of timing
errors for DNA-based records when aligned to the indicated template. B) Distribution of esti-
mated neural preferred directions when aligned to the indicated template. Dashed lines indi-
cate the true neural preferred direction, estimated from neural data.
(DOCX)

S3 Fig. Alignment accuracy over a neural population. Cumulative fractions of the neural
population that have alignment statistics at or below a given cutoff. Traces are provided for
both the entire dataset (blue) and a subset of neurons with average firing rate greater than 20
spikes/s and a model McFadden's pseudo-R2> 0.05 (purple). A) Proportion of population
with average trial RMSD less than indicated value. B) Proportion of population with median
trial RMSD less than indicated value. C) Proportion of population with absolute error in esti-
mated preferred direction |θ ± θ�| less than indicated value.
(DOCX)

S4 Fig. Plausible vs. optimal DNAPs in alignment. Timing and neural parameter estimation
when using ªnaturalº (blue) or ªoptimizedº (orange) pausing DNAPs (see Methods). Results
are shown for each of the three individual neurons analyzed in the main text. DNA-based rec-
ords were generated using the indicated DNAP and aligned to a set of 8 templates generated
from potential neural preferred directions on [0,2π]; most-likely alignments were used to gen-
erate timing and tuning error. Histograms represent distribution of values over 100 trials. A)
Distribution of timing errors for DNA-based records generated using the indicated DNAP. B)
Distribution of estimated neural preferred direction for DNA-based records generated using
the indicated DNAP. Dashed lines indicate the true neural preferred direction, estimated
directly from neural data.
(DOCX)

S5 Fig. Shuffled datasets offer heterogeneous effects for alignment accuracy. Evaluation of
synthetic shuffled dataset on alignment performance for a set of neurons that do not exhibit
improvement using a shuffled dataset. Preferred directions were determined using the best
alignment to a set of 8 estimates of neural activity. True neural preferred directions were deter-
mined using a generalized linear model trained on x- and y-direction hand velocity. A)Histo-
grams of algorithm-determined preferred directions of 5 selected neurons using the original
dataset. Histograms represent relative frequencies over 100 simulated DNA-based records.
Dashed line indicates true neural preferred direction. B)Histograms of algorithm-determined
preferred directions of 5 selected neurons using a dataset consisting of random 2-second
patches of the original dataset. Histograms represent relative frequencies over 100 simulated
DNA-based records. Dashed line indicates true neural preferred direction. C) Absolute error
in estimating the preferred directions of 5 selected neurons using either the original or shuffled
dataset. Error bars represent bootstrapped 95% confidence intervals.
(DOCX)
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Supplemental Figure 1: Relative Algorithm Performance 
A) Schematic of considered algorithms. Dark purple elements indicate the current element being calculated, light purple elements are 
elements still to be computed. Grey elements represent previously computed results needed to evaluate the current element. Traditional 
DTW consists of element-wise computation of an accumulated cost function, iterated over both dimensions of the cost matrix. The looped 
version of our algorithm implements element-wise computation of our modified accumulated cost function, also iterated over both 
dimensions of the cost matrix. Our vectorized algorithm calculates the accumulated cost functions of all elements along a given dimension, 
and iterates over the other dimension. B) Computational speed of the GPU-implemented algorithm relative to other implementations. We 
compare to a looped implementation of our algorithm, an implementation of traditional DTW, and our optimized algorithm using on a single 
CPU core. We evaluate computation time during the alignment of a single DNA input of a given length to a constant-length (2,000 second) 
template; values plotted represent average over ten trials. Dashed line indicates GPU-implemented performance. 

 



 
Supplemental Figure 2: Using Optimal Templates for Alignment 
Timing and neural parameter estimation when using either the best alignment from a set of 8 templates generated from potential neural 
preferred directions on [0,2π] (blue), or from a template generated using the true neural preferred direction (orange). Results are shown for 
each of the three individual neurons analyzed in the main text. Histograms represent distribution over 100 trials. A) Distribution of timing 
errors for DNA-based records when aligned to the indicated template. B) Distribution of estimated neural preferred directions when aligned 
to the indicated template. Dashed lines indicate the true neural preferred direction, estimated from neural data. 

 



 
Supplemental Figure 3: Alignment accuracy over a neural population 
Cumulative fractions of the neural population that have alignment statistics at or below a given cutoff. Traces are provided for both the entire 
dataset (blue) and a subset of neurons with average firing rate greater than 20 spikes/s and a model McFadden’s pseudo-R2 > 0.05 (purple). 
A) Proportion of population with average trial RMSD less than indicated value. B) Proportion of population with median trial RMSD less than 

indicated value. C) Proportion of population with absolute error in estimated preferred direction *| |θ θ−  less than indicated value. 
 



 
Supplemental Figure 4: Plausible vs. Optimal DNAPs in Alignment 
Timing and neural parameter estimation when using “natural” (blue) or “optimized” (orange) pausing DNAPs (see Methods). Results are shown 
for each of the three individual neurons analyzed in the main text. DNA-based records were generated using the indicated DNAP and aligned to 
a set of 8 templates generated from potential neural preferred directions on [0,2π]; most-likely alignments were used to generate timing and 
tuning error. Histograms represent distribution of values over 100 trials. A) Distribution of timing errors for DNA-based records generated using 
the indicated DNAP. B) Distribution of estimated neural preferred direction for DNA-based records generated using the indicated DNAP. Dashed 
lines indicate the true neural preferred direction, estimated directly from neural data. 

 



 
Supplemental Figure 5: Shuffled datasets offer heterogeneous effects for alignment accuracy 
Evaluation of synthetic shuffled dataset on alignment performance for a set of neurons that do not exhibit improvement using a shuffled 
dataset. Preferred directions were determined using the best alignment to a set of 8 estimates of neural activity. True neural preferred 
directions were determined using a generalized linear model trained on x- and y-direction hand velocity. A) Histograms of algorithm-
determined preferred directions of 5 selected neurons using the original dataset. Histograms represent relative frequencies over 100 
simulated DNA-based records. Dashed line indicates true neural preferred direction. B) Histograms of algorithm-determined preferred 
directions of 5 selected neurons using a dataset consisting of random 2-second patches of the original dataset. Histograms represent relative 
frequencies over 100 simulated DNA-based records. Dashed line indicates true neural preferred direction. C) Absolute error in estimating the 
preferred directions of 5 selected neurons using either the original or shuffled dataset. Error bars represent bootstrapped 95% confidence 
intervals. 

 


	Binder1.pdf
	pcbi.1005483.s001
	pcbi.1005483.s002
	pcbi.1005483.s003
	pcbi.1005483.s004
	pcbi.1005483.s005


