Nanoscale imaging of RNA with expansion microscopy

Fei Chen ${ }^{1-3,10}$, Asmamaw T Wassie ${ }^{1-3,10}$, Allison J Cote ${ }^{4}$, Anubhav Sinha ${ }^{5}$, Shahar Alon ${ }^{2,3}$, Shoh Asano ${ }^{2,3}$, Evan R Daugharthy ${ }^{6,7}$, Jae-Byum Chang ${ }^{2,3}$, Adam Marblestone ${ }^{2,3}$, George M Church ${ }^{6,8}$, Arjun Raj ${ }^{4}$ \& Edward S Boyden ${ }^{1-3,9}$

Abstract

The ability to image RNA identity and location with nanoscale precision in intact tissues is of great interest for defining cell types and states in normal and pathological biological settings. Here, we present a strategy for expansion microscopy of RNA. We developed a small-molecule linker that enables RNA to be covalently attached to a swellable polyelectrolyte gel synthesized throughout a biological specimen. Then, postexpansion, fluorescent in situ hybridization (FISH) imaging of RNA can be performed with high yield and specificity as well as single-molecule precision in both cultured cells and intact brain tissue. Expansion FISH (ExFISH) separates RNAs and supports amplification of single-molecule signals (i.e., via hybridization chain reaction) as well as multiplexed RNA FISH readout. ExFISH thus enables super-resolution imaging of RNA structure and location with diffraction-limited microscopes in thick specimens, such as intact brain tissue and other tissues of importance to biology and medicine.

Nanoscale-resolution imaging of RNA throughout cells, tissues, and organs is key for understanding local RNA processing, for mapping structural roles of RNA, and for defining cell types and states. However, it has remained difficult to image RNA in intact tissues with the nanoscale precision required to pinpoint associations with cellular compartments or proteins important for RNA function. Recently, we developed an approach to physically magnify tissues, expansion microscopy (ExM) ${ }^{1}$. ExM isotropically magnifies tissues, enabling super-resolution imaging on conventional diffraction-limited microscopes. For example, $\sim 4 \times$ linear expansion yields $\sim 70-\mathrm{nm}$ resolution using an $\sim 300-\mathrm{nm}$ diffraction-limited objective lens. In our original protocol, fluorophore tags were first targeted to proteins of interest via antibodies and then anchored to a swellable polyelectrolyte gel synthesized in situ. Isotropic expansion was subsequently achieved by proteolytic treatment to homogenize specimen mechanical properties followed by osmotic swelling of the specimen-gel composite.

Here, we have developed a small-molecule linker that enables RNA to be covalently attached to the ExM gel. We show that this procedure, which we call ExFISH, enables RNA FISH, which enables identification of transcripts in situ with single-molecule precision. In RNA FISH, a set of fluorescent probes complementary to a target strand of mRNA is delivered ${ }^{2,3}$. Single-molecule FISH (smFISH) can be performed with multiple fluorophores delivered to a single mRNA via oligonucleotide probes ${ }^{4}$. In intact tissues, amplification strategies, such as hybridization chain reaction (HCR) ${ }^{5,6}$ and branched DNA amplification ${ }^{7,8}$, can allow a large number of fluorophores to be targeted to a single mRNA. We show that ExFISH can support smFISH in cell culture and HCR-amplified FISH in intact mouse brain tissues. We demonstrate the power of ExFISH for revealing nanoscale structures of long noncoding RNAs (lncRNAs) as well as for localizing neural mRNAs to individual dendritic spines. ExFISH will be useful for a diversity of questions relating the structure and location of RNA to biological functions.

RESULTS

ExFISH, design and validation of RNA anchoring chemistry
We first determined a strategy for covalently linking RNAs directly to the ExM gel. Although transcripts are crosslinked to proteins during fixation, the strong proteolysis of ExM precludes a reliance on proteins for RNA retention (Supplementary Fig. 1). We thus reasoned that covalently securing RNA molecules directly to the ExM gel via a small-molecule linker would enable the interrogation of these molecules postexpansion. To achieve this aim, we synthesized a reagent from two building blocks: a molecule containing an amine as well as an alkylating group that primarily reacts to the $N 7$ of guanine and a molecule that contains an amine-reactive succinamide ester and a polymerizable acrylamide moiety. Commercially available reagents exist that satisfy each of these two profiles, such as Label-IT Amine (MirusBio) and 6-((acryloyl)amino)hexanoic acid (AcryloylX SE, here abbreviated AcX, Life Technologies; all reagents are listed in Supplementary Table 1). We named this molecule,

[^0]

b
could be treated with LabelX to make its RNAs gel anchorable,
followed by gel formation, proteolysis, and osmotic swelling as performed in the original ExM protocol. Once a sample was thus expanded, the RNAs could then be interrogated through FISH (Fig. 1b).
To quantify RNA-transcript-anchoring yield after expansion, we used smFISH probes targeting mRNAs of varying copy number (seven targets, with copy number ranging from ~ 10 to $\sim 10,000$ per cell, $n=59$ cells across all seven targets) in cultured HeLa cells. smFISH images, taken with probes delivered before (Fig. 1c) and after (Fig. 1d) expansion to the same cells, showed no loss of transcript detectability with expansion for both low- and high-copy-number transcripts (Fig. 1e). The ratio of transcripts detected was near unity at low transcript counts (for example, in the tens); however, more transcripts were detected after expansion for highly expressed mRNAs (for example, in the thousands) (Supplementary Fig. 3 and Supplementary Table 2). This difference arose from the high density of smFISH spots for these targets in the unexpanded state, with the expansion process decrowding spots that were previously indistinguishable. For example, for smFISH against ACTB, we were able to resolve individual

ACTB mRNA puncta postexpansion even within transcriptional foci in the nucleus (Fig. 1c versus d), which can be dense with mRNA on account of transcriptional bursting. Thus, ExFISH is capable of supporting single-molecule RNA readout in the expanded state. Since Label-IT also reacts to DNA, the ExFISH process enables uniform expansion of the nucleus (Supplementary Fig. 4). The isotropy of ExFISH (Supplementary Fig. 5) was numerically similar to that observed when protein targets were labeled and expanded in the original ExM protocol ${ }^{1}$. In recent ExM protocols in which proteins are anchored to the same hydrogel as used in ExFISH, with a similar linker ${ }^{9}, 10$, the distortion is small (a few percent distortion in cells and tissues). These earlier results, since they were obtained with similar polymer chemistry, serve to bound the ExFISH distortion. The expansion factor is slightly lower than in our original ExM paper (i.e., $\sim 3.3 \times$ versus $\sim 4 \times$; expansion factors can be found in the figure legends of this manuscript) because of the salt required to support hybridization of probes.

Nanoscale imaging of IncRNA with ExFISH

We imaged lnc RNAs known to serve structural roles in cell biology. We imaged the lncRNA XIST, whose role in inactivating the X chromosome may depend on initial association with specific chromatin subregions through a process that is still being revealed ${ }^{11}$. The pre-expansion image (Fig. 1f) shows two bright

Figure 2 | Serially hybridized and multiplexed ExFISH. (a) Widefield fluorescence image of ExFISH targeting GAPDH in a cultured HeLa cell. (b) Boxed region of a, showing five repeated restainings following probe removal (see Online Methods); lower right panel shows an overlay of the five images (with each a different color, red, green, blue, magenta, or yellow), showing colocalization. (c) ExFISH RNA counts for each round, normalized to the round 1 count; plotted is mean \pm standard error; $n=3$ regions of a. (d) Signal-to-noise ratio (SNR) of ExFISH across the five rounds of staining of a, computed as the mean puncta brightness divided by the s.d. of the background. (e) Composite image showing ExFISH with serially delivered probes against six RNA targets in a pultured Hel cell (raw images in Sup plementary Fig. 6); colors are as follows: NEAT1, blue; EEF2, orange; GAPDH, yellow; ACTB, purple; UBC, green; USF2, light blue. Scale bars (expanded coordinates): (a) $20 \mu \mathrm{~m}$; (b) $10 \mu \mathrm{~m}$; and (e) $20 \mu \mathrm{~m}$.
globular fluorescent regions, presumably corresponding to the X chromosomes of HEK cells undergoing inactivation ${ }^{11-13}$, but postexpansion, individual puncta were apparent both within the globular regions as well as nearby (Fig. 1g). Additionally, we used ExFISH to examine the previously described ${ }^{14}$ ring-shaped morphology of ensembles of NEAT1 lncRNAs (Fig. 1h), which researchers have hypothesized play an important role in gene expression regulation and nuclear mRNA retention ${ }^{15}$. Before expansion, NEAT1 presented in the form of bright, diffractionlimited puncta (Fig. 1h,i), but after expansion, the ring-shaped morphology became clear (Fig. 1h,i). Given the complex 3D structure of the genome ${ }^{16}$, mapping lncRNAs may be useful in defining key chromatin regulatory complexes and their spatial configurations.

Super-resolved, multiplexed imaging of RNA with ExFISH

The combination of covalent RNA anchoring to the ExM gel and the decrowding of the local environment that results from expansion could facilitate strategies that have been proposed for multiplexed RNA readout ${ }^{17-19}$ based upon sequential hybridization with multiple probe sets. In order to facilitate multiple cycles of FISH, we re-embedded expanded specimens in charge-neutral polyacrylamide. This process allowed expanded gels to be immobilized for multiround imaging and additionally stabilized the expanded specimen throughout salt concentration changes in the protocol. Such re-embedded samples exhibited similar expansion factors as non-re-embedded samples (i.e., $\sim 3 \times$), and they were robust to multiple wash-stain cycles as assessed by repeated application of the same probe set (Fig. 2a; Supplementary Fig. 6, showing five rounds of smFISH staining against GAPDH on cultured cells). This stability was observed even under stringent wash conditions designed to minimize cycle-to-cycle crosstalk (for example, 100% formamide). Across the five rounds, there was no distortion of the locations of individual RNA spots from round to round (Fig. 2b), nor variance in detection efficiency or signal-to-noise ratio (Fig. 2c,d). Having validated the cycle-to-cycle consistency, we next demonstrated the capability of multiplexed ExFISH by applying probes for GAPDH, UBC,

NEAT1, USF2, ACTB, and EEF2 in series, enabling six individual RNAs to be identified and localized in the same cell (Fig. 2e and Supplementary Fig. 6). Thus, serial FISH is applicable to samples expanded after securing RNA to the swellable polymer as here described, making it straightforward to apply probe sets computationally designed to yield more information per FISH cycle, such as MERFISH ${ }^{18-20}$.

3D nanoscale imaging of RNA in mouse brain tissue

ExM allows for facile super-resolution imaging of thick 3D specimens such as brain tissue on conventional microscopy hardware ${ }^{1}$. We applied ExFISH to samples of Thy1-YFP mouse brain tissue ${ }^{21}$, using the YFP protein to delineate neural morphology (Fig. 3a,b). Endogenous YFP protein was anchored to the polyacrylate gel via AcX using the proExM protocol ${ }^{9}$, and RNA was anchored via LabelX. Since smFISH yields signals too dim to visualize in intact tissues using confocal imaging, we applied the previously described technique of HCR^{5}, in particular the next-generation DNA HCR amplifier architecture ${ }^{6}$ (schematic in Supplementary Fig. 7). In samples containing mouse cortical and hippocampal regions, mRNAs for YFP (Fig. 3c) and glutamic acid decarboxylase 1 (Gad1) (Fig. 3d) were easily visualized using a widefield microscope, with YFP mRNA well localized to YFP-fluorescing cells (Fig. 3e) and Gad1 mRNA localized to a population of cells with characteristic arrangement throughout specific layers of the cortex and hippocampus ${ }^{22}$. Examining brain specimens at high magnification using a confocal spinning-disk microscope revealed that individual transcripts could be distinguished because of the physical magnification of ExM (Fig. 3f, with YFP and Gad1 mRNA highlighted), with even highly overexpressed transcripts (e.g., YFP) cleanly resolved into individual puncta (Fig. 3f). When FISH probes were omitted, minimal background HCR amplification was observed (Supplementary Fig. 8). Given that ExM enables super-resolution imaging on diffraction-limited microscopes, which can be scaled to very fast imaging speeds ${ }^{23}$, we used a commercially available lightsheet microscope on a Thy1-YFP brain slice to enable visualization of multiple transcripts with singlemolecule precision throughout a volume $\sim 575 \times 575 \times 160 \mu \mathrm{~m}$

Figure 3 | Nanoscale imaging of RNA in mammalian brain. (a) Widefield fluorescence image of Thy1-YFP mouse brain. (b) Postexpansion widefield image of \mathbf{a}. (c) Widefield fluorescence showing HCR-ExFISH of YFP mRNA in the sample of \mathbf{b}. (d) As in \mathbf{c}, but for Gad1 mRNA. (e) Composite of $\mathbf{b}-\mathbf{d}$, highlighting distribution of Gad1 versus Thy1-YFP mRNAs. (f) Confocal image of mouse hippocampal tissue from e, showing single RNA puncta. Inset, one plane of the boxed region (red, YFP protein; cyan, YFP mRNA; magenta, Gad1 mRNA). (g) Confocal image (i) and processed image (ii) of HCR-ExFISH using a missense $D \lg 4$ probe in Thy1-YFP mouse tissue (green, YFP protein). The raw image (i) uses alternating probes in two colors (red, Dlg4 missense even; blue, Dlg4 missense odd). The processed image (ii) shows zero colocalized spots (magenta). (h) As in g, but for HCR-ExFISH targeting Actb in Thy1-YFP mouse brain (green, YFP protein; red, Actb even; and blue, Actb odd in (i); colocalized spots in magenta (ii)). (i) Confocal image of hippocampal tissue showing colocalized $D \lg 4$ puncta (magenta) overlaid on YFP (green). (j) Dendrites with Dlg4 mRNA localized to spines (arrows). (i), (ii), two representative examples. (k) As in \mathbf{j}, but with HCR-ExFISH of Camk2a mRNA showing transcripts in dendritic spines and processes. (i-k) Magenta channel depicts colocalized puncta location. Raw images in Supplementary Figure 10. Scale bars (white, in pre-expansion units; blue scale bars are divided by the expansion factor noted): (a) $500 \mu \mathrm{~m}$; (b-e) $500 \mu \mathrm{~m}$ (expansion factor 2.9x); (f) $50 \mu \mathrm{~m}(2.9 \times$), inset $10 \mu \mathrm{~m}$; ($\mathbf{g}-\mathbf{i}) 10 \mu \mathrm{~m}(3 \times)$; (\mathbf{j}, \mathbf{k}) $2 \mu \mathrm{~m}(3 \times)$. (e,i) maximum-intensity projection (MIP) $27 \mu \mathrm{~m}$ thick (pre-expanded units); ($\mathbf{g}, \mathbf{h}, \mathbf{j}, \mathbf{k}$) MIPs $\sim 1.6 \mu \mathrm{~m}$ thick.
thick in just $3 \mathrm{~h}\left(\sim 6 \times 10^{10}\right.$ voxels in three colors; Supplementary Fig. 9 and Supplementary Video 1).

HCR amplifies a target-binding event into a bright fluorescent signal (Supplementary Fig. 7). A stringent method for assessing detection accuracy is to label individual RNAs with different probe sets bearing different colors ${ }^{24,25}$, which shows that $50-80 \%$ of mRNAs thus targeted will be doubly labeled when assessed in cell culture; a 50% colocalization is interpreted as $\sqrt{0.5}(\sim 70 \%)$ detection efficiency (assuming probe independence); this is a lower bound as it excludes false positives. In order to assess the false-positive and false-negative rates for single-molecule visualization in expanded tissues, we delivered pairs of probe sets targeting the same transcript with different initiators. This scheme resulted in amplified fluorescent signals of two
different colors from the same target (Supplementary Fig. 10), giving a measure of the hybridization efficiency. Delivering probe sets against a nonexistent transcript also gives a measure of false-positive rate. We delivered a probe set against a missense probe (Dlg4 reversed, Fig. $\mathbf{3 g}$) as well as a nonexistent transcript (mCherry, Supplementary Table 3), using Thy1-YFP mouse brain samples, and we found a low but nonzero spatial density of dim, yet amplified, puncta (1 per $61 \mu \mathrm{~m}^{3}$ in unexpanded coordinates, $D \lg 4$ reversed; 1 per $48 \mu \mathrm{~m}^{3}$, mCherry). Essentially zero of these puncta exhibited colocalization ($0 / 1,209$ spots, $D \lg 4$ reversed; 4/1,540 spots, mCherry). In contrast, when a transcript was present (Actb), a large fraction of the puncta exhibited colocalization (an average of 58% of probes in one color colocalized with other color, 15,866/27,504 spots; Fig. 3h and Supplementary Table 3),
indicative of a 75% detection efficiency, comparable to the nonamplified single-molecule studies described above.

We used two-color HCR ExFISH against mRNAs to image their position within cellular compartments such as dendritic spines, which require nanoscale resolution for accurate identification or segmentation. We probed the Dlg4 mRNA, which encodes the prominent postsynaptic scaffolding protein PSD-95 and which is known to be dendritically enriched ${ }^{7}$. We obtained a degree of colocalization ($53 \% ; 5,174 / 9,795$ spots) suggesting a high detection efficiency of 73\% (Fig. 3i). We also probed the mRNA for Camk2a, finding a detection efficiency of 78% (colocalization, 61\%; 8,799/14,440 spots; Supplementary Fig. 10). We focused on puncta that were colocalized, thus suppressing false-positive errors and giving a lower bound on transcript detection (Supplementary Fig. 10). Focusing on individual dendrites in these expanded samples revealed that individual $\operatorname{Dlg} 4$ (Fig. 3j) and Camk2a (Fig. 3k) mRNAs could indeed be detected in a sparse subset of dendritic spines as well as in fine dendritic processes. To facilitate multican be disassembled using toe-hold mediated strand displacement ${ }^{26}$ (Supplementary Fig. 11). These modified HCR amplifiers enable multiple cycles of HCR by disassembling the HCR polymer between subsequent cycles. Given that neurons can have tens of thousands of synapses and mRNAs can have low copy number, the ability to map mRNAs at synapses throughout neuronal arbors may be useful for a diversity of questions in neuroscience ranging from plasticity to development to degeneration.

DISCUSSION

We present a novel reagent, easily synthesized from commercial precursors, that enables RNA to be covalently anchored for expansion microscopy. The resulting procedure, ExFISH, enables RNAs to be probed through single-molecule FISH labeling as well as HCR amplification. We validated RNA retention before versus after expansion, finding excellent yield and decrowding of RNAs for more accurate RNA counts and localization. This enabled us to visualize, with nanoscale precision and single-molecule resolution, RNA structures such as XIST and NEAT1, lncRNAs whose emergent structure has direct implications for their biological roles. The anchoring was robust enough to support serial smFISH, including repeated washing and probe hybridization steps and multiplexed readout of RNA identity and location, implying that using probes designed according to specific coding strategies ${ }^{17-19}$ would support combinatorial multiplexing, in which each additional cycle yields exponentially more transcript information. The covalent anchoring of RNA to the ExM gel may also support enzymatic reactions to be performed in expanded samples such as reverse transcription, rolling-circle amplification (RCA), fluorescent in situ sequencing (FISSEQ) ${ }^{27}$, and other strategies for transcriptomic readout or SNP detection ${ }^{28}$, within intact samples.

ExM, being a physical form of magnification, enables nanoscale resolution even on conventional diffraction-limited microscopes. Expanding samples makes them transparent and homogeneous in index of refraction, in part because of the volumetric dilution and in part because of washout of nonanchored components ${ }^{1}$. Thus, strategies combining ExM with fast diffraction-limited methods like lightsheet microscopy ${ }^{23}$ may result in 'best of both worlds' performance metrics: the voxel sizes of classical
super-resolution methods but the voxel acquisition rates of increasingly fast diffraction-limited microscopes ${ }^{1}$. The decrowding of RNAs enables another key advantage: reducing the effective size of the self-assembled amplification product of HCR, which we here applied to enable nanoscale-resolution visualization of RNA in intact tissues; the Pierce lab is developing optimized singlemolecule HCR strategies ${ }^{29}$, although the results here shown follow the protocols of refs. 5 and 6. An HCR amplicon of size 500 nm in the postexpanded sample would, because of the greater distance between RNAs, have an effective size of 500/3.5 = $\sim 150 \mathrm{~nm}$. The lower packing density of amplicons facilitates the imaging of more transcripts per experiment ${ }^{19}$ with nanoscale precision. Other methods of achieving brighter signals may be possible. For example, brighter fluorophores such as quantum dots ${ }^{30}$ or bottlebrush fluorophores ${ }^{31}$ could, in principle, obviate the need for signal amplification. The expanded state may enable better delivery of these and other bulky fluorophores into samples. Other amplification strategies may be possible as well, including enzymatic (e.g., RCA 28, tyramide amplification ${ }^{22}$, and HRP amplification) as well as nonenzymatic (e.g., branched DNA) methods, although reaction efficiency and diffusion of reagents into the sample must be considered.

ExFISH may find many uses in neuroscience and other biological fields. In the brain, for example, RNA is known to be trafficked to specific synapses as a function of local synaptic activity ${ }^{32}$ and intron content ${ }^{33}$, it is known to be locally translated ${ }^{7,34,35}$, and the presence and translation of axonal RNAs remains under investigation ${ }^{36}$. We anticipate that, coupled with straightforward multiplexed coding schemes, this method could be used for transcriptomic profiling of neuronal cell types in situ as well as for the super-resolved characterization of neuronal connectivity and synaptic organization in intact brain circuits, key to an integrative understanding of the mechanisms underlying neural circuit function and dysfunction. More broadly, visualizing RNAs within cells and their relationship with RNA processing and trafficking machinery may reveal new insights throughout biology and medicine.

METHODS

Methods and any associated references are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

Lightsheet imaging was performed in the W.M. Keck Facility for Biological Imaging at the Whitehead Institute for Biomedical Research. We would like to acknowledge W. Salmon for assistance with the Zeiss Z. 1 lightsheet, S. Olenych from Carl Zeiss Microscopy for providing the microscopy filters, and H.T. Choi and N. Pierce for advice and consultation on HCR. E.R.D. is supported by NIH CEGS grant P50 HG005550, NIH CEGS grant 1 RM1 HG008525, and NSF GRF grant DGE1144152. A.T.W. acknowledges the Hertz Foundation Fellowship. F.C. acknowledges the NSF Fellowship and Poitras Fellowship. AR and AC acknowledge support from NIH/NHLBI grant 1U01HL129998. E.S.B. acknowledges support by the New York Stem Cell Foundation-Robertson Award, NSF CBET 1053233, MIT Media Lab Consortium, the MIT Synthetic Intelligence Project, NIH Director's Pioneer Award 1DP1NS087724, NIH 2R01DA029639, NIH Director's Transformative Award 1R01MH103910, NIH 1R24MH106075, IARPA D16PC00008, the Open Philanthropy Project, and Jeremy and Joyce Wertheimer. J.-B.C. was supported by a Simons Postdoctoral Fellowship.

AUTHOR CONTRIBUTIONS

F.C., A.T.W., E.R.D., A.M., G.M.C., and E.S.B. conceived RNA-tethering strategies to the ExM gel. F.C. and A.T.W. conceived and developed the LabelX reagent.
F.C., A.T.W., J.-B.C., and S. Alon developed ExM gel stabilization by re-embedding. F.C., A.T.W., and E.R.D. conceived and developed reversible HCR strategies. F.C., A.T.W., and E.S.B. designed, and F.C. and A.T.W. performed experiments. A.J.C. and A.R. provided FISH reagents and guidance on usage, and A.J.C. performed experiments. A.S. performed data analysis. S. Asano performed lightsheet imaging and analysis. E.S.B. supervised the project. F.C., A.T.W., A.S., and E.S.B. wrote the paper, and all authors contributed edits and revisions.

COMPETING FINANCIAL INTERESTS

The authors declare competing financial interests: details are available in the online version of the paper.

Reprints and permissions information is available online at http://www.nature. com/reprints/index.html.

1. Chen, F., Tillberg, P.W. \& Boyden, E.S. Optical imaging. Expansion microscopy. Science 347, 543-548 (2015).
2. Femino, A.M., Fay, F.S., Fogarty, K. \& Singer, R.H. Visualization of single RNA transcripts in situ. Science 280, 585-590 (1998).
3. Levsky, J.M. \& Singer, R.H. Fluorescence in situ hybridization: past, present and future. J. Cell Sci. 116, 2833-2838 (2003).
4. Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. \& Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877-879 (2008).
5. Choi, H.M.T. et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28, 1208-1212 (2010).
6. Choi, H.M.T., Beck, V.A. \& Pierce, N.A. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano 8, 4284-4294 (2014).
7. Cajigas, I.J. et al. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453-466 (2012).
8. Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22-29 (2012).
9. Tillberg, P.W. et al. Expansion microscopy of biological specimens with protein retention. Nat. Biotechnol. doi:10.1038/nbt. 3625 (2016).
10. Chozinski, T.J. et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods 13, 485-488 (2016).
11. Engreitz, J.M. et al. The Xist IncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).
12. Panning, B., Dausman, J. \& Jaenisch, R. X chromosome inactivation is mediated by Xist RNA stabilization. Cell 90, 907-916 (1997).
13. Plath, K., Mlynarczyk-Evans, S., Nusinow, D.A. \& Panning, B. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet. 36, 233-278 (2002).
14. Mito, M., Kawaguchi, T., Hirose, T. \& Nakagawa, S. Simultaneous multicolor detection of RNA and proteins using super-resolution microscopy. Methods 98, 158-165 (2015).
15. Clemson, C.M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717-726 (2009).
16. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293 (2009).
17. Lubeck, E. \& Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9, 743-748 (2012).
18. Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M. \& Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11 360-361 (2014).
19. Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S. \& Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).
20. Beliveau, B.J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl. Acad. Sci. USA 109, 21301-21306 (2012).
21. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41-51 (2000).
22. Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176 (2007).
23. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. \& Stelzer, E.H.K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007-1009 (2004).
24. Batish, M., van den Bogaard, P., Kramer, F.R. \& Tyagi, S. Neuronal mRNAs travel singly into dendrites. Proc. Natl. Acad. Sci. USA 109, 4645-4650 (2012).
25. Cabili, M.N. et al. Localization and abundance analysis of human IncRNAs at single-cell and single-molecule resolution. Genome Biol. 16, 20 (2015).
26. Zhang, D.Y. \& Seelig, G. Dynamic DNA nanotechnology using stranddisplacement reactions. Nat. Chem. 3, 103-113 (2011).
27. Lee, J.H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360-1363 (2014).
28. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857-860 (2013).
29. Shah, S. et al. Single-molecule RNA detection at depth via hybridization chain reaction and tissue hydrogel embedding and clearing. Development (in the press).
30. Bruchez, M. et al. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013-2016 (1998).
31. Fouz, M.F. et al. Bright fluorescent nanotags from bottlebrush polymers with DNA-tipped bristles. ACS Cent. Sci. 1, 431-438 (2015).
32. Steward, O., Wallace, C.S., Lyford, G.L. \& Worley, P.F. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21, 741-751 (1998).
33. Buckley, P.T. et al. Cytoplasmic intron sequence-retaining transcripts can be dendritically targeted via ID element retrotransposons. Neuron 69, 877-884 (2011).
34. Steward, 0. \& Schuman, E.M. Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347-359 (2003).
35. Buxbaum, A.R., Wu, B. \& Singer, R.H. Single β-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science 343, 419-422 (2014).
36. Jung, H., Yoon, B.C. \& Holt, C.E. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat. Rev. Neurosci. 13, 308-324 (2012).

ONLINE METHODS

A table of all reagents and chemicals with part numbers and suppliers can be found in Supplementary Table 1.

Cell culture and fixation. HeLa (ATCC CCL-2) cells and HEK293-FT cells (Invitrogen) were cultured on Nunc Lab-Tek II Chambered Coverglass (Thermo Scientific) in D10 medium (Cellgro) supplemented with 10% fetal bovine serum (FBS) (Invitrogen), 1\% penicillin-streptomycin (Cellgro), and 1\% sodium pyruvate (BioWhittaker). Cells were authenticated by the manufacturer and tested for mycoplasma contamination to their standard levels of stringency and were here used because they are common cell lines for testing new tools. Cultured cells were washed once with DPBS (Cellgro), fixed with 10% formalin for 10 min , and washed twice with $1 \times$ PBS. Fixed cells were then stored in 70% ethanol at $4{ }^{\circ} \mathrm{C}$ until use.

Preparation of LabelX. Acryloyl-X, SE (6-((acryloyl)amino)he xanoic acid, succinimidyl ester, here abbreviated AcX; ThermoFisher) was resuspended in anhydrous DMSO at a concentration of $10 \mathrm{mg} / \mathrm{mL}$, aliquoted, and stored frozen in a desiccated environment. Label-IT Amine Modifying Reagent (Mirus Bio, LLC) was resuspended in the provided Mirus Reconstitution Solution at $1 \mathrm{mg} / \mathrm{ml}$ and stored frozen in a desiccated environment. To prepare LabelX, $10 \mu \mathrm{~L}$ of $\mathrm{AcX}(10 \mathrm{mg} / \mathrm{mL})$ was reacted with $100 \mu \mathrm{~L}$ of Label-IT Amine Modifying Reagent ($1 \mathrm{mg} / \mathrm{mL}$) overnight at room temperature with shaking. LabelX was subsequently stored frozen $\left(-20^{\circ} \mathrm{C}\right)$ in a desiccated environment until use.

Mouse perfusion. All methods for animal care and use were approved by the Massachusetts Institute of Technology Committee on Animal Care and were in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. All solutions below were made up in $1 \times$ PBS prepared from nuclease-free reagents. Mice were anesthetized with isoflurane and perfused transcardially with ice-cold 4\% paraformaldehyde. Brains were dissected out, left in 4\% paraformaldehyde at $4{ }^{\circ} \mathrm{C}$ for one day, before moving to PBS containing 100 mM glycine. Slices ($50 \mu \mathrm{~m}$ and $200 \mu \mathrm{~m}$) were sliced on a vibratome (Leica VT1000S) and stored at $4^{\circ} \mathrm{C}$ in PBS until use. The mouse used in Figure 3 and related analyses was a Thy1-YFP (Tg(Thy1YFP)16Jrs) male mouse in the age range 6-8 weeks. No samplesize estimate was performed, since the goal was to demonstrate a technology. No exclusion, randomization, or blinding of samples was performed.

LabelX treatment of cultured cells and brain slices. Fixed cells were washed twice with $1 \times$ PBS, once with 20 mM MOPS pH 7.7 , and incubated with LabelX diluted to a desired final concentration in MOPS buffer (20 mM MOPS pH 7.7) at $37^{\circ} \mathrm{C}$ overnight followed by two washes with $1 \times$ PBS. For cells, ranges of LabelX were used that resulted in a Label-IT Amine concentration of $0.006-0.02 \mathrm{mg} / \mathrm{mL}$; higher concentrations resulted in somewhat dimmer smFISH staining (Supplementary Fig. 12), but otherwise no difference in staining quality was observed with Label-IT Amine concentrations in this range. For Figure 1e and Supplementary Figures 1-3, fixed cells were incubated with LabelX diluted to a final Label-IT Amine concentration of $0.02 \mathrm{mg} / \mathrm{mL}$. For all other experiments in cells, fixed cells
were treated with LabelX diluted to a final Label-IT Amine concentration of $0.006 \mathrm{mg} / \mathrm{mL}$.

Brain slices, as prepared above, were incubated with 20 mM MOPS pH 7.7 for 30 min and subsequently incubated with LabelX diluted to a final Label-IT Amine concentration of $0.1 \mathrm{mg} / \mathrm{mL}$ (due to their increased thickness and increased fragmentation from formaldehyde postfixation) in MOPS buffer (20 mM MOPS $\mathrm{pH} 7.7)$ at $37^{\circ} \mathrm{C}$ overnight. For YFP retention, slices were treated with $0.05 \mathrm{mg} / \mathrm{mL}$ AcX in PBS for $>6 \mathrm{~h}$ at room temperature.
smFISH in fixed cultured cells before expansion. Fixed cells were briefly washed once with wash buffer (10% formamide, $2 \times$ SSC) and hybridized with RNA FISH probes in hybridization buffer (10% formamide, 10% dextran sulfate, $2 \times$ SSC) overnight at $37^{\circ} \mathrm{C}$. Following hybridization, samples were washed twice with wash buffer, 30 min per wash, and washed once with $1 \times$ PBS. Imaging was performed in $1 \times$ PBS.
smFISH probe sets targeting the human transcripts for TFRC, ACTB, GAPDH, XIST, and 5' portion of NEAT1 were ordered from Stellaris with Quasar 570 dye. Probe sets against UBC, EEF2, USF2, TOP2A, and full-length NEAT1 were synthesized, conjugated to fluorophores, and subsequently purified by HPLC as described previously ${ }^{37}$. Oligonucleotide sequences for probe sets and accession numbers can be found in Supplementary Table 4.

Gelation, digestion, and expansion. Monomer solution ($1 \times$ PBS, $2 \mathrm{M} \mathrm{NaCl}, 8.625 \%(\mathrm{w} / \mathrm{w})$ sodium acrylate, 2.5% (w/w) acrylamide, 0.15% (w/w) N, N^{\prime}-methylenebisacrylamide) was mixed, frozen in aliquots, and thawed before use. Monomer solution was cooled to $4^{\circ} \mathrm{C}$ before use. For gelling cultured cells treated with LabelX, a concentrated stock of VA-044 (25% w/w, chosen instead of the ammonium persulfate (APS)/tetramethylethylenediamine (TEMED) of the original ExM protocol ${ }^{1}$ because APS/TEMED resulted in autofluorescence that was small in magnitude but appreciable in the context of smFISH), was added to the monomer solution to a final concentration of $0.5 \%(\mathrm{w} / \mathrm{w})$ and degassed in $200 \mu \mathrm{l}$ aliquots for 15 min . Cells were briefly incubated with the monomer solution plus VA-044 and transferred to a humidified chamber. Subsequently, the humidified chamber was purged with nitrogen gas. To initiate gelation, the humidified chamber was transferred to a $60^{\circ} \mathrm{C}$ incubator for two hours. For gelling brain slices treated with LabelX, gelation was performed as in the original ExM protocol (since, with HCR amplification, the slight autofluorescence of APS/TEMED was negligible). Gelled cultured cells and brain slices were digested with Proteinase K (New England BioLabs) diluted 1:100 to 8 units/mL in digestion buffer (50 mM Tris (pH 8), 1 mM EDTA, 0.5% Triton X-100, 500 mM NaCl), and digestion was carried out overnight at $37^{\circ} \mathrm{C}$. The gels expand slightly in the high osmolarity digestion buffer $(\sim 1.5 \times)$. After digestion, gels were stored in $1 \times$ PBS until use and expansion was carried out as previously described.
smFISH staining after expansion. Expanded gels were incubated with wash buffer (10% formamide, $2 \times$ SSC) for 30 min at room temperature and hybridized with RNA FISH probes in hybridization buffer (10% formamide, 10% dextran sulfate, $2 \times$ SSC) overnight at $37^{\circ} \mathrm{C}$. Following hybridization, samples were washed twice with wash buffer, 30 min per wash, and washed once with $1 \times$ PBS for another 30 min . Imaging was performed in $1 \times$ PBS.

Image processing and analysis of smFISH performed on cultured cells. Widefield images of smFISH staining performed before or after expansion were first processed using a rolling-ball background subtraction algorithm (FIJI) ${ }^{38}$ with a 200 pixel radius. Subsequently, maximum-intensity Z-projections of these images were generated. Spots were then localized and counted using a code developed by the Raj lab and available online (http://rajlab. seas.upenn.edu/StarSearch/launch.html). This image analysis was performed for Figures 1c-e and 2a-c and Supplementary Figures 2-4, 6, and 8.

Analysis of expansion isotropy. smFISH images before and after expansion of TOP2A were rigidly aligned via two control points using the FIJI plugin Turboreg ${ }^{39}$. Spots were localized and counted via a custom spot-counting Matlab code developed by the Raj lab (complete source code and instructions can be found at https://bitbucket.org/arjunrajlaboratory/rajlabimagetools/wiki/ Home). Length measurements were performed among all pairs of points before expansion and the corresponding pairs of points after expansion via a custom Matlab script. Measurement error was defined as the absolute difference between the before and after expansion length measurements (Supplementary Fig. 5c).

Re-embedding of expanded gels in acrylamide matrix. For serial staining in cells, expanded gels were re-embeded in acrylamide to stabilize the gels in the expanded state. Briefly: gels were expanded in water and cut manually to $\sim 1 \mathrm{~mm}$ thickness with a stainless steel blade. Cut gels were incubated in 3% acrylamide, $0.15 \% N, N^{\prime}$ methylenebisacrylamide with 0.05% APS, 0.05% TEMED, and 5 mM Tris pH 10.5 for 20 min on a shaker. There is an $\sim 30 \%$ reduction in gel size during this step. Excess solution is removed from the gels and the gels are dried with light wicking from a laboratory wipe. Gels are placed on top of a bind-silane-treated (see below) coverslip or glass-bottom plate with a coverslip placed on top of the gels before moving into a container and purged with nitrogen. The container is moved to a $37^{\circ} \mathrm{C}$ incubator for gelation for 1.5 h .

Staining of re-embedded gels. Re-embeded staining of gels was performed with exact conditions as described above for expanded gels, except posthybridization washes were replaced with two washes with wash buffer (10% formamide), 60 min per wash.
Probes were removed for multiple rounds of hybridization via treatment with DNAse I or 100% formamide. For DNAse I, samples were treated with DNAse I at $0.5 \mathrm{U} / \mu \mathrm{L}$ for 6 h at room temperature. For formamide stripping, samples were treated with 100% formamide at 6 hat $37^{\circ} \mathrm{C}$.

Bind-silane treatment of coverslips. Coverslips and glass-bottom 24 -well plates were treated with bind-silane, a silanization reagent that incorporates acryloyl groups onto the surface of glass to perform in free-radical polymerization. Briefly, $5 \mu \mathrm{~L}$ of bind-silane reagent was diluted into 8 mL of ethanol, 1.8 mL of $\mathrm{ddH}_{2} \mathrm{O}$ and $200 \mu \mathrm{~L}$ of acetic acid. Coverslips and glass-bottom 24 -well plates were washed with $\mathrm{ddH}_{2} \mathrm{O}$, followed by 100% ethanol, followed by the diluted bind-silane reagent. After a brief wash with the diluted bind-silane reagent, the coverslip was dried, then washed with 100% ethanol, and then dried again. Coverslips were prepared immediately before use.

Probe design for HCR-FISH. Probe sequences and accession numbers for mRNA targets can be found in Supplementary Table 4. Probes were designed for HCR-FISH by tiling the CDS of mRNA targets with 22 -mer oligos spaced by 3-7 bases. HCR initiators were appended to tiled sequences via a 2 -base spacer (AA). For two-color probe-sets, even- and odd-tiled probes were assigned different HCR initiators to allow for amplification in different color channels.

RNA FISH with hybridization chain reaction amplification. Gelled samples were incubated with wash buffer (20% formamide, $2 \times$ SSC) for 30 min at room temperature and hybridized with HCR-initiator-tagged FISH probes in hybridization buffer (20% formamide, 10% dextran sulfate, $2 \times$ SSC) overnight at $37^{\circ} \mathrm{C}$. Following hybridization, samples were washed twice with wash buffer, 30 min per wash, and incubated with $1 \times$ PBS for 2 h at $37^{\circ} \mathrm{C}$. Subsequently, samples were incubated with $1 \times$ PBS for at least 6 h at room temperature. Before HCR amplification, hybridized samples were preincubated with amplification buffer (10% dextran sulfate, $5 \times$ SSC, 0.1% Tween 20) for 30 min . To initiate amplification, HCR hairpin stocks (Alexa 546 and Alexa 647 fluorophores) at $3 \mu \mathrm{M}$ were snap-cooled by heating to $95^{\circ} \mathrm{C}$ for 90 s and leaving to cool at room temperature for 30 min . Gelled samples were then incubated with HCR hairpins diluted to 60 nM in amplification buffer for 3 h at room temperature. After amplification, gels were washed with $5 \times$ SSCT ($5 \times$ SSC, 0.1% Tween 20) twice with 1 h per wash.

Imaging of cultured cells using ExFISH. Both cultured cells as well as LabelX-treated and expanded cultured cells were imaged on a Nikon Ti-E epifluorescence microscope with a SPECTRA X light engine (Lumencor), and a 5.5 Zyla sCMOS camera (Andor), controlled by NIS-Elements AR software. For Figure 1c,d and Supplementary Figures 3-5, a 40×1.15 numerical aperture (NA) water-immersion objective was used. For all other experiments with cultured cells, a 60×1.4 NA oil-immersion objective was used.
For imaging smFISH probes labeled with fluorophores, the following filter cubes (Semrock, Rochester, NY) were used: Alexa 488, GFP-1828A-NTE-ZERO; Quasar 570, LF561-B-000; Alexa 594, FITC/TXRED-2X-B-NTE; and Atto 647N, Cy5-4040C-000.

Imaging of expanded brain slices. For epifluorescence imaging of brain sections before and after expansion (Fig. 3a-e) and to quantify expansion factors of tissue slices, specimens were imaged on a Nikon Ti-E epifluorescence microscope with a 4×0.2 NA air objective, a SPECTRA X light engine (Lumencor), and a 5.5 Zyla sCMOS camera (Andor), controlled by NIS-Elements AR software.
Postexpansion confocal imaging of expanded brain tissue was performed on an Andor spinning disk (CSU-X1 Yokogawa) confocal system with a 40×1.15 NA water objective (Fig. 3f-k and Supplementary Fig. 10) on a Nikon TI-E microscope body. GFP was excited with a 488 nm laser, with $525 / 40$ emission filter. Alexa 546 HCR amplicons were excited with a 561 nm laser with $607 / 36$ emission filter. Alexa 647 amplicons were excited with a 640 nm laser with 685/40 emission filter.
Gels were expanded in with three washes, 15 min each of $0.05 \times$ SSC. The expansion factor can be controlled with the salt
concentration; we found that $0.05 \times$ SSC gives $3 \times$ expansion, while still giving enough salt for hybridization stability. To stabilize the gels against drift during imaging following expansion, gels were placed in glass-bottom 6 -well plates with all excess liquid removed. If needed, liquid low-melt agarose ($2 \% \mathrm{w} / \mathrm{w}$) was pipetted around the gel and allowed to solidify to encase the gels before imaging.

Lightsheet imaging was performed on a Zeiss Z. 1 lightsheet microscope. Briefly, the sample was fixed on a custom-made plastic holder using super glue and mounted on the freely rotating stage of the Z. 1 lightsheet. Lightsheets were generated by two illumination objectives ($5 \times, 0.1 \mathrm{NA}$), and the fluorescence signal detected by a $20 \times$ water-immersion objective (1.0 NA). Both lightsheets were used for data collection. The image volume dimensions of a single tile were $1,400 \times 1,400 \times$ 1,057 pixels, with a voxel size of 227 nm laterally and 469 nm axially. The laserlines used for excitation were $488 \mathrm{~nm}, 561 \mathrm{~nm}$, and 638 nm . The individual laser transmissions were set to 5%, with the maximum output of $50 \mathrm{~mW}(488 \mathrm{~nm}$ and 561 nm$)$ and 75 mW (638 nm). Optical filters used to separate and clean the fluorescence response included a Chroma T560lpxr as a dichroic and a Chroma 59001 m for GFP and 59007 m for Alexa 546 and Alexa 647. Two PCO.Edge 5.5m sCMOS cameras were used to capture two fluorescence channels simultaneously. Tiled data sets were taken with the Zeiss ZEN Software and subsequently merged and processed with FIJI, Arivis Vision4D, and Bitplane Imaris.

Two-color analysis in slices. A sliding window averaging (or minimization) scheme in Z (three optical sections) was used to suppress movement artifacts before spot-detection processing. RNA puncta were detected via a custom 3D spot-counting Matlab code developed by the Raj lab; complete source code and instructions can be found at https://bitbucket.org/arjunrajlaboratory/ rajlabimagetools/wiki/Home.

Spot centroids were extracted from both color channels, and spots were determined to be colocalized if their centroids were within a 3 pixel radius in the x, y dimensions and a 2 pixel radius in the z dimension.

HCR reversal via toe-hold-mediated strand displacement. HCR amplification commences upon the addition of two HCR metastable amplifier hairpins. We designed a pair of HCR amplifiers, B 2 H 1 T and B 2 H 2 (see below for sequence), where B 2 H 1 T bears a 6 bp toe-hold for strand displacement. To initiate HCR amplification, aliquots of these amplifiers at $3 \mu \mathrm{M}$ were snap-cooled by heating to $95^{\circ} \mathrm{C}$ for 90 s and leaving to cool at room temperature for 30 min . Gelled samples were then incubated with HCR hairpins diluted to 60 nM in amplification buffer for 3 h at room temperature. After amplification, gels were washed with $5 \times$ SSCT ($5 \times$ SSC, 0.1% Tween 20) twice with 1 h per wash. Subsequently, HCR reversal was initiated by the addition of a displacement strand (see below for sequence) at 200 nM in $5 \times$ SSCT.

B2H1T:
GGCGGTTTACTGGATGATTGATGAGGATTTACGAG GAGCTCAGTCCATCCTCGTAAATCCTCATCAATCAT CAAATAG
B2H2:
/5'-ALEXA546-C12/ CCTCGTAAATCCTCATCAATC ATCCAGTAAACCGCCGATGATTGATGAGGATTTACGAG GATGGACTGAGCT

Displacement strand:
CTATTTGATGATTGATGAGGATTTACGAGGATG GACTGAGCT
37. Raj, A. \& Tyagi, S. Detection of individual endogenous RNA transcripts in situ using multiple singly labeled probes. Methods Enzymol. 472, 365-386 (2010).
38. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682 (2012).
39. Thévenaz, P., Ruttimann, U.E. \& Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27-41 (1998).

Supplementary Figure 1

Retention of RNA with LabelX.
(a) Epi-fluorescence image of single molecule FISH (smFISH) against GAPDH on HeLa cells expanded without LabelX treatment. (b) Epi-fluorescence image of smFISH performed against GAPDH on expanded HeLa cells treated with LabelX. Images are maximum intensity projections of 3-D stacks. Nuclei stained with DAPI (shown in blue). Scale bars: $20 \mu \mathrm{~m}$ (post-expanded units).

1200

Supplementary Figure 2

Effect of LabelX on fluorescent in-situ hybridization.
To access the effect of LabelX on fluorescent in situ hybridization, fixed HeLa cells were stained with smFISH probe-sets, followed by DNAse I treatment to remove the staining. The cells were then treated with LabelX and stained again with the same smFISH probesets. (a) UBC staining before LabelX treatment and (b) UBC staining after probe removal and LabelX treatment. (c) EEF2 staining before LabelX treatment. (d) EEF2 staining after probe removal and LabelX treatment. (e) Comparison of smFISH spots counted for individual cells before LabelX, and after probe removal and application of LabelX. The number of RNA molecules detected in a given cell was quantified using an automated spot counting algorithm ($n=7$ cells for each bar). Plotted are mean \pm standard error; no significant difference in spot counts before vs after LabelX ($p>0.5$ for before vs. after for UBC, $p>0.5$ for before vs. after for EEF2; ttest, unpaired, two-tailed). Images in a-d are maximum intensity projections of 3-D stacks; scale bars: $10 \mu \mathrm{~m}$ (pre-expanded units).

Supplementary Figure 3

High efficiency covalent anchoring of RNA to the ExM polymer gel.
Different RNA species spanning 3 orders of magnitude in abundance were detected via single molecule RNA fluorescent in situ hybridization (FISH) in HeLa cells before and after ExM with LabeIX treatment (shown in Fig. 1e). (a) Ratio of FISH spots detected after expansion to spots detected before expansion for single cells. Representative before vs. after ExFISH images shown: (b,c) TFRC; (d,e) $G A P D H ;(f, g) A C T B$. Scale bars, $10 \mu \mathrm{~m}$ (pre-expanded units) in $\mathbf{b}, \mathbf{d}, \mathbf{f} ; \mathbf{c}, \mathbf{e}, \mathbf{g}$, expanded physical size $21 \mu \mathrm{~m}$ (imaged in PBS).

Supplementary Figure 4

LabelX does not impede nuclear expansion.
(a) Pre-expansion widefield image of a cultured HeLa cell stained with DAPI to visualize the nucleus (top panel) and smFISH probes against ACTB (bottom panel). (b) Post-expansion widefield image of the same cell as in (a). (c) Pre-expansion widefield image of LabelX treated Thy1-YFP brain slice (Right panel, YFP protein) stained with DAPI (Left panel) (MIP, $4 \mu \mathrm{~m}$ z-depth). (d) Post-expansion image of the same region as in (c) (MIP, $12 \mu \mathrm{~m}$). (e) Ratio of the expansion factor of cell bodies for individual cells to the expansion factor of their respective nuclei. smFISH stain is used to outline the boundaries of the cell bodies of cultured cells while the endogenous YFP protein is used to demarcate the cell bodies of neurons in Thy1-YFP brain slices. Plotted are mean \pm standard error. The ratio for both cultured cells and brain slices did not significantly deviate from one ($p>0.05$ for both, 1 -sample t-test; $n=6$, cultured HeLa cells; n $=7$, cells in 1 brain slice). Scale bars, $10 \mu \mathrm{~m}$.

Supplementary Figure 5

Isotropy of ExFISH.
(a) Representative FISH image of TOP2A in a single HeLa cell before expansion (MIP of cell thickness). (b) ExFISH image of cell in (a) taken with the same optical parameters. (c) Merged image of (a) and (b) (red and green for before and after expansion respectively); distance measurements between pairs of mRNA spots before (L, red line) and after (L', green line; note that these lines overlap nearly completely) expansion were used to quantify expansion isotropy. (d) Mean of the absolute value of the measurement error (i.e., |L-L'|) plotted against measurement length (L) for all pairs of mRNA spots (mean \pm standard deviation, $N=4$ samples, 6.8×10^{5} measurements). Scale bars: white, $10 \mu \mathrm{~m}$ pre-expansion units; blue, white scale bar divided by expansion factor. Orange line indicates diffraction limit of the microscope used (see Methods for details).

Supplementary Figure 6

Serially hybridized and multiplexed ExFISH.
(a) Five consecutive widefield fluorescence images (top to bottom, then left to right) of $G A P D H$, applied to the cell of Fig. 2a. (b) Widefield fluorescence images showing ExFISH with serially delivered probes against six RNA targets (right to left, then top to bottom: NEAT1, EEF2, ACTB, UBC, GAPDH, and USF2) in a cultured HeLa cell (raw images of composite shown in Fig. 2e). Scale bars: 20 $\mu \mathrm{m}$ in expanded units.

Supplementary Figure 7

Schematic for HCR-mediated signal amplification.
FISH probes bearing HCR initiators are hybridized to a target mRNA. During amplification, metastable DNA hairpins bearing fluorophores assemble into polymer chains onto the initiators, thus amplifying signal downstream of the FISH probe hybridization event.

Supplementary Figure 8

HCR Amplification False Positives.
(a) Widefield image of a LabelX treated Thy1-YFP brain slice (YFP protein, green) stained with probes against YFP (red) and Gad1 (magenta) followed by HCR amplification. Probes against YFP transcripts were amplified with the B1 amplifier set (see Methods) while probes against Gad1 transcripts were amplified with the B2 amplifier set (MIP, $59 \mu \mathrm{~m}$). (b) Widefield image of LabelX treated Thy1-YFP brain slice (YFP protein, green) treated with the same HCR amplifiers as in (a) (namely B1 (red) and B2 (magenta)) without the addition of probes (MIP, $50 \mu \mathrm{~m}$). (c) HCR spots detected per volume of expanded sample. Analysis was performed on samples which were either treated or not treated with FISH probes followed by HCR amplification. An automated spot counting algorithm (as used in Fig. 1) was used to count HCR spots. The endogenous YFP protein was used to delineate regions used for the analysis. Plotted are mean \pm standard error. HCR spot counts are significantly different in the presence of probes than without probes ($p<0.05$ for both B1 and B2 amplifier sets, Welch's t-test; $n=4$ fields of view each). Scale bars: $50 \mu \mathrm{~m}$.

Supplementary Figure 9
Lightsheet microscopy of ExFISH.
(a) Volume rendering of Thy1-YFP (green) brain tissue acquired by lightsheet microscopy with HCR-ExFISH targeting YFP (red) and Gad1 (blue) mRNA. (b) A maximum intensity projection ($\sim 8 \mu \mathrm{~min}$) of a small subsection of the volume, showing the high resolution of imaging and single molecule localization of imaging expanded specimens with lightsheet imaging (scale bar: $10 \mu \mathrm{~m}$, in pre-expansion units, expansion factor, $3 \times$). (c) Zoom in of the volume rendering in (a) (scale bar: $20 \mu \mathrm{~m}$, in pre-expansion units, $3 \times$).

Supplementary Figure 10

Two-color co-localization of FISH probes with HCR amplification in expanded Thy1-YFP brain slices.
(a) Schematic showing two color amplification of the same target. A transcript of interest is targeted by probes against alternating parts of the sequence, and bearing two different HCR initiators, allowing for amplification in two colors. (b) Confocal image showing FISH staining with HCR amplification against the Camk2a transcript in two colors (red and blue; YFP fluorescence shown in green). (c) The result of an automated two-color spot co-localization analysis performed on the data set shown in (b). Each purple spot represents a positive co-localization identified by the algorithm and overlaid on the confocal image of YFP. Zoom in of dendrites showing two color FISH staining with HCR amplification against Camk2a (d,e) and Dlg4 (f,g) transcripts. Top row shows the raw two color staining data corresponding to the bottom row showing co-localized spots identified by the automated algorithm (replicated from Fig. 3j-k for convenience). Scale bars: (b,c) $10 \mu \mathrm{~m}(3 \times)$; $(\mathbf{d}-\mathbf{g}) 2 \mu \mathrm{~m}(3 \times) .(\mathbf{b}-\mathbf{g})$ are MIP of $\sim 1.6 \mu \mathrm{~m}$ thickness in unexpanded coordinates.

HCR
Hairpins

mRNA with FISH Probes bound

HCR
Amplification

B

Supplementary Figure 11

HCR reversal via toe-hold mediated strand displacement.
(a) Schematic for HCR amplification and reversal. HCR amplification is initiated with custom-made HCR hairpins bearing toe-holds for toe-hold mediated strand displacement. After amplification, the addition of a disassembling strand initiates the disassembly of the HCR polymers via strand displacement. (b) ExFISH-treated Thy1-YFP brain slice (YFP in blue) is shown stained with YFP FISH probes bearing HCR initiators and amplified with custom made HCR hairpins bearing toe-holds for strand displacement (green dots). The different panels show the state of HCR reversal at different times after the addition of strands to initiate the disassembly of the HCR polymers. Scale bars: $20 \mu \mathrm{~m}$ (in post-expansion units).

Supplementary Figure 12

Dependence of RNA FISH spot intensity on degree of expansion and concentration of LabelX.
HeLa cells, treated with LabelX diluted to different final concentrations of Label-IT Amine concentration, were expanded and stained with a probe-set against $G A P D H$. After staining, the gelled samples were expanded in $1 \times$ PBS ($\sim 2 \times$ expansion ratio) and water ($\sim 4 \times$ expansion ratio) and the spot intensity for the different samples was quantified. Plotted are mean \pm standard error; $N=6$ cells.

Supplemental Table 1. List of reagents and suppliers			
Chemical Supplies	Chemical Name	Supplier	Part Number
ExM Gel or Preparation	Sodium Acrylate (purity note:*)	Sigma	408220
	Acrylamide	Sigma	A9099
	N,N'-Methylenebisacrylamide	Sigma	M7279
	Ammonium Persulfate	Sigma	A3678
	N,N, ${ }^{\prime}, \mathrm{N}^{\prime}$-Tetramethylethylenediamine	Sigma	T7024
	VA-044	Wako	27776-21-2
	4-Hydroxy-TEMPO	Sigma	176141
Hybridization Buffer	Dextran Sulfate	Sigma	D8906-50g
	SSC	Thermo Fisher	AM9765
	Formamide	Thermo Fisher	AM9342
Fixation and Permeabilization	Paraformaldehyde	Electron Microscopy Sciences	15710
	Tissue-prep Buffered 10\% Formalin	Electron Microscopy Sciences	15742-10
	Triton X-100	Sigma	93426
	Ethyl Alcohol	Sigma	E7023
	Glycine	Sigma	50046
	10x PBS	Thermo Fisher	AM9624
Protein Digestion	Proteinase K	New England Biolabs	P8107S
	Ethylenediaminetetraacetic acid	Sigma	EDS
	Sodium Chloride	Sigma	S9888
	Tris-HCl	Life Technologies	AM9855
HCR Amplification	Amplification Buffer	Molecular Instruments	N/A
	Tween 20	Sigma	P1379
LabelX Preparation	Label-IT ® Amine	Mirus Bio	MIR 3900
	Acryloyl-X, SE	Thermo Fisher	A20770
LabelX Treatment	MOPS	Sigma	M9381-25G
Reembeded Gels Staining	DNAse I	Sigma	4716728001
Bind-silane Treatment	Bind-Silane	Sigma	GE17-1330-01
	* check for yellow color upon resuspens that indicates poor quality; solution shou clear (see http://expansionmicroscopy.org)		

Decades (Transcript Abundance)	Mean (Ratio of \# spots detected in individual cells after ExM, to \# spots detected before ExM)	Standard Deviation	Sample size (n)	\boldsymbol{p}-Value
10 s	1.082	0.177	14	0.107
100 s	1.105	0.138	29	3.24×10^{-4}
1000 s	1.596	0.562	16	7.09×10^{-4}

Supplementary Table 2. Statistical Analysis of RNA FISH spots detected in individual cells before and after ExFISH. For RNA molecules detected before vs after expansion, spots were counted by an automated algorithm. The ratio of the number of spots after ExM to spots counted before ExM was determined for each cell. Spot counts were grouped into decades based on the pre-expansion spot count. The table shows the results of a one-sample T-test performed on the ratio of spots counts for each decade to determine significant deviation from the expected mean ratio value of one.

Target	Total Spot Count (Averaged Across Both Red and Blue Channels)	Co-localized Spots	Co-localization \%	Hybridization Efficiency	Volume analyzed (um^{3} in unexpanded coordinates)	Density (Colocalized Puncta per $\mu \mathrm{m}^{3}$)
ActB	27504	15866	0.577	0.76	236749	0.067
DIg4	9795	5174	0.528	0.727	236749	0.022
Camk2a	14440	8799	0.609	0.781	147968	0.059
DIg4 Missense	1540	4	0.003	0.051	147968	0
mCherry	1209	0	0	0	147968	0

Supplementary Table 3. Analysis of two-color colocalization of FISH probes with HCR amplification in expanded slices.

Supplementary Video 1. Volume rendering of Thy1-YFP (green) brain tissue acquired by lightsheet microscopy with HCR-ExFISH targeting YFP (red) and Gadl (blue) mRNA. Movie of volume in Supp. Fig. 9.

	Probe Sequence	Initiator Type
YFP B1 1	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATctcgccettgctcaccat	B1
YFP B1 2	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATcaccaccccggtgaacag	B1
YFP B1 3	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATtccagctcgaccaggatg	B1
YFP B1 4	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATtgtggccgtttacgtcgc	B1
YFP B1 5	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATctcgccggacacgctgaa	B1
YFP B1 6	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATtaggtggcatcgccetcg	B1
YFP B1 7	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATacttcagggtcagcttgc	B1
YFP B1 8	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATcttgccggtggtgcagat	B1
YFP B1 9	gAggAgggCAgCAAACgggaAgAgTCTTCCTTTACgTAATgtgggccagggcacgggc	B1
YFP B1 10	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATagccgaaggtggtcacga	B1
YFP B1 11	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATggcgaagcactgcaggcc	B1
YFP B1 12	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATttcatgtggtcggggtag	B1
YFP B1 13	gAggAgggCAgCAAACgggaAgAgTCTTCCTTTACgTAATacttgaagaagtcgtgct	B1
YFP B1 14	gAggAgggCAgCAAACgggaAgAgTCTTCCTTTACgTAATgtagccttcgggcatggc	B1
YFP B1 15	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATaagatggtgcgctcctgg	B1
YFP B1 16	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATagttgccgtcgtcettga	B1
YFP B1 17	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATcacctcggcgcgggtctt	B1
YFP B1 18	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATagggtgtcgccetcgaac	B1
YFP B1 19	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATtcagctcgatgcggttca	B1
YFP B1 20	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATctccttgaagtcgatgcc	B1
YFP B1 21	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATtgccccaggatgttgccg	B1
YFP B1 22	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATtgtagttgtactccagct	B1
YFP B1 23	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATgatatagacgttgtggct	B1
YFP B1 24	gAggAgggCAgCAAACgggaAgAgTCTTCCTTTACgTAATttcttctgcttgtcggcc	B1
YFP B1 25	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATtgaagttcaccttgatgc	B1
YFP B1 26	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATctcgatgttgtggcggat	B1
YFP B1 27	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATgcgagctgcacgctgccg	B1
YFP B1 28	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATtgttctgctggtagtggt	B1
YFP B1 29	gAggAgggCAgCAAACgggaAgAgTCTTCCTTTACgTAATggggccgtcgccgatggg	B1
YFP B1 30	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATtggttgtcgggcagcagc	B1
YFP B1 31	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATcggactggtagctcaggt	B1
YFP B1 32	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATgttggggtctttgctcag	B1
YFP B1 33	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATaccatgtgatcgcgcttc	B1
YFP B1 34	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATcggtcacgaactccagca	B1
YFP B1 35	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATgccgagagtgatcccggc	B1
YFP B1 36	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTAATtacttgtacagctcgtcc	B1

Accession: NM_008077.3

Gad1 1
Gad1 2
Gad1 3
Gad1 4
Gad1 5
Gad1 6
Gad1 7
Gad1 8
Gad1 9
Gad1 10
Gad1 11
Gad1 12
Gad1 13
Gad1 14
Gad1 15
Gad1 16
Gad1 17
Gad1 18
Gad1 19
Gad1 20
Gad1 21
Gad1 22
Gad1 23
Gad1 24
Gad1 25
Gad1 26
Gad1 27
Gad1 28
Gad1 29
Gad1 30
Gad1 31
Gad1 32
Gad1 33
Gad1 34
Gad1 35
Gad1 36
Gad1 37
Gad1 38
Gad1 39
Gad1 40
Gad1 41
Gad1 42
Gad1 43
Gad1 44
Gad1 45
Gad1 46
Gad1 47
Gad1 48

Probe Sequence
GGCGAAGGAGTGGAAGATGCCAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC GGATCCGCTCCCGCGTTCGAGGAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg GTAGGGCGCAGGTTGGTAGTATAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC TGGGCTACGCCACACCAAGTATAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg AGGCCCAGTTTTCTGGTGCATCAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC TTGGTCCTTTGTAAGAAGCCACAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg AGACGACTCTTCTCTTCCAGGCAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC GAGGACTGCCTCTCCCTGAAGGAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg TTTTCACAGGAAAGCAGGTTCTAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC GTGCGCCGGAAGCGGGCACCCTAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg AACAGGTTGGAGAAGTCGGTCTAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC CCGTTCTTAGCTGGAAGCAGATAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg AAGAACTGCGCAGTTTGCTCCTAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC TAGTTGAGGAGTATGTCTACCAAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg GAGCGATCAAATGTCTTGCGGAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC TGTGGGTGGTGGAAATCCAGAAAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg CCTTCCATGCCTTCCAGCAACTAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC TCGGGGTGGTCAGACAGCTCCAAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg TCAACCAGGATCTGCTCCAGAGAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC CGAACCCCGTACTTCAGGGTGTAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg TTGAAAAATCGAGGGTGACCTGAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC CCAATGATATCCAAACCAGTAGAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg GATGTCAGCCATTCACCAGCTAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC TCATATGTGAACATATTGGTATAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg ATGAGAACAAACACGGGTGCAAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC TCTCTCATCTTCTTAAGAGTAAAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg TCTTTATTTGACCATCCAACGAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC GCTCCCCCAGGAGAAAATATCCAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg ATGATGCTGTACATATTGGATAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC ACTTCTGGGAAGTACTTGTAACAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg ACAGCCGCCATGCCTTTTGTCTAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC TGTTCTGAGGTGAAGAGGACCAAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg GCTTTCTTTATGGAATAGTGACAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC TTGTCGGTTCCAAAGCCAAGCGAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg TCATTGCACTTTATCAAAATCAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC TCTAAATCAGCCGGAATTATCTAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg TGTTTGGCATCAAGAATTTTTGAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC GCATTGACATAAAGGGGAACATAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg CCGTAAACAGTCGTGCCTGCGGAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC TCCGCAATTTCCTGGATTGGATAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg CAAAGGTTGTATTTCTCACATAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC CCACCACCCCAGGCAGCATCCAAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg CGGTGCTTCCGGGACATGAGCAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC TTGGCCCTTTCTATGCCGCTGAAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg TTGTGAGGGTTCCAGGTGACTGAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC GCAGAGCACTGGAGCAGCACGCAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg ATACCCTTTTCCTTGACCAGAAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC CCTGCACACATCTGGTTGCATCAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg

Initiator

ActB B2 2
ActB B2 4
ActB B2 6
ActB B2 8
ActB B2 10
ActB B2 12
ActB B2 14
ActB B2 16
ActB B2 18
ActB B2 20
ActB B2 22
ActB B2 24
ActB B2 26
ActB B2 28
ActB B2 30
ActB B2 32
ActB B2 34
ActB B2 36
ActB B2 38
ActB B2 40
Act Short HCR 1
Act Short HCR 3
Act Short HCR 5
Act Short HCR 7
Act Short HCR 9
Act Short HCR 11
Act Short HCR 13
Act Short HCR 15
Act Short HCR 17
Act Short HCR 19
Act Short HCR 21
Act Short HCR 23
Act Short HCR 25
Act Short HCR 27
Act Short HCR 29
Act Short HCR 31
Act Short HCR 33
Act Short HCR 35
Act Short HCR 37
Act Short HCR 39
Act Short HCR 41
Act Short HCR 41

Probe Sequence
CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAggaatacagcccggggagcatc B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAcacccacataggagtccttctg B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAcaatggggtacttcagggtcag B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAggtgccagatcttctccatgtc B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAtcatctttcacggttggcctt B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAtggctacgtacatggctggggt B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAcaatgcctgtggtacgaccaga B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAcctcgtagatgggcacagtgtg B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAatcttcatgaggtagtctgtca B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAatttccctctcagctgtggtgg B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAtcgaagtctagagcaacatagc B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAtagctcttctccagggaggaag B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAcggaaccgctcgttgccaatag B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAcaggattccatacccaagaagg B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAtcaacgtcacacttcatgatgg B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAgtggtaccaccagacagcactg B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAagagcagtaatctccttctgca B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAttgcgctcaggaggagcaatga B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAaaggtggacagtgaggccagga B2 CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAgaggggccggactcatcgtact B2 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTgcgcagcgatatcgtcatccat B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTccattcccaccatcacaccctg B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTtacctctcttgctctgggcctc B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTcccagttggtaacaatgccatg B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTcacgcagctcattgtagaaggt B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTtgaaggtctcaaacatgatctg B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTcatacagggacagcacagcctg B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTtgaccccgtctccggagtccat B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTggatggcgtgagggagagcata B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTaagctgtagccacgctcggtca B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTagcttctctttgatgtcacgca B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTgatgcggcagtggccatctcct B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTatgacctggccgtcaggcagct B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTggctggaaaagagcctcagggc B1 gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTttgaatgtagtttcatggatgc gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTttggcatagaggtctttacgga gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTctgtcagcaatgcctgggtaca gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTttgatcttcatggtgctaggag gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTgagccaccgatccacacagagt gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTtgcttgctgatccacatctgct gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTtagaagcacttgcggtgcacga gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgTTtagaagcacttgcggtgcacga

Initiator
B2
B2 B2 $B 2$ B2

	Probe Sequence	Initiator
DLG4 B1 2	GGGCTGTGTTCCAGAGGGGGCGAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
DLG4 B1 4	GTGTCCGTGTTGACAATCACAGAAgCATTCTTTCTTgAggAgggCagCaiACgggaigag	B1
DLG4 B1 6	TCCTCATACTCCATCTCCCCCTAAgCATTCTTTCTTgAggAgggCAgCAAACgggaigag	B1
DLG4 B1 8	GTGCCACCTGCGATGCTGAAGCAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
DLG4 B1 10	GGAATGATCTTGGTGATAAAGAAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
DLG4 B1 12	AACAGGATGCTGTCGTTGACCCAAgCATTCTTTCTTgAggAgggCagCAAACgggAAgAg	B1
DLG4 B1 14	AGGGCCTCCACTGCAGCTGAATAAgCATTCTTTCTTgAggAgggCAgCAAACgggaAgAg	B1
DLG4 B1 16	GCTGGGGGTTTCCGGCGCATGAAAgCATTCTTTCTTgAggAgggCAgCAAACgggaigag	B1
DLG4 B1 18	CTGAAGCCAAGTCCTTTAGGCCAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
DLG4 B1 20	ACGTAGATGCTATTATCTCCAGAAgCATTCTTTCTTgAggAgggCAgCAAACgggaigag	B1
DLG4 B1 22	CCGATCTGCAACCTGCCATCCTAAgCATTCTTTCTTgAggAgggCAgCAAACgggaigag	B1
DLG4 B1 24	TCCTCATGCATGACATCCTCTAAAgCATTCTTTCTTgAggAgggCagCAAACgggAAgAg	B1
DLG4 B1 26	TTGGCCACCTTTAGGTACACAAAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
DLG4 B1 28	GAGGTTGTGATGTCTGGGGGAGAAgCATTCTTTCTTgAggAgggCagCAAACgggAAgAg	B1
DLG4 B1 30	TCGGTGCCCAAGTAGCTGCTATAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
DLG4 B2 1	TCTTCATCTTGGTAGCGGTATTAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 3	GGAGAATTGGCCTGGTTGGGGAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 5	GTTCCGTTCACATATCCTGGGGAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 7	AGACCTGAGTTACCCCTTTCCAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 9	GATGGGTCGTCACCGATGTGTGAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 11	AGGCGGCCATCCTGGGCTGCAGAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 13	GTCACCTCCCGGACATCCACTTAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 15	TAGAGGCGAACGATGGAACCCGAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 17	TTGATAAGCTTGATCTCTATGAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 19	ATGTGCTGGTTCCCAACGCCCCAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 21	TGGGCAGCGCCTCCTTCGATGAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 23	CCCACACTGTTGACCGCCAGGAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 25	TCATATGTGTTCTTCAGGGCTGAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 27	TAGCTGTCACTCAGGTAGGCATAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
DLG4 B2 29	CTGATCTCATTGTCCAGGTGCTAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2

Accession: NM_177407.4

	Probe Sequence	Initiator
Camk2a iso2 1	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAACGGGTGCAGGTGATGGTAGCCA	B1
Camk2a iso2 2	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAATCCTCAAAGAGCTGGTACTCTT	B2
Camk2a iso2 3	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAAACAGAGAAGGCTCCCTTTCCCA	B1
Camk2a iso2 4	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAACCAGCCAGCACCTTCACACACC	B2
Camk2a iso2 5	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAAATAATCTTGGCAGCATACTCCT	B1
Camk2a iso2 6	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAATGATCTCTGGCTGAAAGCTTCT	B2
Camk2a iso2 7	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAACGGGCCTCACGCTCCAGCTTCT	B1
Camk2a iso2 8	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAATATTGGGGTGCTTCAACAAGC	B2
Camk2a iso2 9	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAAGAGATGCTGTCATGGAGTCGGA	B1
Camk2a iso2 10	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAATCGAAGATAAGGTAGTGGTGCC	B2
Camk2a iso2 11	gAggAgggCAgCAAACgggaAgAgTCTTCCTTTACgAAAACAGTTCCCCACCAGTAACCA	B1
Camk2a iso2 12	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAACTGTAATACTCCCGGGCCACAA	B2
Camk2a iso2 13	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAAATACAGTGGCTGGCATCAGCTT	B1
Camk2a iso2 14	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAACAGTGTAGCACAGCCTCCAAGA	B2
Camk2a iso2 15	gAggAgggCAgCAAACgggaAgAgTCTTCCTTTACgAACGATGCACCACCCCCATCTGGT	B1
Camk2a iso2 16	CСTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAGCCAGCAACAGATTCTCAGGCT	B2
Camk2a iso2 17	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAAACAGCAGCGCCCTTGAGCTTCG	B1
Camk2a iso2 18	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAATCTATGGCCAGGCCAAAGTCTG	B2
Camk2a iso2 19	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAACATGCCTGCTGCTCCCCCTCCA	B1
Camk2a iso2 20	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAAGGTATCCAGGTGTCCCTGCGA	B2
Camk2a iso2 21	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAATCCTTCCTCAGCACTTCTGGGG	B1
Camk2a iso2 22	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAGCCCACAGGTCCACGGGCTTCC	B2
Camk2a iso2 23	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAAAAGATATACAGGATGACGCCAC	B1
Camk2a iso2 24	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAATCATCCCAGAACGGGGGATACC	B2
Camk2a iso2 25	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAATGCTGGTACAGGCGATGCTGGT	B1
Camk2a iso2 26	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAGATGGGAAATCATAGGCACCAG	B2
Camk2a iso2 27	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAAGGGGTGACGGTGTCCCATTCTG	B1
Camk2a iso2 28	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAAGCATCTTATTGATCAGATCCT	B2
Camk2a iso2 29	gAggAgggCAgCAAACgggaAgAgTCTTCCTTTACgAAATGCGTTTGGACGGGTTGATGG	B1
Camk2a iso2 30	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAACATGGGTGCTTGAGAGCCTCAG	B2
Camk2a iso2 31	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAAGCCACGGTGGAGCGGTGCGAGA	B1
Camk2a iso2 32	CСTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAATCCACGGTCTCCTGTCTGTGCA	B2
Camk2a iso2 33	gAggAgggCAgCAAACgggaAgAgTCTTCCTTTACgAACTGGCATTGAACTTCTTCAGGC	B1
Camk2a iso2 34	CСTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAGTGGTGAGGATGGCTCCCTTCA	B2
Camk2a iso2 35	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAAGAGAAGTTCCTGGTGGCCAGCA	B1
Camk2a iso2 36	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAATTCTTCTTGTTTCCTCCGCTCT	B2
Camk2a iso2 37	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAATCAGAAGATTCCTTCACACCAT	B1
Camk2a iso2 38	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAATCTTCGTCCTCAATGGTGGTGT	B2
Camk2a iso2 39	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAAATTTCCTGTTTGCGCACTTTGG	B1
Camk2a iso2 40	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAGCTTCGATCAGCTGCTCTGTCA	B2
Camk2a iso2 41	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAAGACTCAAAGTCTCCATTGCTTA	B1
Camk2a iso2 42	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAGTCATTCCAGGGTCGCACATCT	B2
Camk2a iso2 43	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAACCCAGGGCCTCTGGTTCAAAGG	B1
Camk2a iso2 44	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAACGATGAAAGTCCAGGCCCTCCA	B2
Camk2a iso2 45	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAAGACCACAGGTTTTCAAAATAGA	B1
Camk2a iso2 46	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAATGGTGGTGTGCACGGGCTTGC	B2
Camk2a iso2 47	gAggAgggCAgCAAACgggAAgAgTCTTCCTTTACgAAATCAGGTGGATGTGAGGGTTCA	B1
Camk2a iso2 48	CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCAAATATAGGCGATGCAGGCTGACT	B2

	Probe Sequence	Initiator
mCherry 2C 1	cttcttcaccttttgaaaccatAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
mCherry 2C 3	ccatatgaactttaaatctcatAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
mCherry 2C 5	cttcaccttcaccttcaatttcAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
mCherry 2C 7	cacctttagtaactttcaatttAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
mCherry 2C 9	catacataaattgtggtgacaaAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
mCherry 2C 11	ttaaataatctggaatatcagcAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
mCherry 2C 13	tcaaaattcataactctttcccAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
mCherry 2C 15	ctctcaatttaactttataaatAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
mCherry 2C 17	ccatagttttttttgcataacAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
mCherry 2C 19	tcaatctttgtttaatttcaccAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
mCherry 2C 21	taatattaacattataagcaccAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
mCherry 2C 23	tttcatattgttcaacaatagtAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg	B1
mCherry 2C 2	attctttaataatagccatattAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
mCherry 2C 4	attcatgaccattaactgaaccAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
mCherry 2C 6	cagtttgagtaccttcatatggAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
mCherry 2C 8	tatcccaagcaaatggtaatggAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
mCherry 2C 10	gatgtttaacataagcttttgaAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
mCherry 2C 12	ttaaaacttctggaaatgacaAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
mCherry 2C 14	gagtaacagtaacaacaccaccAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
mCherry 2C 16	gaccatctgatggaaaattagtAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
mCherry 2C 18	ttctttctgatgaagcttcccaAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
mCherry 2C 20	gtaattgaactggtttttagcAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
mCherry 2C 22	tcattatgtgaagtaatatccaAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2
mCherry 2C 24	atttatataattcatccataccAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC	B2

Accession

DLG4 ShHCR mis 1
DLG4 ShHCR mis 3
DLG4 ShHCR mis 5
DLG4 ShHCR mis 7
DLG4 ShHCR mis 9
DLG4 ShHCR mis 11
DLG4 ShHCR mis 13
DLG4 ShHCR mis 15
DLG4 ShHCR mis 17
DLG4 ShHCR mis 19
DLG4 ShHCR mis 21
DLG4 ShHCR mis 23
DLG4 ShHCR mis 25
DLG4 ShHCR mis 27
DLG4 ShHCR mis 29
DLG4 ShHCR mis 2
DLG4 ShHCR mis 4
DLG4 ShHCR mis 6
DLG4 ShHCR mis 8
DLG4 ShHCR mis 10
DLG4 ShHCR mis 12
DLG4 ShHCR mis 14
DLG4 ShHCR mis 16
DLG4 ShHCR mis 18
DLG4 ShHCR mis 20
DLG4 ShHCR mis 22 DLG4 ShHCR mis 24 DLG4 ShHCR mis 26 DLG4 ShHCR mis 28 DLG4 ShHCR mis 30
Probe Sequence Initiator
AATACCGCTACCAAGATGAAGAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
TCCCCAACCAGGCCAATTCTCCAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
CCCCAGGATATGTGAACGGAACAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
TGGAAAGGGGTAACTCAGGTCTAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
CACACATCGGTGACGACCCATCAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
CTGCAGCCCAGGATGGCCGCCTAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
AAGTGGATGTCCGGGAGGTGACAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
CGGGTTCCATCGTTCGCCTCTAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
TCATAGAGATCAAGCTTATCAAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
GGGGCGTTGGGAACCAGCACATAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
TCATCGAAGGAGGCGCTGCCCAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
TCCTGGCGGTCAACAGTGTGGGAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
CAGCCCTGAAGAACACATATGAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
ATGCCTACCTGAGTGACAGCTAAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
AGCACCTGGACAATGAGATCAGAAAgCTCAgTCCATCCTCgTAAATCCTCATCAATCATC B2
CGCCCCCTCTGGAACACAGCCCAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1
CTGTGATTGTCAACACGGACACAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1
AGGGGGAGATGGAGTATGAGGAAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1
GCTTCAGCATCGCAGGTGGCACAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1
TCTTTATCACCAAGATCATTCCAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1
GGGTCAACGACAGCATCCTGTTAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1
ATTCAGCTGCAGTGGAGGCCCTAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1
CATGCGCCGGAAACCCCCAGCAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1
GGCCTAAAGGACTTGGCTTCAGAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1
CTGGAGATAATAGCATCTACGTAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1
AGGATGGCAGGTTGCAGATCGGAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1
TAGAGGATGTCATGCATGAGGAAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1
TTGTGTACCTAAAGGTGGCCAAAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1
CTCCCCCAGACATCACAACCTCAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAg B1ATAGCAGCTACTTGGGCACCGAAAgCATTCTTTCTTgAggAgggCAgCAAACgggAAgAgB1

Probe Name UBC	Oligonucleotide Sequence	Sequence Name
	atggtcttaccagtcagagt	hUBC_1
	gacattctcgatggtgtcac	hUBC_2
	gggatgccttccttatcttg	hUBC_3
	atcttccagctgttttcag	hUBC_4
	cagtgagtgtcttcacgaag	hUBC_5
	tcctggatctttgctttgac	hUBC_6
	cagggtagactctttctgga	hUBC_7
	cttcacgaagatctgcatcc	hUBC_8
	tcttggatctttgccttgac	hUBC_9
	cagtgagtgtcttcacgaag	hUBC_10
	tgacgttctcgatagtgtca	hUBC_11
	tccttgtcttggatctttgc	hUBC_12
	cagggtagactctttctgga	hUBC_13
	cttcacgaagatctgcatcc	hUBC_14
	agagtgatggtcttaccagt	hUBC_15
	tcttggatctttgccttgac	hUBC_16
	cttcacgaagatctgcatcc	hUBC_17
	agagtgatggtcttaccagt	hUBC_18
	tcttggatctttgccttgac	hUBC_19
	tgtttcccagcaaagatcaa	hUBC_20
	cttcacgaagatctgcatcc	hUBC_21
	agagtgatggtcttaccagt	hUBC_22
	tcttggatctttgccttgac	hUBC_23
	tgtttcccagcaaagatcaa	hUBC_24
	cttcacgaagatctgcatcc	hUBC_25
	agagtgatggtcttaccagt	hUBC_26
	tcttggatctttgccttgac	hUBC_27
	tgtttcccagcaaagatcaa	hUBC_28
	gacattctcgatggtgtcac	hUBC_29
	gggatgccttccttatcttg	hUBC_30
	tgtttcccagcaaagatcaa	hUBC_31
	agagtggactctttctggat	hUBC_32
EEF2	atctggtctaccgtgaagtt	hEEF2_1
	ttggccttcttgtccatgat	hEEF2_2
	gtatcagtgaagcgtgtctc	hEEF2_3
	ttgacttgatggtgatgcaa	hEEF2_4
	ctcgtagaagagggagatgg	hEEF2_5
	tccttgctctgcttgatgaa	hEEF2_6
	gggagtcaatgaggttgatg	hEEF2_7
	cggtccatcttgttcatcat	hEEF2_8
	gtggagatgatgacgttcac	hEEF2_9
	gtaccgaggacaggatcgat	hEEF2_10
	caaactgcttcagggtgaag	hEEF2_11
	aacttggccacatacatctc	hEEF2_12
	atgtcctctactttcttggc	hEEF2_13
	ttcatgatcgcatcaaacac	hEEF2_14

	gtccagtttgatgtccagtt	hEEF2_15
	gatggtgatcatctgcaaca	hEEF2_16
	tttggggtcacagcttttaa	hEEF2_17
	gtagaaccgacctttgtcgg	hEEF2_18
	ccatgatcctgaccttcagg	hEEF2_19
	ttcttcccaggggtatagtt	hEEF2_20
	tctggattggcttcaggtag	hEEF2_21
	ggcccatcatcaagattgtt	hEEF2_22
	gtcttcaccaggaactggtc	hEEF2_23
	ctgacgctgaacttcatcac	hEEF2_24
	atgatatgctctcccgactc	hEEF2_25
	gactcttcactgaccgtctc	hEEF2_26
	cttcatgtacagccggttgt	hEEF2_27
	tcgcctttatcgatgtcctc	hEEF2_28
	tgatgtcggtgaggatgttg	hEEF2_29
	cactgtccttgatctcgttg	hEEF2_30
	gtcagcacactggcatagag	hEEF2_31
	atctccacaaggtagatggg	hEEF2_32
USF2	ggatccagacccgggtccag	usf2_withUTR_1
	tactggatgttgtggtcgcc	usf2_withUTR_2
	catttgtctctgtgcggaac	usf2_withUTR_3
	attttggatcacagcctgtc	usf2_withUTR_4
	gactgccaccattgctgaag	usf2_withUTR_5
	ctgggaaataggcaaatcgt	usf2_withUTR_6
	gacacagccgtagtatctcc	usf2_withUTR_7
	gtctgaagcacatcctgggg	usf2_withUTR_8
	ggcgatcgtcctctgtgttc	usf2_withUTR_9
	tggttccatcaatttttgga	usf2_withUTR_10
	ttctcctctcatctcggggt	usf2_withUTR_11
	ctccacttcgttgtgctggg	usf2_withUTR_12
	cagttgttgatcttgtccct	usf2_withUTR_13
	gattttcgaaagctggacga	usf2_withUTR_14
	gttgtctgcgttacagtctg	usf2_withUTR_15
	ggccttggacaggatccctc	usf2_withUTR_16
	cgcaactccoggatgtaatc	usf2_withUTR_17
	ctgcatgcgctggttggtct	usf2_withUTR_18
	gctcggcctctttgaaggtc	usf2_withUTR_19
	agctcgttgtccatctgcag	usf2_withUTR_20
	caccatctccaggttgtgct	usf2_withUTR_21
	tgtatccacagaaatgcatt	usf2_withUTR_22
	ggaggataccgtttccaagt	usf2_withUTR_23
	gtgagaccactagaagtgcc	usf2_withUTR_24
	cataggtccaggccccgggt	usf2_withUTR_25
	cagggacccagaaacaagag	usf2_withUTR_26
	gggccagtttattgcagtta	usf2_withUTR_27
TOP2A	ctgggcggagcaaaatatgt	hTOP2A_CDS_1
	tcttcatcgtaaacccacat	hTOP2A_CDS_2

	ccggatcaattgtgactcta	hTOP2A_CDS_3
	ccttttccattattccatat	hTOP2A_CDS_4
	agaagttaggagctgtccaa	hTOP2A_CDS_5
	ccagcaatatcatatgctct	hTOP2A_CDS_6
	ttactggcagtttatttcca	hTOP2A_CDS_7
	tgttgatccaaagctcttgg	hTOP2A_CDS_8
	aactggacttgggccttaaa	hTOP2A_CDS_9
	atcattggcatcatcgagtt	hTOP2A_CDS_10
	gtcaggataagcgtacactc	hTOP2A_CDS_11
	ggaaaaccccatatttgtct	hTOP2A_CDS_12
	tttcttgtactgaagaccca	hTOP2A_CDS_13
	ttggtcctgatctgtcataa	hTOP2A_CDS_14
	ctccagaaaacgatgtcgca	hTOP2A_CDS_15
	gttaaccattcctttcgatc	hTOP2A_CDS_16
	agctaattgggcaaccttta	hTOP2A_CDS_17
	atgtatcgtggactagcaga	hTOP2A_CDS_18
	acgctggttgtcatcatata	hTOP2A_CDS_19
	ttcttctccatccatcaaac	hTOP2A_CDS_20
	cccttgaagttcttgtaact	hTOP2A_CDS_21
	tatgagaggaggtgtcttct	hTOP2A_CDS_22
	tgtatggtattccctatagt	hTOP2A_CDS_23
	tcagtttagcagattcagca	hTOP2A_CDS_24
	cttcacaggatccgaatcat	hTOP2A_CDS_25
	gtggaatgactctttgacca	hTOP2A_CDS_26
	tgctcctatctgattctgaa	hTOP2A_CDS_27
	agtggaggtggaagactgac	hTOP2A_CDS_28
	aattcaaagctggatccctt	hTOP2A_CDS_29
	caggatcaggcttttgagag	hTOP2A_CDS_30
	cttggatttcttgcttgtga	hTOP2A_CDS_31
	tatggaagtcatcactctcc	hTOP2A_CDS_32
NEAT1	gacctagtctccttgccaag	NEAT1_1
	ggatattttccatgcagcct	NEAT1_2
	acaagttgaagattagccct	NEAT1_3
	ccttggtctggaaaaaaagg	NEAT1_4
	cgagctaagttcagttccac	NEAT1_5
	ggccgagcgaaaattacata	NEAT1_6
	cctgtcaaacatgctaggtg	NEAT1_7
	actgccacctggaaaataaa	NEAT1_8
	gtgagctcacaagaagagtt	NEAT1_9
	accagatgaccaggtaatgt	NEAT1_10
	cggtccatgaagcatttttg	NEAT1_11
	tcgccatgaggaacactata	NEAT1_12
	aatctgcaggcatcaattga	NEAT1_13
	cctggaaacagaacattgga	NEAT1_14
	gcatctgctgtggacttttt	NEAT1_15
	ggctctggaacaagcattta	NEAT1_16
	tgcagcatctgaaaaccttt	NEAT1_17

accggaggctcaatttagaa	NEAT1_18
caaggttccaagcacaaaac	NEAT1_19
acagcttagggatcttcttg	NEAT1_20
tggcatcaacgttaaaatgt	NEAT1_21
tctacaaggcatcaatctgc	NEAT1_22
aagaacttctccgagaaacg	NEAT1_23
gccccaagttatttcatcag	NEAT1_24
gcgtttagcacaacacaatg	NEAT1_25
ggaatgaccaacttgtaccc	NEAT1_26
caatgcccaaactagacctg	NEAT1_27
tcctagtaatctgcaatgca	NEAT1_28
agcaagaacaaaagagcact	NEAT1_29
ggtcctcttactagaatgcc	NEAT1_30
ctgtgtcacctgttttcagt	NEAT1_31
cctttggttctcggaaaact	NEAT1_32
agctggtaaagacatttccc	NEAT1_33
ctctgaaacaggctgtcttg	NEAT1_34
gcccatctttcaagtgacta	NEAT1_35
aaccacctaagttgctaagg	NEAT1_36
tcgtcttaagtggtccotta	NEAT1_37
atccagaagagcccatctaa	NEAT1_38
acctgtgacaaatgaggaac	NEAT1_39
agatgtgtttctaaggcacg	NEAT1_40
acagtgaccacaaaaggtta	NEAT1_41
agcaaaggtacatggattct	NEAT1_42
cagggttttcagatcacaca	NEAT1_43
ccccaagtcattggttaaga	NEAT1_44
tcccaacgacagtaattgtt	NEAT1_45
cccatacatgcgtgactaat	NEAT1_46
caacagcatacccgagacta	NEAT1_47
acagagcaacataccagtac	NEAT1_48

[^0]: ${ }^{1}$ Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. ${ }^{2}$ Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. ${ }^{3}$ McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. ${ }^{4}$ Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA. ${ }^{5}$ Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
 ${ }^{6}$ Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA. ${ }^{7}$ Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA. ${ }^{8}$ Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. ${ }^{9}$ Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. ${ }^{10}$ These authors contributed equally to this work. Correspondence should be addressed to E.S.B. (esb@media.mit.edu).
 RECEIVED 14 MARCH; ACCEPTED 18 MAY; PUBLISHED ONLINE 4 JULY 2016; DOI:10.1038/NMETH. 3899

