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Integration of autopatching with automated pipette and cell detection
in vitro. J Neurophysiol 116: 1564–1578, 2016. First published July
6, 2016; doi:10.1152/jn.00386.2016.—Patch clamp is the main tech-
nique for measuring electrical properties of individual cells. Since its
discovery in 1976 by Neher and Sakmann, patch clamp has been
instrumental in broadening our understanding of the fundamental
properties of ion channels and synapses in neurons. The conventional
patch-clamp method requires manual, precise positioning of a glass
micropipette against the cell membrane of a visually identified target
neuron. Subsequently, a tight “gigaseal” connection between the
pipette and the cell membrane is established, and suction is applied to
establish the whole cell patch configuration to perform electrophysi-
ological recordings. This procedure is repeated manually for each
individual cell, making it labor intensive and time consuming. In this
article we describe the development of a new automatic patch-clamp
system for brain slices, which integrates all steps of the patch-clamp
process: image acquisition through a microscope, computer vision-
based identification of a patch pipette and fluorescently labeled
neurons, micromanipulator control, and automated patching. We val-
idated our system in brain slices from wild-type and transgenic mice
expressing channelrhodopsin 2 under the Thy1 promoter (line 18) or
injected with a herpes simplex virus-expressing archaerhodopsin,
ArchT. Our computer vision-based algorithm makes the fluorescent
cell detection and targeting user independent. Compared with manual
patching, our system is superior in both success rate and average trial
duration. It provides more reliable trial-to-trial control of the patching
process and improves reproducibility of experiments.

patch-clamp; computer vision; fluorescent cell detection; in vitro slice
electrophysiology

NEW & NOTEWORTHY

This work presents a new automated, image-guided patch-
clamp system for brain slices. We have developed novel
computer vision-based algorithms of user-independent
identification of patch pipettes and fluorescently labeled
neurons. Our system integrates all steps of the patch-clamp

process: image acquisition through a microscope, auto-
mated identification of patch pipettes and fluorescently
labeled neurons, micromanipulator control, and automated
patching. This innovation allows robust, reproducible
patch clamp with higher success rate and decreased trial
duration compared with manual patching.

PATCH-CLAMP RECORDING is a gold-standard technique for accu-
rate measurement of membrane voltage fluctuations, synaptic
currents, and ionic channel activity in neurons (Neher and
Sakmann 1976). It has allowed neuroscientists to study prop-
erties of individual ion channels (Hoshi et al. 1990) and
synapses (Edwards et al. 1990) and to characterize synaptic
plasticity (Jaffe and Johnston 1990; Zalutsky and Nicoll 1990)
and dendritic integration (Larkum et al. 1999). Patch-clamp
recording also has been essential for dissecting the pathophys-
iology of neurological disorders caused by mutations in chan-
nels and synaptic proteins (Ackerman and Clapham 1997). In
combination with morphological characterization, this method
has been used for classifying cell types in the brain (Kawagu-
chi and Kubota 1993) and elucidating connectivity among
nearby neurons (Markram et al. 1997). It also has been suc-
cessfully coupled with optogenetics (Boyden et al. 2005) and
applied to map long-range neuronal circuits (Petreanu et al.
2007).

There is a growing demand for large data sets of patch-
clamp recordings and morphological reconstructions. For ex-
ample, large-scale cell-type classification of neurons based on
electrophysiology and morphology as well as the study of their
synaptic connections are some of the highest-priority goals in
modern neuroscience (Alivisatos 2012, 2013; Insel et al. 2013;
Jiang et al. 2015; Kandel et al. 2013). However, patch-clamp
recording of a large number of neurons has limitations: it is a
challenging, laborious technique, akin to an art form, requiring
a skilled and highly trained investigator. It is also low through-
put: even the most skilled and experienced patch-clamp inves-
tigators can only record from a few neurons per day.

A typical patch-clamp experiment is highly repetitive, making
it strenuous and error prone for the investigator. For example,
when the micropipette is being advanced toward the target cell,
errors such as advancing the pipette too far into the tissue,
breaking the pipette tip, and improperly setting the pipette
pressure are common among novices and occasional among
experienced researchers. Furthermore, these errors usually ac-
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cumulate toward the end of the day when researchers get
fatigued. Some steps of the patch-clamp process are difficult to
control manually. For example, the delicate pneumatic pressure
changes applied to the pipette are necessary to form a whole
cell configuration. This pressure control is typically performed
by mouth or with a syringe (Boulton et al. 1995; Walz 2007),
making it difficult to replicate among laboratories, among
different investigators in the same laboratory, and even by the
same researcher. Consequently, wide variability in manual
patch-clamp methodology creates challenges when large data
sets collected by various laboratories for a single study must be
directly comparable (Tripathy et al. 2015). Furthermore, when
multiple cells must be patched simultaneously or when patch
clamping must be integrated with other techniques such as
optogenetics, the compounded complexity of the procedure
could prohibit new investigators from initiating such projects.
Thus there is a need to automate the patch-clamp process and
minimize human involvement in its technical aspects.

Some of the currently available open-source and commercial
software packages attempt to make some parts of the process
more convenient (Campagnola et al. 2014; Edelstein et al.
2010; Long et al. 2015; Perin and Markram 2013; Suter et al.
2010). However, there is no comprehensive free and open-
source solution that automates the patch-clamp procedure in
vitro. We previously developed and tested the “Autopatcher,”
a robot for automated “blind” patch-clamp recording in vivo
(Kodandaramaiah et al. 2012). The Autopatcher was designed
to use only electrical resistance, not visual information, as an
indicator of cell proximity. However, in brain slice prepara-
tions, targeting cells on the basis of visual cues such as the
shape or fluorescence of a cell is often required (Komai et al.
2006; Lefort et al. 2009). Currently, no automation software
exists to assist in the performance of such visually guided
patch-clamp experiments in tissue.

We have developed the Autopatcher IG (“Image Guided”), a
system that enables a conventional electrophysiology rig to
automatically perform patch-clamp electrophysiology in vitro.
The system reduces the need for manual intervention by
automating highly skilled but repetitive tasks in the patch-
clamp process (Fig. 1A). This is accomplished by automation
of pipette calibration (Fig. 1B), fluorescent cell detection (Fig.
1C), manipulator trajectory planning and execution, pneumatic
pressure control, electrophysiological measurements, and data
logging (Fig. 1). We have validated the performance of the
Autopatcher IG by performing patch-clamp recordings of over
200 cells in mouse brain slices from wild-type, transgenic, and
virally injected mice. The Autopatcher IG demonstrated robust
performance, reproducibility, and twofold improvement in
speed and likelihood of obtaining a successful recording com-
pared with manual patching.

MATERIALS AND METHODS

Animals. All animal procedures were approved by the Committee
on Animal Care at the Allen Institute for Brain Science, the Massa-
chusetts Institute of Technology, and the Purdue Animal Care and Use
Committee. Both male and female animals were used in acute brain
slice preparation. C57BL/6 (wild type) mice were used in all exper-
iments except for testing fluorescent cell detection and patching
algorithm. A stable mouse line expressing channelrhodopsin 2 (ChR2)
fused with enhanced yellow fluorescent protein (EYFP) under Thy1
promotor, B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J (Thy1-ChR2-

EYFP line 18), was purchased from Jackson Laboratory (Arenkiel et
al. 2007).

Acute mouse cortical slice preparation. Visual cortical slices from
young (postnatal day 21–50; P21–P50) mice were prepared as de-
scribed previously (Philpot et al. 2001). Mice were anesthetized with
isoflurane and decapitated after confirmation of deep anesthesia using
tests of corneal reflex and toe pinch. The brain was removed and
sliced with the use of a vibrating-blade microtome (Leica Microsys-
tems, Buffalo Grove, IL) in an ice-cold, oxygenated, high-sucrose
dissection buffer containing (in mM) 75 sucrose, 10 glucose, 87 NaCl,
2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 0.5 CaCl2, 7 MgCl2, and 1.3
ascorbic acid. Coronal slices (350 �m) containing primary visual
cortex were incubated at 32°C for 15 min in a holding chamber with
oxygenated artificial cerebrospinal fluid (ACSF) containing (in mM)
124 NaCl, 3.5 KCl, 1 CaCl2, 0.8 MgCl2, 1.23 NaH2PO4, 26 NaHCO3,
and 10 glucose, and were subsequently incubated at 30°C for the
remainder of the day.

Acute brain slices were prepared from adult (P50–P180) mice
using the protective recovery method described in detail elsewhere
(Ting et al. 2014). Briefly, animals were heavily anesthetized with
isoflurane and perfused transcardially with N-methyl-D-glucamine
(NMDG) solution containing (in mM) 93 NMDG, 2.5 KCl, 1.2
NaH2PO4, 30 NaHCO3, 20 HEPES, 25 glucose, 5 Na-ascorbate, 3
Na-pyruvate, 10 MgSO4·7H2O, and 0.5 CaCl2·2H2O (pH titrated to
7.3–7.4, osmolarity 300–310 mosM). Mice were quickly decapitated,
and the brain was extracted, embedded in 2% agarose, and cut into
300-�m coronal slices in the cutting solution using a VF200 com-
presstome (Precisionary Instruments). The slices were incubated at
34°C in the cutting solution for 10–12 min. They were then trans-
ferred to a recovery solution containing (in mM) 92 NaCl, 2.5 KCl,
1.2 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 glucose, 5 Na-ascorbate, 2
thiourea, 3 Na-pyruvate, 2 MgSO4·7H2O, and 2 CaCl2·2H2O (pH
7.3–7.4, osmolarity 300–310 mosM) for at least 60 min before
recording began. Recordings were performed at room temperature
(25°C) in an open bath chamber (RC-29; Warner Instruments) with
standard recording solution containing (in mM) 124 NaCl, 2.5 KCl,
1.2 NaH2PO4, 24 NaHCO3, 5 HEPES, 12.5 glucose, 2 MgSO4·7H2O,
and 2 CaCl2·2H2O. The liquid junction potential was not corrected.

Electrophysiology recordings. In both preparations, patch-clamp
electrodes were pulled from filamented borosilicate glass tubes
(BF150-86-10; Sutter Instruments) with the use of a P-97 micropipette
puller (Sutter Instruments) to a resistance of 3.5–7.9 M�. Internal
solution contained (in mM) 20 KCl, 100 K-gluconate, 10 HEPES, 4
MgATP, 0.3 Na2GTP, 7 phosphocreatine, and 0.2% biocytin (pH
adjusted to 7.4, osmolarity adjusted to 300 mosM). In some experi-
ments, 4% (wt/vol) Alexa Fluor 594 (A-10438; Life Technologies) or
Lucifer yellow (L-453; Life Technologies) was added to the intracel-
lular solution to visualize patch-clamped cells under fluorescent op-
tics. Cell characteristics were obtained 5 min after a successful
break-in using Clampex. The algorithm is considered to yield a
successful whole cell recording if access resistance is less than 80 M�
and holding current at �70 mV is larger than �200 pA.

All data are reported as means � SE. A two-tailed Student’s t-test
was used to compare between groups, and P � 0.05 is considered
significant.

Cell labeling with fluorescent dye. A glass pipette (with filament)
was back-filled with 5 mM Alexa Fluor 568 in 5 mM KCl by
contacting the back of the glass pipette (opposite side of the tip) with
the dye solution such that a small volume of the dye solution filled the
tip of the pipette by capillary force. The pipette was then back-filled
with internal solution. The patch-clamp experiment was performed as
described, and the cell was held for at least 30 min after whole cell
configuration was formed to allow the dye to diffuse into the
projections.

Immunohistochemistry and imaging. Acute brain slices were fixed
in 4% paraformaldehyde solution for 30 min at room temperature,
washed with PBS three times over 1 h, and subjected to antibody
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labeling or directly mounted for imaging. We used chicken anti-green
fluorescent protein (anti-GFP; ab13970; Abcam) diluted 1:1,000 in
PBS with 5% bovine serum albumin and 0.1% Triton X-100 overnight
at 4°C to label channelrhodopsin-EYFP. Slices were washed in PBS
three times over 1 h and incubated with goat anti-chicken Alexa 488
(A-11039: Thermal Fisher) overnight at 4°C in the same buffer used
for primary antibody labeling. Slices were then washed and mounted
for imaging with confocal scanning microscopy (Zeiss LSM710).

Viral injection surgery. ArchT-EYFP was cloned into the herpes
simplex virus (HSV) amplicon vector p1006, under the control of the
murine cytomegalovirus (mCMV) promoter. It was packaged using
the standard amplicon packaging protocol. The titer was 3 � 108

infectious units (i.u.)/ml. C57BL/6 (wild type) mice ages P16–P25
were used to inject HSV-ArchT-EYFP in the primary visual cortex.
Animals were initially anesthetized with 5% isoflurane and 1.5%
during the surgery. The surgical site was shaved and disinfected with
75% ethanol. The skin above the visual cortex was surgically re-

moved, and connective tissue was removed with 3% hydrogen per-
oxide. Four craniotomies (2 per hemisphere) at the primary visual
cortex (coordinates determined by mouse brain atlas) were carefully
drilled by a robotic rodent stereotactic surgery system (Neurostar).
Virus (500 nl) was injected to each site at a 0.6-mm depth over a
period spanning 10 min. The surgical site was sealed locally with
Kwik-Cast sealant (WPI), and then the skull was sealed with dental
cement (Ortho-Jet; Lang Dental). Animals recovered for 2–3 days
before preparation of acute cortical slices reparation to allow optimum
protein expression. The same procedure was then performed to pre-
pare acute brain slices as described above.

Pressure control unit parts. Parts used to construct the pressure
control unit are as follows: a secondary data acquisition board (USB-
1208FS; Measurement Computing, Norton, MA), solenoid valves
(LHDA0531115H; The Lee Company), an air pump (VMP1625MX-
12-90-CH mini-pump; Virtual Industries), and an air pressure sensor
(MPXV7025G; Freescale Semiconductor).
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Fig. 1. Automated image-guided in vitro patch-clamp workflow. A: steps in an automated in vitro patch-clamp experiment. 1, Primary calibration is done
automatically through computer vision (also see B). 2, Target cell selection is then done using either mouse clicks (bottom) or automatic fluorescent cell detection
(top; algorithm explained in detail in C). 3, Selected cell coordinates are stored for further patching (subscripts indicate the cell identification no.). 4, This is
followed by a pipette calibration step that determines the coordinates of the patch pipette with micrometer-scale accuracy and resolution (indicated by red
crosshairs). 5, With the coordinates of the pipette tip and target neuron determined, a pipette guidance algorithm determines the trajectory to be taken by the
pipette and automatically guides the pipette to the targeted cells. 6–8, The patch algorithm (also see Fig. 6 for detailed algorithm flowchart) is then initiated,
which uses pipette impedance measurements to detect contact with the neuron (6), form a gigaseal (7), and break in (8). 9, After successful break-in, a whole
cell recording is performed. A fully automatic patching process is defined as the successful automatic execution of all steps from loading a new pipette to
obtaining a whole cell patch (marked by dark green lines). If adjustments are to be made at any point to this automatic process, it is defined as a semiautomatic
patching trial (marked by light green lines). Such adjustments are mainly manipulator mechanical error correction, caused by mechanical errors in manipulator
positioning, and touch cell error correction, caused by incorrect cell contact detection. Dark green borders indicate fully automatic procedure; light green borders
indicate a semiautomatic trial, involving at least some human interference. DIC, differential interference contrast. B: computer vision algorithm is used to
determine the coordinates of the pipette tip during automatic calibration. A series of images along the optical z-axis are acquired under bright-field illumination
to determine if the pipette tip is in focus using local contrast detection. Gaussian blur, Canny edge detection, and Hough transform are then applied to identify
the pipette tip (indicated by red dot), and the tip coordinates are identified (xp, yp, zp; also see Fig. 4A). C: computer vision algorithm used to detect and log
coordinates of fluorescent cells. A series of images are acquired under epifluorescence illumination along the optical z-axis of the microscope (left), with the step
size and the depth defined by an experimenter. Each acquired image at depth zn is analyzed using a series of thresholds to detect cell contours. The centroids
of the identified cell contours for each threshold are superimposed and clustered along the x and y dimensions. Final cell coordinates are computed as the average
of the corresponding x, y, z cluster coordinates.
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RESULTS

Hardware. The Autopatcher IG utilizes off-the-shelf patch-
clamp in vitro electrophysiology hardware. The setup is based
on an upright microscope outfitted with differential interfer-
ence contrast (DIC) optics. Brain slices are visualized using
low-magnification (�4/�10) and high-magnification (�40/
�60) water-immersion objectives that can be exchanged man-
ually using a swinging nosepiece or automatically using a
motorized carriage. Image guidance is accomplished by inter-
facing with a charge-coupled device (CCD) camera (QImag-
ing). The Autopatcher IG relies on motorized three-axis control
of the microscope stage and the patch-clamp pipette microma-
nipulator (Scientifica SliceScope Pro 1,000; Scientifica). A
pipette holder is connected to the headstage of a patch-clamp
amplifier (Multiclamp 700B). The headstage is mounted on the
pipette manipulator (Fig. 2A). A data acquisition system (Digi-
data 1550A; Molecular Devices) relays the electrical signal

from the amplifier to the computer for processing and storage
(Fig. 2). Autopatcher IG also can be implemented to hardware
systems different from that described above with driver
programming.

The only additional hardware component that is necessary
for the Autopatcher IG is a custom-built pipette pneumatic
pressure control unit (Fig. 2, B and C). Pneumatic pressure in
the pipette is sensed and algorithmically controlled by inter-
facing with a secondary data acquisition board (USB-1208FS;
Measurement Computing) that controls a series of valves, an
air pump, and an air pressure sensor. Alternatively, we also
have adopted the Autopatcher IG to utilize a commercially
available patch-clamp pressure control system (Autopatcher
pressure control box; Neuromatic Devices, Atlanta, GA).

Software architecture and graphical user interface. Auto-
patcher IG is organized modularly with the capability of easy
functional expansion. Different modules communicate with
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Fig. 2. Experimental setup. A: standard patch-clamp electrophysiology equipment is used in conjunction with a pneumatic pressure control unit (also see Fig.
3) and our custom-written software. B: image of the pipette pneumatic pressure control unit prototype. Two solenoid valves (white circles, center) and an air
pressure sensor (black square, top left) are connected to control the pipette internal pressure. The air pump is not shown. C: 3 different valve configurations
resulting in no pressure (top) or brief pulses of positive (middle) or negative pressure (bottom) applied to the back end of the pipette when the pump is activated
by a transistor-transistor logic (TTL) signal. The pressure sensor provides feedback information to control the minimum and maximum pressure during patching.
D: block diagram of the hardware setup. A central computer controls all components of the Autopatcher IG. The primary data acquisition system provides an
interface to the patch-clamp amplifier and allows the user to perform a standard electrophysiology experiment. The secondary data acquisition board provides
an interface to the pressure control unit and to the external electronics hardware, which can communicate via TTL signals. On the sensor side are signals from
the patch pipette, microscope camera, and internal pipette pressure sensor. The custom graphical user interface (GUI; see Fig. 3) allows the user to control the
manipulator, camera setting, microscope stage, pressure control unit, and patch-clamp amplifier [via software development kits (SDK) for digital amplifiers (Axon
MultiClamp 700B)].
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each other through the main module and can run indepen-
dently. The software is written in Python, a free and open-
source programming language, using free and open-source
libraries, such as the graphical user interface (GUI) PyQt
(Riverbank Computing), which provides a Python interface to
a popular open-source cross-platform GUI library, Qt (https://
www.qt.io/), and OpenCV, an open-source computer vision
library (Bradski 2000) (Fig. 3). Autopatcher IG software, user
manual, tutorials, and an alternative implementation in LabVIEW
(Fig. 4) are available online (www.autopatcher.org or
https://github.com/chubykin/AutoPatcher_IG).

Computer vision-aided pipette tip calibration. A preliminary
step to using the Autopatcher IG is manipulator primary
calibration, which allows the software to manipulate the stage
and pipette from the same reference coordinate system. It is
performed once during initial setup and at any time the hard-
ware configuration is changed. In the calibration process, the
manipulator will move predefined distances along the x-, y-,
and z-axes, and the position of the pipette tip will be identified
using a computer vision algorithm after each movement as
described in Fig. 5. A secondary calibration realigns the two
coordinate systems by detecting the pipette tip and then apply-
ing transformation coefficients that were obtained from the
primary calibration. Secondary calibration is performed every
time a new pipette is installed.

In the automatic patching experiments we performed, each
image after manipulator movement along the specific axis was
subjected to Gaussian blur to decrease noise, the result of
which was then used to extract pipette contour through Canny
edge detection. Hough transform was subsequently applied to
derive perfect lines fitting the pipette contour, which were then
color inverted. The brightest point indicated where most of the
pipette outlines intersected. The coordinates of this intersection
point were assigned as the tip of the pipette (as shown in Fig.
5A). Such image processing was carried out twice on each
image; the first iteration narrowed the detection range to a
small cropped image near the tentative pipette tip, and the
second iteration determined the final pipette tip coordinate. The
reason for dual processing was to take into account changes in
the angle of the pipette wall at different distances from the
tip caused by the varying shapes of the pipettes prepared
with the use of different pulling programs. For calibration
along the z-axis, a focus detection algorithm was applied to
derive the third pipette tip coordinate. The primary calibration
process was performed only when the angles of the manipula-
tor setup were changed. The secondary calibration process was
performed each time a new pipette was installed and positioned
within the visual field.

Automatic pipette tip calibration together with manual new
pipette installation and positioning within the visual field took
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Fig. 3. GUIs of the Python-based software featuring image acquisition, manipulator, and patch control. A: camera view of a brain slice with target cells (i) selected
at a low magnification of �4 (top) and at a high magnification of �40 (bottom left). Yellow labels indicate the cell no.; coordinates of the cells are stored as
the corresponding sequence of memory positions and indicated in the GUI (bottom right) B: main GUI providing settings for image acquisition, microscope stage,
and micromanipulator control. ii, Microscope stage: controls include settings for stage coordinates, magnification, pixel-�m calibration; iii, micromanipulators:
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controls for camera exposure (in ms), image brightness, and contrast; v, automatic pipette calibration; vi, calibration save and load. C: patch control GUI during
an ongoing patching experiment. Top trace indicates pressure (in mmHg); bottom trace indicates current measurements from the patch amplifier (letters denote
key events in the patch-clamping process: S denotes the touch cell surface event, G denotes the time point at which a gigaseal is obtained, and B denotes when
break-in is achieved). vii, Automatic patch algorithm; viii, independent valve configuration control: allows user to override the patch algorithm and manually
apply user-required positive or suction pressure; ix, independent pump control: allows user to override the patch algorithm and control the pump; x, real-time
pressure; xi, real-time resistance.
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on average about 68 � 6 s (mean � SE; n � 10 trials), the
average positioning error was 1.6 � 0.215 �m when the pipette
traveling distance was within a 200-�m radius after calibration
(Fig. 5B). In addition, all of the automatic patching experi-
ments described used the same primary calibration coefficients,
which were saved and reloaded each day. There was no
observable deterioration in performance, given that our hard-
ware setup was stable (the angle and magnitude of manipulator
movement relative to the microscope view did not change).

After the manipulator/pipette calibration was performed, the
trajectory of the pipette could be controlled by using memory

positions stored as target coordinates or by using a keyboard or
a mouse to direct positioning. The automatic patching experi-
ments described in this article used memorized target cell
coordinates to direct both microscope and pipette to the target
cell. After calibration, the pipette did not need to be located
within the microscope view for targeting and positioning.

Automatic patching algorithm. Gigaseal formation and
break-in are automated by Autopatcher IG through the “Patch
Control” module. After a cell is selected and a patch trial
initiated, the pipette moves to the target coordinates offset by
a user-defined “final approach” distance (10 �m, but can be
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Fig. 5. Computer vision-aided identification
of the pipette tip coordinates. A: image acqui-
sition and pipette tip detection. i, Original
pipette image acquired by the microscope; ii,
image after application of Gaussian blur; iii,
Canny edge detection algorithm applied to the
image in ii defines the contours of the pipette
tip; iv, Hough transform performs feature ex-
traction to fit the pipette contours with lines;
v, color inversion and intensity calculation are
used to detect the lines’ point of intersection;
vi, pipette tip detected by the algorithm as
indicated by red dot. B: automatic pipette
calibration achieves high precision. To test
the precision of automatic pipette calibration,
a predefined calibration grid was used and the
pipette tip was then targeted to the centroids
of four quadrants and the screen center. Top
row shows the relative location of the pipette
on the screen at �4 magnification; bottom
row shows the precision of the pipette place-
ment at �40 magnification. Red dots are 1
pixel in size and are the target locations.
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changed by the user). The user can choose to approach the cell
either along the shortest trajectory or vertically along the
z-axis; all results shown were acquired using a vertical ap-
proach. Upon reaching the final approach distance, the manip-
ulator starts descending in predefined step size (1 �m, but can
be changed by the user) while the system is monitoring the
resistance change calculated from membrane test current in-
jection. Nine distinct stages are defined in the patching process,

and the transitions between these stages are determined by a
series of pipette resistance and pressure threshold configura-
tions that can be changed and updated at any time point (Fig.
6, Table 1). A small positive pressure (35–60 mmHg by
default) in the glass pipette is maintained through a pump-
pressure sensor feedback loop. When the resistance has in-
creased over the threshold (15% increase from initial pipette
resistance by default), manipulator descent is stopped and the
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valve configuration is switched to apply negative pressure to
the pipette to facilitate formation of a gigaseal. The Patch
Control applies negative pressure pulses (starting at �60
mmHg and peaking at �100 mmHg by default) through the
pressure control loop. When the next resistance threshold (90
M�) is reached, the holding voltage potential is decreased to
�70 mV to match the cell resting membrane potential. The
algorithm then stops applying negative pressure and waits for
gigaseal formation, as defined by pipette resistance being 	1
G� (Figs. 6 and 7A). After the gigaseal is formed, the program
will halt and give an experimenter an option to apply “zap” as
an alternative method to break in. By default, it will apply
pulses of negative pressure to break in and establish a whole
cell configuration (Fig. 7B). If the cell membrane resistance
falls to �300 M� (default) and the holding current is within the
range �200 to �100 pA (same as our definition for a successful
patch), the break-in is considered to be successful and the whole
cell configuration is established. Otherwise, if the success criteria
or any intermediate thresholds are not met, the program will
stay in the current stage and keep executing the respective
action until the time limit (4 min by default) is exceeded.
Successful patches were validated by measuring resting poten-
tial (less than �55 mV) and step current injection-induced
action potentials (Fig. 7C). All pressure and resistance param-
eters are recorded and saved as patch logs to be used in post
hoc analysis for experiment quality control and configuration
optimization (Fig. 7A). The Autopatcher IG system is scalable
and allows automated patching and recording from two or
more cells simultaneously (Fig. 7, D–G).

We conducted automatic and manual patch-clamp experi-
ments to evaluate the efficiency and effectiveness of Auto-
patcher IG. We defined a trial as fully automatic if the system
successfully completed a full whole cell patch-clamp trial from
the beginning to the end without any interruption or user
interference. We defined a semiautomatic trial as a trial that
required any user interruption (Fig. 1A). Most of the interrup-
tions were caused by either manipulator inaccuracies in pipette
positioning or failures of the algorithm to establish a gigaseal.
A total of 30 successful whole cell configurations were
achieved in 44 automatic/semiautomatic patching trials, with a
total success rate of 68.2%, whereas the success rate of manual
patching was only 35.3% (30 of 85 trials). Among all 44 trials

performed using Autopatcher IG, 23 trials (52.3%) were fully
automatic, 19 of which were successful, which accounts for
82.6% in the fully automatic subcategory or 43.2% in total.
The other 21 trials of the total 44 (47.7%) were semiautomatic,
and 11 trials were successful, which accounts for 52.4% in the
semiautomatic subcategory and 25.0% in total (Fig. 8, B and
D). There was no significant difference (Student’s t-test) in the
quality of patches obtained using the two methods, based on
the seal resistance (P � 0.33), the membrane capacitance (P 	
0.06) and resistance (P � 0.97), the access resistance (P �
0.70), and the holding current (P � 0.70) (Fig. 8H). Both fully
automatic and semiautomatic patching yielded a higher success
rate compared with manual patching (Fig. 9).

The average times for positioning a pipette tip next to a
target cell, forming a gigaseal, and breaking in were signifi-
cantly shorter when performed using automatic patching com-
pared with manual patching (Fig. 8, A and D). Moving a pipette
tip to a saved target cell location, with secondary calibration of
the pipette offset, took on average 103.2 � 2.7 s (n � 44) for
both fully automatic and semiautomatic trials (no difference at
this stage). This was significantly faster than manual pipette tip
placement, which took 183.0 � 4.4 s (n � 85, P � 0.0001,
Student’s t-test). Furthermore, the use of automatic manipula-
tor control and memory positions enabled pipette tip placement
outside of the microscope’s visual field, which is impossible
with manual patching. Automatic patch-clamp algorithm re-
sulted in faster gigaseal formation, 119.5 � 18.3 s (n � 23) for
fully automatic and 122.6 � 10.1 s (n � 19) for semiautomatic
patching (no significant difference between the two, P � 0.88)
compared with 233.6 � 30.3 s (n � 85) for manual patching
(P � 0.001). Precise, fast pressure control in response to
resistance changes significantly decreased the break-in time
from 49.1 � 8.1 s for manual trials to 15.3 � 4.3 s for
semiautomatic trials (P � 0.036 compared with manual) and
further decreased to 5.2 � 1.0 s for fully automatic trials (P �
0.0002 compared with manual; P � 0.025 compared with
semiautomatic; Fig. 9A). There was no significant difference
between the duration of failed trials for either automatic or
manual algorithms. However, because the duration of a suc-
cessful trial was two times shorter, and the success rate was
two times higher, the overall time spent to achieve comparable
productivity was much shorter for the automatic algorithm.

Table 1. Default threshold values in the gigasealing algorithm

Parameter Value Factor Contributing to Variation

Rp threshold 1: initial pipette resistance �10 M� Pipette tip diameter, clogging
P(�) threshold 1: minimum positive pressure 	30 mmHg Extracellular matrix composition, target cell depth (higher

pressure may be necessary for deeper cells)
Rm threshold 2: touch cell resistance coefficient 	115% of initial Rp Cell size/type
P(�) threshold 1: negative pressure for sealing Less than �60 mmHg Cell size/type
Rm threshold 3: for �70-mV adjustment 100 M� Based on experience; may be optimized by data mining
Rm threshold 4: wait for gigasealing resistance 200 M� Based on experience; may be optimized by data mining
Rm threshold 5: gigaseal resistance 1,000 M� Patch quality requirement; a higher value will result in

the tighter seal
P(�) threshold 2: minimum negative pressure for break-in Less than �85 mmHg Cell size/type, �zapping
Rm threshold 6: broken-in resistance �300 M� Cell size/type
Ihold threshold 1: broken-in holding current Greater than �200 pA and

�100 pA
Seal quality

t threshold 1: time to fail 4 min Based on experience

Listed values are those used in the experiments described in this article. All listed thresholds are related to the representative patch in Fig. 4, and all can be
changed by the user and saved in the Autopatcher IG configuration file.
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Furthermore, the time limit for automatic trial attempt may be
further decreased, leading to less time spent during failed trials.
Use of the Autopatcher IG also proved to be more consistent
because the time spent during each automatic trial was less
variable compared with manual patching (Fig. 8C).

Computer vision-aided fluorescent cell detection and patch
clamp. The Autopatcher IG can be used to automatically detect
a fluorescent cell, determine the coordinates of this cell, and
store the coordinates for subsequent patch-clamp experiments.
This automation of cell detection is achieved using computer

vision processing of fluorescent images acquired at different
slice depths. The program takes a z stack (20 images, 2-�m
z-step size, default settings), and each acquired image is trans-
formed into a series of black-and-white images using different
thresholds (0.5 to 5 times mean pixel intensity). The use of
multiple thresholds instead of one single threshold ensures that
the detection algorithm can accommodate a wide range of
fluorescence intensities. After initial Canny edge detection, cell
contours within the range of 75–250 �m2 in size and 60%
circularity are considered to be tentative cells (Figs. 1C and
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Fig. 7. Automatic image-guided patch clamp yields
high-quality whole cell recordings comparable with
manual patching. A: example patch log of a successful
patching trial with a history of current (I), resistance (R),
and internal pipette pressure (P) parameters. Top, raw
voltage input from the data acquisition board (light
green) and the membrane test current (dark green).
Middle, membrane resistance. Bottom, internal pipette
pressure (letters denote key events in the patch-clamp-
ing process: S denotes the touch cell surface event, G
denotes the time point at which a gigaseal is obtained,
and B denotes when break-in is achieved). The “saw
tooth” pressure pattern is caused by the on-off feedback
pressure controller switching between pump-on and
pump-off states. B: representative images show an au-
tomatically patched cell at �4 magnification (left) and
�40 magnification DIC optics (middle) in a mouse
visual cortex brain slice. Right, the same neuron filled
with Lucifer yellow, postfixed, and visualized with �40
magnification epifluorescence optics. C: electrophysio-
logical responses of an automatically patch-clamped
neuron to hyperpolarizing and depolarizing current in-
jections. D: representative image of 2 simultaneously
patched cells in a slice. E: confocal image of the 2 cells
in D filled with Alexa 568 hydrazide and fixed after
patching. F: electrophysiological responses of these 2
patched cells to hyperpolarizing and depolarizing cur-
rent injections. Top, cell on the left (L); bottom, cell on
the right (R). G: simultaneous recordings of excitatory
postsynaptic potentials (EPSPs) from these neurons
evoked by white matter stimulation. H: automatic patch-
ing (top; n � 30 from 3 mice) generates high-quality
patches that are comparable to those obtained using
conventional manual patching (bottom; n � 30 from 6
mice). There was no significant difference between the
2 groups in the distribution of membrane capacitance
(P � 0.06), holding potential (P � 0.70), access resis-
tance (P � 0.70), membrane resistance (P � 0.97), and
seal resistance (P � 0.33, 2-tailed Student’s t-test).
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9Aiii). The centroids of these tentative cell contours from
different thresholds are then clustered into groups on the
basis of their distance from each other (Fig. 9Aiv). A
threshold of a minimal number of detected centroids in a
cluster is used to detect and exclude false positives. The
final coordinates of each detected cell are the mean of all
centroid coordinates along the x- and y- axes and the median
along the z-axis (Fig. 9A). Automatic cell detection yields
cell coordinates that are stored and can be saved in a file.
These coordinates are shown in the memory positions GUI
(Fig. 3) that is used to direct a patch pipette and also can be
used for directing a puff pipette for local drug application,
single-cell laser-scanning photostimulation, or chemical
compound uncaging.

We tested our computer vision algorithm for detecting flu-
orescent cells in both cortical slices from a Thy1-channelrho-
dopsin 2-EYFP line 18 (Thy1-ChR2-EYFP) transgenic mouse
(Fig. 9) and from a wild-type (WT) mouse injected with

HSV-ArchT-EYFP virus (Fig. 10). The average time required
to locate the cell centroids was 84.2 � 0.9 s for ArchT-EYFP
(n � 10 trials) and 89.3 � 1.3 s for Thy1-ChR2-EYFP (n � 10
trials). The average false-positive rate, or computed coordi-
nates not visibly centered over a cell, was low for both
preparations at 4.9 � 2.25% for HSV-ArchT-EYFP and
3.43 � 1.75% for Thy1-ChR2-EYFP. Detection sensitivity
(the percentage of fluorescent cells that can be detected within
the field of view) was 76.4 � 4.6% for HSV-ArchT-EYFP and
79.7 � 8.8% for Thy1-ChR2-EYFP. There was no significant
difference in false-positive rate or detection sensitivity between
the two experimental preparations (P 	 0.6 for both, Student’s
t-test). The detection threshold range and computing power
could affect the total detection time, but they were sufficient
for a standard desktop personal computer used in our experi-
ments. The low variation demonstrates that our detection
system reliably detects the majority of fluorescent cells in the
field of view.

Whole cell 35.3% 

Fail 64.7%

Fail 31.8%

Fail after gigaseal 9.4%Manual
patching

t n
e

me
ca

l p
ett

ep
i

P

G
igaseal

G
igaseal

W
hole cell patch

W
hole cell patch

Fail

Fail

100 200 300 400 500Time (s)

D

Automatic 52.3%

Semi-automatic 47.7%

Whole cell 
68.2% 

Fa
il a

fte
r g

iga
se

al 
6.8

%
Fail fro

m semi-automatic 20.5%

Fail fr
om automatic 

4.5%

tn
e

me
ca

l p
ett

ep
i

PAutomatic
patching

C

0

400

800

1200

G
ig

as
ea

l (
s)

50 150 250
Pipette placement (s)

0

40

80

120

B
re

ak
 in

 (s
)

***
*

*

***
*

***0

100

200

300

Pipette
placement Gigaseal Break in Fail

*** *** ***

Stages

Ti
m

e(
s)

A
1

2

3

43.2%

25.0%

22.7%
9.1%

35.3%

62.4%

2.4%

Automatic_success
Semi-automatic_success

Manual_success

Semi-automatic_fail
Automatic_fail

Manual_fail
Other

B

Fig. 8. Automatic patching algorithm significantly improves patch clamp efficiency. A: average time spent during pipette placement, gigaseal formation, and
establishment of whole cell configuration (break in) in both automatic patching (dark green) and semiautomatic patching (light green) is significantly shorter than
in manual patching (light blue) in successful trials. The time from the end of pipette placement to termination of a failed trial (gray) is not significantly different
between the 2 methods (*P � 0.05; ***P � 0.001; 2-tailed Student’s t-test). Error bars represent SE. B: success rate for automatic (n � 44 from 3 animals)
and manual patching (n � 85 from 6 animals). C: distribution of times spent during the 3 patching steps. The automatic patching steps are faster and more
reproducible compared with the manual patching steps. Data points are the times for pipette placement in all successful trials vs. gigaseal time (top) and break-in
time (bottom). D: schematic illustration showing the average time and success/failure rates of automatic and manual patching.

Innovative Methodology

1574 AUTOMATED CELL DETECTION AND PATCH CLAMP IN VITRO

J Neurophysiol • doi:10.1152/jn.00386.2016 • www.jn.org

Downloaded from www.physiology.org/journal/jn at Massachusetts Inst of Tech Lib (018.027.118.107) on October 23, 2019.



We then demonstrated the feasibility of a complete auto-
matic patching algorithm from cell detection to whole cell
configuration using Autopatcher IG. A total of 20 whole cell
patches were formed from fluorescence-positive layer 5 neu-
rons in Thy1-ChR2-EYFP cortical slices (Fig. 9, B and C). The
average times were 98.5 � 2.8 s for pipette positioning, 136.5 �
20.1 s for gigaseal formation, and 9.8 � 2.8 s for break-in, all
of which were not significantly different from times in auto-

matic and semiautomatic patching trials in WT mice (P 	 0.4
for all). Patched cells were subjected to light activation to
confirm ChR2-EYFP expression (Fig. 9D). Patch qualities
were consistent with those for WT patches (Figs. 7H and 9E).
No differences in seal resistance (P � 0.71, Student’s t-test),
membrane resistance (P 	 0.05), access resistance (P � 0.95),
and holding current (P � 0.96) were observed compared with
the same measurements in manually patched cells. The success
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rate for automatic detection and patching of fluorescent cells
was comparable to that for manual patching at 31.0% (n � 65
from 3 animals), the majority of which required adjustment at
the touch cell surface step. The membrane capacitance of
automatically patched fluorescent cells was significantly larger

than that of nonfluorescent cells (P � 0.001), which could be
potentially explained by changes in conductivity caused by
expression of ChR2. Furthermore, expression of ChR2 was
specific to larger layer 5 pyramidal cells, which may require
different thresholds in the patching algorithm that can be

Fig. 9. Automatic identification and patch clamp of fluorescent neurons in brain slices. A: computer vision processing of images acquired with epifluorescence
optics detects fluorescent neurons and identifies their x, y, z coordinates. Three representative z sections are shown from a complete experiment (20 total z
sections) using brain slices prepared from a mouse expressing channelrhodopsin-2-EYFP in layer 5 pyramidal cells (Thy1-ChR2-EYFP mouse line 18). i, Original
image after histogram equalization; ii, pseudo-colored image after thresholding; iii, superimposed cell-like contours detected after a series of varying thresholds;
iv, centroids of detected contours are accumulated from z sections; v, centroids from the complete z scan (20 z sections) are clustered and the final coordinates
calculated. B: representative patched fluorescent neuron (green) filled with Alexa Fluor 568 dye (red) in layer 5 mouse neocortex. An acute brain slice was
postfixed and immunolabeled with the anti-GFP antibody. Image acquisition was performed using confocal microscopy. C: current-clamp recordings of a patched
cell responding to hyperpolarizing and depolarizing current injection. Firing pattern shows intrinsic bursting, which is characteristic of a layer 5 intrinsically
bursting pyramidal neuron. D: the same neuron as in C reacts to light (480 nm) activation with bursts of action potentials. Blue arrows show the light on epochs
that are 2 ms each and 150 ms apart. E: patched cell properties measured from each successful trial (n � 20 from 3 animals). No significant differences in holding
current, access resistance, membrane resistance, and seal resistance were observed compared with those for nonfluorescent cells, shown in Fig. 7. Membrane
capacitance distribution was significantly different from that in nonfluorescent cells, which can be explained by the larger size of the layer 5 pyramidal cells (P �
0.05, 2-tailed Student’s t-test).
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(green) filled with Alexa Fluor 568, postfixed, and immunolabeled with the anti-GFP antibody. Images are acquired using confocal microscopy. C: representative
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determined after the corresponding patch logs are analyzed.
The lower success rate and the need for threshold adjustments
may also be explained by neuronal cell firing during fluores-
cence visualization. Alternatively, previous reports suggest that
long-term high levels of expression of ChR2 may influence the
health of a cell (Feldbauer et al. 2009; Lin 2011; Miyashita et
al. 2013).

DISCUSSION

We have developed an image-guided patch-clamp electro-
physiology software package, the Autopatcher IG, which
achieves high-level automation for whole cell patch-clamp
experiment in vitro. Some existing systems have attempted to
automate separate steps in the whole process, such as cell
detection (Long et al. 2015), pressure control (Desai et al.
2015), and pipette positioning (Long et al. 2015; Perin and
Markram 2013); however, there has not been an integrated
system that automates the entire patching process from target-
ing cells to forming whole cell patch clamp in vitro. We have
tested Autopatcher IG performance in patch-clamp experi-
ments conducted by a newly trained experimenter and have
shown a twofold improvement of success rate and decrease in
average time spent on each trial compared with the traditional
manual patching procedure. Both factors contributed to an
overall increase in throughput, which will improve the utiliza-
tion of each tissue sample and decrease the time required to
obtain large patch-clamp data sets. This is especially advanta-
geous when experiments are conducted on valuable transgenic
animals or require viral injection, or when long and complex
training protocols must be implemented prior to the slice
electrophysiology experiment. Furthermore, Autopatcher IG
enables control of experimental parameters that is hard to
achieve even for a trained user (for example, uniform descent
speed and pressure application), which helps to minimize trial
variability and promote reproducibility. The system is widely
adaptable because the software is suitable for a broad range of
hardware configurations augmented only by a pneumatic pres-
sure control unit.

Some limitations of Autopatcher IG led to human interfer-
ence during the automatic patch process, which was then
followed by the fully automatic continuation of the algorithm
(Figs. 1A and 8). In these “semiautomatic” trials there were
errors in mechanical manipulator positioning at distances lon-
ger than 200 �m. There are two potential solutions to this
problem: more accurate micromanipulators or a close-loop
computer vision algorithm for pipette tip detection and real-
time coordinate tracking. Another limitation that led to human
interruption was caused by variability in automatic patching
threshold parameters, which could be explained by cell heter-
ogeneity. Optimization of these thresholds for specific cell
types may solve this problem. Nonetheless, the system still
achieved a 43.2% success rate when only fully automatic
patching was counted. It is noteworthy that the rest of the trials
were not failures and that the whole cell configurations could
be reached with only minor adjustment in semiautomatic trials.

By integrating and automating all steps of the patching
process, Autopatcher IG improves the speed and reproducibil-
ity of patching, leading to an increase in throughput. The age
of the animal, duration of the experiment, area of the brain, and
many more experimental details can have dramatic effects on

the “health” of neurons and thus their ability to form stable
gigaseals and whole cell configurations (Boulton al. 1995;
Walz 2007). Autopatcher IG is intended to serve as a frame-
work for quantifying and standardizing in vitro patch-clamp
recording. The ability to algorithmically control all relevant
peripheral devices from a single interface makes it possible to
document and standardize existing “best practices” in obtain-
ing whole cell recordings (Boulton et al. 1995; Walz 2007).
Integrated algorithmic control also makes it possible to explore
and quantify new ways of obtaining whole cell recordings. For
instance, a millisecond-timescale closed-loop pipette pressure
control system could potentially outperform even an expert in
quickly establishing a gigaseal and breaking into a cell deli-
cately. In the future, these algorithms can then be refined and
optimized in a systematic fashion.

The difficulty of patch-clamp recording in brain slices is
compounded when multiple cells must be patched simultane-
ously, for example, to profile interneuronal connectivity in a
region of the brain (Le Be and Markram 2006; Perin et al.
2011). Because of its modular nature, the Autopatcher IG
software is readily scalable for multiple manipulators, limited
only by the hardware (manipulators, data acquisition board,
amplifiers). Multipatch experiments are still impractical for
many electrophysiology laboratories, despite notable system
engineering efforts (Perin and Markram 2013; Wang et al.
2015). The improvements in whole cell yield and automation
provided by Autopatcher IG may increase the likelihood of
obtaining multiple stable simultaneous recordings. This could
lower the barrier to entry for laboratories wishing to perform
multipatch experiments.

A major innovation of Autopatcher IG is the incorporation
of computer vision into image processing to robustly and
reliably extract cell and pipette coordinate information. It is
especially beneficial for detecting and storing the z coordinate
of multiple fluorescent cells, which is complicated and time
consuming in manual patching. However, the selection of a
suitable target cell without fluorescent signal is still a difficult
user-dependent task that is manually performed in the current
system. Another rate-limiting step is the filling and changing of
glass pipettes before each trial. In future versions of the
software, we intend to develop computer vision algorithms to
reliably identify and track healthy cell bodies under DIC optics
(Alexopoulos et al. 2002), along with robotic devices for
automatically swapping patch electrodes to perform patch-
clamp experiments completely autonomously. The software
presented in this article and the accompanying user manuals
are freely available online for the neuroscience community
(www.autopatcher.org or https://github.com/chubykin/Auto-
Patcher_IG). Software updates and bug fixes will be an-
nounced on those websites.
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