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Optogenetic activation of intracellular adenosine A2A receptor
signaling in the hippocampus is sufficient to trigger CREB
phosphorylation and impair memory
P Li1,2, D Rial3, PM Canas3, J-H Yoo1, W Li1,2, X Zhou4, Y Wang1, GJP van Westen5, M-P Payen1, E Augusto1,3,6, N Gonçalves3, AR Tomé3,
Z Li4, Z Wu4, X Hou1, Y Zhou2, Ad PIJzerman5, ES Boyden7, RA Cunha3,6, J Qu4 and J-F Chen1,4

Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and
Alzheimer’s disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is
actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated by A2AR, we have
developed a chimeric rhodopsin-A2AR protein (optoA2AR), which retains the extracellular and transmembrane domains of rhodopsin
(conferring light responsiveness and eliminating adenosine-binding pockets) fused to the intracellular loop of A2AR to confer
specific A2AR signaling. The specificity of the optoA2AR signaling was confirmed by light-induced selective enhancement of cAMP
and phospho-mitogen-activated protein kinase (p-MAPK) (but not cGMP) levels in human embryonic kidney 293 (HEK293) cells,
which was abolished by a point mutation at the C terminal of A2AR. Supporting its physiological relevance, optoA2AR activation and
the A2AR agonist CGS21680 produced similar activation of cAMP and p-MAPK signaling in HEK293 cells, of p-MAPK in the nucleus
accumbens and of c-Fos/phosphorylated-CREB (p-CREB) in the hippocampus, and similarly enhanced long-term potentiation in the
hippocampus. Remarkably, optoA2AR activation triggered a preferential p-CREB signaling in the hippocampus and impaired spatial
memory performance, while optoA2AR activation in the nucleus accumbens triggered MAPK signaling and modulated locomotor
activity. This shows that the recruitment of intracellular A2AR signaling in the hippocampus is sufficient to trigger memory
dysfunction. Furthermore, the demonstration that the biased A2AR signaling and functions depend on intracellular A2AR loops
prompts the possibility of targeting the intracellular A2AR-interacting partners to selectively control different neuropsychiatric
behaviors.
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INTRODUCTION
Recently, six longitudinal prospective studies have established an
inverse relationship between caffeine consumption and the risk
of developing cognitive impairments in aging and Alzheimer’s
disease (AD).1–7 This is in notable agreement with animal studies,
which showed that caffeine prevents memory impairments in
models of AD8–10 and sporadic dementia11 and in other conditions
affecting memory performance;12,13 this seems to involve the
antagonism of G-protein-coupled adenosine A2A receptors (A2ARs),
as their selective pharmacological or genetic blockade mimic
caffeine’s effects.8,12,14,15 The convergence of human epidemiolo-
gical and animal evidence led us to propose that A2ARs represent
a novel therapeutic target to improve cognitive impairments
in neurodegenerative disorders. The validity of this target is
supported by our finding that A2AR inactivation not only enhances
working memory,16,17 reversal learning,17 goal-directed behavior18

and Pavlovian fear conditioning19 in normal animals but also
reverse memory impairments in animal models of Parkinson’s
disease,20 aging15 and AD.8,9,14 Notably, pathological brain condi-

tions associated with memory impairment (such as AD, stress or
inflammation) are associated with increased extracellular levels
of adenosine21 and an upregulation and aberrant signaling of A2A

R.22,23 This prompts the hypothesis that the ‘abnormal’ activation
of A2AR in a particular brain region (such as the hippocampus) is
sufficient to trigger memory impairment. This critical question has
yet to be answered because of the inability to control forebrain
A2AR signaling in freely behaving animals with a temporal
resolution relevant to behavior.
Another major unsolved question is the mechanisms operated

by brain A2AR to control memory function. In fact, A2AR signaling is
different in different cellular elements with distinct functions
under various physiological vs pathological conditions.22,24,25 For
example, striatal and extrastriatal A2AR exert opposite control of
DARPP-32 phosphorylation,26 c-Fos expression,26 psychomotor
activity26,27 and cognitive function.19 Receptor–receptor hetero-
dimerization has been postulated to contribute to the com-
plexity of A2AR signaling.28 Additionally, recent biochemical
studies identified six G-protein-interacting partners (GIP) linked
to the intracellular C-terminal tail of A2AR,

29,30 which raises the
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intriguing possibility that the interaction of A2AR intracellular
domains with different GIPs may dictate the biased A2AR signaling
in different cells. However, the inability to control intracellular
GPCR signaling in vivo in a precise spatiotemporal manner has
prevented translation of in vitro profiles of A2AR signaling into
behavior in intact animals.
To determine if the abnormal activation of A2AR signaling in the

hippocampus is sufficient to impair memory function in freely
behaving animals and to begin elucidating the nature of the
biased A2AR signaling in different brain regions, we have
developed a chimeric rhodopsin-A2AR protein (optoA2AR): this
merges the extracellular and transmembrane domains of rhodop-
sin conferring light responsiveness and the intracellular domains
of A2AR conferring specific A2AR signaling, to investigate the
biased A2AR signaling in defined cell populations of freely beha-
ving animals in a temporally precise and reversible manner.31

Furthermore, the selective retention of only the intracellular
domains of A2AR in optoA2AR chimera permits a critical evaluation
of its particular role controlling the biased A2AR signaling. After
validating the specificity and physiological relevance of light-
induced optoA2AR recruitment of A2AR signaling in human
embryonic kidney 293 (HEK293) cells, mouse brain slices and in
freely behaving animals, we exploited its unique temporal and
spatial resolution to provide direct evidence that the activation of
intracellular A2AR signaling selectively in the hippocampus is
sufficient to recruit cAMP and phosphorylated-CREB (p-CREB), and
alter synaptic plasticity and memory performance. Our findings
also provide a direct demonstration that the intracellular control
of the biased A2AR signaling in striatal and hippocampal neurons
triggers distinct signaling and behavioral responses.

MATERIALS AND METHODS
Design and construction of the optoA2AR vector
We have developed a chimeric protein optoA2AR by replacing the
intracellular domain of rhodopsin with those of the A2AR (Figure 1a). We
first aligned the conserved residues of the sequence of the A2AR (NCBI
accession no. NM_000675.4) with the bovine rhodopsin (NCBI accession
no. P02699), and identified the intracellular loops 1, 2 and 3 of A2AR to be
exchanged with the intracellular loops of rhodopsin (Figure 1a). Then, we
constructed a fusion gene encoding a chimera (optoA2AR) by replacing the
intracellular loops 1, 2 and 3 and the C terminal of rhodopsin with those of
A2AR and by adding the C-terminal sequence of bovine rhodopsin
(TETSQVAPA) to the C terminal of optoA2AR. Lastly, codon-optimized
sequences of optoA2AR were fused to the N terminus of mCherry (with its
start codon deleted) with a linker (5′-GCGGCCGCC-3′) for fluorescence
detection of optoA2AR in cells and tissues. The optoA2AR construct was
cloned into a pcDNA3.1 vector at the EcoRI–Xhol sites.

Transfection and detection of optoA2AR in HEK293 cells
HEK293FT cells were transfected using Lipofectamine 2000 (Invitrogen,
Carlsbad, CA, USA) according to the Invitrogen protocols, and the red
fluorescence of mCherry was detected 48 h after transfection. To study
optoA2AR signaling, all-trans-retinal (25 μM) were added and incubated at
37 °C with 5% atmospheric CO2 for 60min. The cells were then illuminated
with 500 nm light at 3 mWmm− 2 using a high-intensity fiber-coupled light
source (OSL1-EC; Thorlabs, Newton, NJ, USA). The cells were then fixed
with 4% paraformaldehyde for 10min and permeabilized with 0.1% Triton
X-100 in phosphate-buffered saline (PBS). Cells were blocked with 10%
normal goat serum and incubated with anti-A2AR (Santa Cruz, Dallas, TX,
USA; sc-70321; 1:200) or anti-P-MAPK antibodies (Cell Signalling, Danvers,
MA, USA; 1:200) overnight at 4 °C. After extensive washes with phosphate
buffer saline, cells were incubated with Alexa Fluor 488-conjugated
secondary antibodies (Molecular Probes, Eugene, OR, USA) for 60min at
room temperature.

Assessment of optoA2AR signaling in HEK cells
For bioluminescent assay, HEK293 cells, kept in 96-well plates, were
illuminated (500 nm, 3mWmm−2) for 60 sec. The cells were then lysed
30min after cessation of light illumination to analyze cAMP using cAMP-

Glo™ assay (Promega, Madison, WI, USA), cGMP by HTRF cGMP assay and
IP1 by HTRF IP1 assay kit (CisBio, Sunnyvale, CA, USA.). For western blot,
cells were isolated at 10min after light illumination, using a PARIS Kit
(Invitrogen). Equal amounts of protein were separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (10% gels) and transferred
onto an Immobilon-P PVDF membrane (Millipore, Billerica, MA, USA).
The membranes were blocked for 1 h in Tris-buffered saline with
Tween-20 (TBS-T, pH 7.6) containing 5% non-fat dry milk powder and
thereafter incubated overnight at 4 °C with antibodies against
mitogen-activated protein kinase (MAPK, Danvers, MA, USA) (Cell
Signalling, 1:500), phospho-MAPK (p-MAPK) (Cell Signalling; 1:500) or
A2AR (Santa Cruz; 1:1000). The membranes were then probed with different
conjugated secondary antibody (Vector Laboratories, Burlingame, CA, USA;
1:3000) at room temperature for 90min, followed by washing in TBS-T.

Viral production
Recombinant AAV vectors were constructed with a transgene cassette
encoding CaMKIIα promoter by cloning the optoA2AR-mCherry into pAAV-
CaMKIIα-eNpHR 3.0-EYFP (Addgene, Cambridge, MA, USA) using BamHI/
HindIII assisted by GeneScript (Piscataway, NJ, USA). Viral particles were
packaged and purified by vector core at the University of North Carolina
(Chapel Hill, NC, USA) for serotype 5, and titers were 1.5 × 1012 particles per
ml. The AAV5-CaMKIIα-mCherry was purchased from the University of
North Carolina at Chapel Hill as ‘control’ virus with a titer of 2.0 × 1012

particles per ml.

Animals
All procedures were in accordance with the National Institutes of Health
Guide and with EU guidelines for the care and use of laboratory animals
and approved by the IACUC at the Boston University School of Medicine
(Boston, MA, USA; AN no.14684) and by University of Coimbra (Coimbta,
Portugal; ORBEA-78-2013 ethical approval). C57BL/6 mice at 11–13 weeks
old (weighing 24–28 g) were used in the study. The A2AR knockout mice on
a C57BL/6 background were described previously.32

Animal surgery: CNS injection and cannulas implantation
Animals were anesthetized with Avertin (10ml kg− 1 intraperitoneally).
Under a stereotactic frame, a midline scalp incision was made and a
~ 1mm diameter craniotomy was drilled to the right nucleus accumbens
(NAc; AP, +1.1 mm; ML, ± 1.4 mm; DV, +4.5 mm) or the hippocampus (AP,
− 2.2 mm; ML, ± 1.5 mm; DV, +2.3 mm). To express optoA2AR in neurons of
the NAc or hippocampus, we injected 1.0 μl of AAV5-CaMKIIα-optoA2AR-
mCherry virus or 0.75 μl of AAV5-CaMKIIa-mCherry (‘control’) virus at
0.1 μl − 1. To activate the endogenous A2AR in the NAc and hippocampus,
we injected 2.0 μl of the A2AR agonist CGS21680 (0.5 μg μl− 1) at 0.1
μl min− 1 using an automated syringe pump using a beveled 33-gauge
needle. Following the injection, the needle was left for 5 min to allow the
drug diffusion. The mice were killed after 15min and 1 h after injection
and processed for immunohistochemistry. We also bilaterally implanted
guide cannulae (Plastics One, Roanoke, VA, USA) on the skull through
the craniotomy, to bilaterally target the two hippocampi or the two NAc,
which were secured using dental cement (Lang Dental, Wheeling, IL, USA).
Animals were allowed to recover for at least 2 weeks before the
experiment.

Electrophysiological recordings of synaptic plasticity in
hippocampal slices
The experiments were carried out as described previously.33 The
hippocampus was dissected in an ice-cold Krebs solution and slices
(400 μm) were prepared with a McIllwain chopper. Individual slices were
transferred to a submersion recording chamber (1 ml capacity) and
continuously superfused at a rate of 3 ml min− 1 with gassed Krebs solution
(composition in mM: NaCl 124, KCl 3, NaH2PO4 1.25, glucose 10, NaHCO3 26,
MgSO4 1, CaCl2) kept at 30.5 °C. A bipolar concentric electrode was placed
onto the Schaffer collateral/commissural pathway fibers and stimulated
every 20 s with rectangular pulses of 0.1 ms with a Grass S44 pulse
generator (PSIU6; Grass, West Warwick, RI, USA). The orthodromically
evoked field excitatory postsynaptic potentials were recorded through an
extracellular glass microelectrode (filled with 4 M NaCl; resistance:
2–4 MΩ) placed in the stratum radiatum of the CA1 area. The high-
frequency stimulation (HFS) protocol used to induce long-term potentia-
tion (LTP) consisted of a 100 Hz train during 1 s. Light stimuli consisted of
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3000 light pulses (465 nm, 50ms pulse width, ~ 3–5mWmm−2 power
density) during a total period of 300 s, applied through a Plexibright LD-1
LED module with a 465 nm Blue (Plexon, Dallas, TX, USA) and the optic
fiber was placed over the slice between the stimulation and recording
electrodes. Light stimuli were triggered 300 s before the delivery of the
HFS protocol. The A2AR agonist CGS21680 (30 nM; Tocris, Ballwin, MO, USA)

was added to the superfusion solution at least 20 min before the HFS
protocol onwards. LTP amplitude was quantified as the percentage change
between two values: the average slope of the five potentials taken
between 50 and 60min after the induction protocol in relation to the
average slope of the field excitatory postsynaptic potentials measured
during 15min that preceded the induction protocol.
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Figure 1. Characterization of optoA2AR signaling in human embryonic kidney 293 (HEK293) cells. Design (a) of optoA2AR and its expression
(b and c) in HEK293 cells 24 h after transfection. (b) Western blot analysis of optoA2AR with a molecular weight of 75–100 kDa. (c) Colocalization
of A2AR immunostaining (green) with mCherry-expressing (red) in optoA2AR–positive cells. (d and e) Light induction of phospho-mitogen-
activated protein kinase (p-MAPK) in optoA2AR-expressing cells. (d) p-MAPK immunostaining of optoA2AR-expressing cells before and after light
stimulation. (e) Western blot analysis of p-MAPK and MAPK expression in response to light. (f and h) Light-induced increase of cAMP
(f; plasmid: F(1,62)= 126.7, Po0.001; light stimulation, F(1,62)= 67.8, Po0.001; plasmid × light, F(1,62)= 89.4, Po0.001, two-way analysis of
variance (ANOVA)) but not of cGMP (g; light, F(1,62)= 0.110, P40.05, two-way ANOVA) or IP1 production (h; light, F(1,62)= 0.110, P40.05, two-
way ANOVA) in HEK293 cells transfected with optoA2AR. ***Po0.001, comparing optoA2AR with control; ###Po0.001 compared with the dark,
n= 16, two-way ANOVA, Bonferroni post hoc t-test. (i) Effect of the mutations Ser400Ala and Thr324Ala of the C terminal of optoA2AR on light
optoA2AR-induced cAMP accumulation. **Po0.01, Student’s t-test. (j) Time course of opto-A2AR-induced cAMP accumulation after light
stimulation. One-way ANOVA, Bonferroni post hoc t-test. Each experiment was carried out in duplicates or triplicates and repeated at least
three times. Scale bar= 50 μm.
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Optogenetic activation of optoA2AR signaling in the brain
A 200 μm core fiber (ThorLabs, Newton, NJ, USA) was used for optical
stimulation via a patch cable connected to a 473 nm DPSS laser (100mW;
Shanghai Laser & Optics Century, Shanghai, China). The power density at
the fiber tip was ~ 3–5mWmm−2 and light was delivered with 50ms pulse
width. For assessment of optoA2AR signaling, mice were killed following
10min optical stimulation. For behavior assessments, optical stimulation
was delivered specifically according to different behavioral test (see
below).

Behavioral tests
For the open-field test, mice were placed in the center of a white, dimly
light open-field chamber (40 × 40 cm2) and allowed to freely explore the
environment. The center of the open-field was defined as 410 cm apart
from all four walls. ‘Off-On-Off’ episodes of light stimulation were used and
each block lasted 5min, for a total of 15min. Locomotor activity was
detected with a video camera and analyzed with ANY-maze Video Tracking
System (Stoelting, Wood Dale, IL, USA). The Y-maze test for recognition
memory task was based on exploration of novelty as described
previously.34 The test consisted of two trials, separated by a 1-h time
interval. During the first trial (acquisition phase), one arm of the Y-maze
was closed and mice were allowed to explore the remaining two arms for
10min with light ‘OFF’, with several visual clues on the walls of the room.
During the second trial (retrieval phase), the mice had access to the three
arms for a 5-min period with light ‘ON’. During this period, the time spent
in each arm and the total locomotor activity of each mouse was measured
by a video-tracking system (Smart; Bioseb Chaville, Chaville, France).

Immunohistochemistry
Following agonist injection or light stimulation, mice were transcardially
perfused with ice-cold 4% paraformaldehyde in PBS (pH 7.4) after
termination of the light stimulation. Brains were postfixed and coronal
sections with 30–40 μm were cut and processed for immunohistochem-
istry. Free-floating sections were washed in PBS and then incubated for
30min in 0.3% Triton X-100 and 3% normal donkey or goat serum. Primary
antibody incubations were conducted overnight in 0.01% Triton X-100 and
3% normal donkey serum for A2AR (Santa Cruz; 1:200), p-MAPK (Cell
Signaling; 1:200), p-CREB (Cell Signaling; 1:200) or c-fos (Santa Cruz; 1:300).
Sections were then washed with PBS and incubated for 1 h at room
temperature with Alexa Fluor 488-conjugated secondary antibodies
(Molecular Probes; 1:200). Slices were then washed and mounted on
slides with Vectashield mounting media (Vector Laboratories). Images were
acquired with a fluorescence microscope.

Preparations of total membranes and synaptosomes
Total membranes and synaptosomes from the hippocampus were
prepared using sucrose/Percoll differential centrifugations, as described
previously.35 Briefly, two mouse hippocampi were placed in ice-cold 0.32 M

sucrose solution and instantly homogenized with a Teflon homogenizer.
After centrifugation at 3000 g for 10 min, the supernatant was collected
and divided to prepare synaptosomes or total membranes. To prepare
total membranes, the supernatant was centrifuged at 28000 g for 60 min
and the pellet was collected. To prepare synaptosomes, the supernatant
was centrifuged at 14 000 g for 12 min and the pellet was resuspended in
1ml of a solution of 45% (v v− 1) Percoll in Krebs solution. After
centrifugation, the top layer (synaptosomal fraction) was removed and
washed with 1 ml ice-cold Krebs solution. The synaptosomes or total
membranes were further resuspended in radioimmunoprecipitation assay
buffer supplemented with a cocktail of protease inhibitors (Roche, Basel,
Switzerland) for western blot analysis or in Krebs solution for immuno-
cytochemical analysis.

Western blot analysis
Western blot analysis was carried out as described previously.35 Briefly,
after determining the amount of protein, total membrane or synaptosomal
samples were diluted with five volumes of sodium dodecyl sulfate-
polyacrylamide gel electrophoresis buffer. These diluted samples were
separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(10% with a 4% concentrating gel) under reducing conditions and
electrotransferred to nitrocellulose membranes (Amersham Biosciences,
Piscataway, NJ, US). After blocking for 1 h at room temperature with 5%
milk in Tris-buffered saline (pH 7.6) containing 0.1% Tween-20 (TBS-T), the

membranes were incubated overnight at 4 °C with a rabbit anti-A2AR
antibody (1:500, 05-717; Millipore). After three washing, the membranes
were incubated with horseradish peroxidase goat anti-mouse secondary
antibody (1:1500; Pierce, Rockford, IL, USA) in TBS-T during 120min at
room temperature. After three washes, the membranes were incubated
with Luminata Forte (Millipore) during 5min and then analyzed with a
VersaDoc 3000 (Bio-Rad, Amadora, Portugal) to quantify A2AR immunor-
eactivity as well as mCherry fluorescence. The membranes were then
reprobed and normalized for α-tubulin (1:20 000; Sigma, St. Louis, MO,
USA) immunoreactivity.

Immunocytochemistry of synaptosomes
The immunocytochemical analysis of hippocampal synaptosomes, to
detect the presence of optoA2AR in glutamatergic terminals, was carried
out as reported previously.36 The synaptosomes were placed onto
coverslips coated with poly-D-lysine, fixed with 4% paraformaldehyde in
PBS for 15min and washed two times with PBS. The synaptosomes were
permeabilized in PBS with 0.2% Triton X-100 for 10min and then blocked
for 1 h in PBS with 3% bovine serum albumin and 5% normal bovine
serum. The synaptosomes were incubated overnight at 4°C with either a
mouse anti-A2AR antibody (1:500; 05-717; Millipore) or with a guinea-pig
vesicular glutamate transporters type-1 antibody (1:2500; 135304; Synaptic
Systems, Göttingen, Germany), followed by incubation of donkey Alexa
Fluor-488-conjugated anti-mouse IgG (alone) and goat Alexa Fluor-488-
conjugated anti-guinea-pig IgG (1:1000; Molecular Probes). The colocaliza-
tion of vesicular glutamate transporters type-1 or A2AR immunoreactivities
with mCherry fluorescence was examined under a Zeiss Imager Z2
fluorescence microscope (Zeiss, Gottingen, Germany) and analyzed with
ImageJ 1.37v software (NIH, Bethesda, MD, USA), as described previously.37

Statistics
Results are presented as mean± s.e.m. Data with one variable and one
condition (e.g. light stimulation in Figures 1j and 3; AAV/plasmid vector in
Figures 4d, e and 5e, f) were analyzed with Student's t-test. Data from
one variable with more than one condition (e.g. multiple time courses in
Figure 1i) were analyzed with one-way analysis of variance (ANOVA),
followed by Bonferroni post hoc comparison. Data with more than one
variable (e.g. AAV vectors and light stimulation in Figures 2f–h; CGS21680
and light stimulation in Figures 2a–c; AAV vectors and behavioral phase in
Figures 4f and 5g) and condition were analyzed with two-way ANOVA and
Bonferroni post hoc tests.

RESULTS
Light activation of optoA2AR specifically recruits A2AR signaling in
HEK293 cells
We engineered a light-activated chimeric protein able to recruit
A2AR signaling, optoA2AR, by replacing the intracellular domains of
rhodopsin with those of A2AR (Figure 1a). At 24 h after transfecting
HEK293 cells with optoA2AR, we observed a single band with a
80 kDa molecular weight, expected for optoA2AR (Figure 1b), using
an A2AR antibody targeting the third intracellular loop of A2AR. We
also detected the red fluorescence of mCherry, included in the
optoA2AR construct, largely restricted to the cell surface (Figure 1c),
similar to that obtained using the A2AR antibody.
A2AR activate the GS/Golf-cAMP pathway as well as MAPK path-

way in a GS-independent manner.25 Light stimulation of HEK293-
optoA2AR cells (for 60 s) increased p-MAPK, in contrast with
the weak p-MAPK immunoreactivity in light-stimulated cells
transfected with the pcDNA3.1 vector (Figure 1d), which was
confirmed by western blot (Figure 1e). Light stimulation of
HEK293-optoA2AR cells also increased cAMP levels by twofold
(immunoassay after 20 min), compared with non-stimulated
HEK293-optoA2AR cells and with light-stimulated cells trans-
fected with pcDNA3.1 (Figure 1f; Po0.001, two-way ANOVA).
Thus, optoA2AR specifically recruits the two parallel A2AR signaling
pathways, namely GS-cAMP and MAPK signaling, in HEK293 cells.
Supporting the specificity of optoA2AR signaling, light stimula-

tion of HEK293-optoA2AR cells induced cAMP and p-MAPK
signaling (Figures 1e and f) but did not affect either cGMP (the
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rhodopsin transducing system; Figure 1g) or IP1 production
(a degradation product of IP3, associated with Gq signaling;
Figure 1h). Further reinforcing the selectivity of optoA2AR to
trigger cAMP accumulation, a Ser400Ala point mutation in
an A2AR phosphorylation site critical for A2AR–D2R receptor
interaction,38 but not a Thr324Ala point mutation in an A2AR
phosphorylation site critical for short-term desensitization,30 of the
C terminals of optoA2AR abolished the light optoA2AR-induced
cAMP accumulation (Figure 1i; **Po0.01, Student’s t-test).
Thus, optoA2AR signaling is specific and attributed to the unique
amino-acid composition of its C terminus. Lastly, light stimu-
lation of optoA2AR rapidly increased cAMP and p-MAPK levels
in HEK293 cells within 1 min, peaking at 15–30min and declin-
ing to basal level at 60–90min (Figure 1j; Po0.05, one-way
ANOVA).

Light optoA2AR activation triggers an A2AR signaling identical to
the pharmacological activation of endogenous A2AR both in
HEK293 cells and mouse brain
To demonstrate the physiological relevance of optoA2AR signaling,
we first compared cAMP levels and p-MAPK induced by either

light activation of optoA2AR or CGS21680 (A2AR agonist) activation
of wild-type A2AR in HEK293 cells. Light optoA2AR activation
increased cAMP (Figure 2b; Po0.001, two-way ANOVA) to levels
similar to those triggered by CGS21680 (200 nM) in cells trans-
fected with A2AR-mCherry (Figure 2a; Po0.001, two-way ANOVA).
Moreover, in cells co-transfected with A2AR-mCherry and optoA2AR,
costimulation with light and CGS21680 produced additive effects
on both cAMP level (Figure 2c; light, F(1,43) = 7.243, Po0.01;
CGS21680, F(3,43) = 32.674, Po0.001; lightxCGS21680 interaction,
F(3,43) = 0.336, P40.05, two-way ANOVA) and p-MAPK. Thus,
optoA2AR and CGS21680 produced similar A2AR signaling with
additive effects in HEK293 cells.
We further compared A2AR signaling (c-Fos and p-MAPK) in the

hippocampus and NAc induced by endogenous A2AR activation in
wild-type mice and by optoA2AR in transfected A2AR knockout
mice. Intrahippocampal injection of CGS21680 (0.93 nmol μl− 1)
significantly increased c-Fos expression within 15 min specifically
in the cells surrounding the injection site (Figure 2d). By contrast,
intra-accumbal injection of CGS21680 markedly induced p-MAPK
(Figure 2e). Thus, endogenous A2AR activation elicits a brain
region-specific A2AR signaling in the forebrain (c-Fos in the
hippocampus and p-MAPK in the NAc). Accordingly, light optoA2AR
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stimulation in the hippocampus significantly increased c-Fos
expression specifically in the optoA2AR-expressing cells under-
neath the cannula (Figure 2f), whereas optoA2AR activation in NAc
markedly induced p-MAPK but not c-Fos (Figure 2g). This
demonstrates a similarly biased A2AR signaling triggered by
optoA2AR and CGS21680, that is, c-Fos in the hippocampus and
p-MAPK in the NAc, supporting the ability of optoA2AR to mimic
the endogenous A2AR signaling in the brain.

Targeted expression and light activation of optoA2AR in
glutamatergic terminals of the hippocampus controlling LTP
in hippocampal slices
The A2AR antibody detected a single 45 kDa band (endogenous
A2AR) in striatal membranes, whereas A2AR levels were barely

detectable in hippocampal samples, compatible with the 20 times
lower density of A2AR in the hippocampus vs the striatum. Impor-
tantly, this A2AR antibody designed against the third intra-
cellular loop of A2AR recognized two bands of 80 and 95 kDa
selectively in the hippocampus transfected with AAV-mCherry-
optoA2AR but not with AAV-mCherry (Figure 3a), with a density
in synaptosomes similar to that detected in total membranes
(n= 3, P40.05, Student’s t-test). Furthermore, the immunocyto-
chemistry analysis of purified synaptosomes (Figure 3b) allowed
the identification of mCherry fluorescence in glutamatergic
nerve terminals (i.e. immunopositive for vesicular glutamate trans-
porters type-1) only from the hippocampus transfected with
AAV-mCherry-optoA2AR (n= 3) but not with AAV-mCherry (not
shown). This indicates that optoA2AR is present in hippocampal

Figure 3. Targeted expression and light activation of optoA2AR in glutamatergic terminals of the hippocampus induced hippocampal long-term
potentiation (LTP) in brain slices. (a) Representative western blot analysis showing that an antibody against the third intracellular loop of A2AR
recognized two bands at 80 and 95 kDa in hippocampal synaptosomes as well as in total membranes frommice transfected with AAV-mCherry-
optoA2AR (optoA2AR) but not from mice transfected with AAV-mCherry, compatible with the localization of optoA2AR in hippocampal synapses
(n= 3). (b) Representative single nerve terminal immunocytochemistry identifying that vesicular glutamate transporter type-1 (vGluT1, a marker
of glutamatergic terminals; green) and mCherry immunoreactivity (red) were found to be colocalized (arrows identifying yellow in ‘merged’) in
hippocampal synaptosomes from mice transfected with AAV-mCherry-optoA2AR (optoA2AR), whereas this was not observed for mice transfected
with AAV-mCherry (not shown) (n= 3). (c) Accordingly, light stimulation (3000 pulses of 50-ms duration each during 300 s) of slices from mice
transfected with AAV-mCherry-optoA2AR, applied before a high-frequency train (100 Hz for 1 s), enhanced the amplitude of LTP compared with
non-light-stimulated slices, measured as an increased slope of field excitatory postsynaptic potentials (fEPSP) recorded in the stratum radiatum
of the CA1 area upon stimulation of the afferent Schaffer fibers (c), whereas light stimulation failed to modify LTP amplitude in mice transfected
with AAV-mCherry (not shown). This essentially mimics the effect of the pharmacological activation of endogenous A2AR with the selective
A2AR agonist CGS21680 (30 nM), in slices from mice transfected either with AAV-mCherry-optoA2AR (d) or with AAV-mCherry (e). Representative
images (a and b) and data (mean± s.e.m., c–e) are from n= 3 independent mice. *Po0.05, Student’s t-test.
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glutamatergic nerve terminals, where endogenous A2AR have
been identified.
Additionally, we observed (Figure 3c) that the amplitude of LTP

triggered by HFS was larger upon light stimulation (5 min before
HFS) of hippocampal slices expressing optoA2AR (197.3 ± 2.9% over
baseline) than without light stimulation (137.7 ± 2.0% over base-
line, n= 3; P40.05, Student’s t-test). By contrast, light stimulation
did not modify LTP amplitude in hippocampal slices expressing
only mCherry (138.9 ± 2.7% vs 142.5 ± 1.5% over baseline with or
without light stimulation, respectively, n= 3; P40.05, Student’s
t-test) (data not shown). This enhancement upon light-induced
optoA2AR activation was similar to the impact of a pharmacological
activation of endogenous A2AR with the A2AR agonist, CGS21680
(30 nM) (Figure 3d) , as well as in slices from mice transfected with
AAV-mCherry (Figure 3e), as occurs in the wild-type animals. This
shows that light activation of optoA2AR can mimic an established
physiological response operated by endogenous A2AR in the
hippocampus.39

Optogenetic optoA2AR activation in the hippocampus recruits
CREB phosphorylation and impairs memory performance
Two weeks after the focal injection of AAV5-(CaMKIIα promoter-
driven)-optoA2AR-mCherry (Figure 4a), light stimulation in the
dorsal hippocampus significantly increased the levels of p-CREB
(Figures 4c and d; Po0.001, Student’s t-test) specifically in the
optoA2AR-expressing neurons underneath the cannula, consistent
with the A2AR-GS-cAMP pathway as the major A2AR signaling

pathway in the hippocampus.25 Similar to p-CREB recruitment,
light stimulation significantly elevated c-Fos in the optoA2AR-
expressing neurons in hippocampus (Figure 2f; Po0.001,
Student’s t-test), whereas it did not induce p-MAPK (Figures 4b
and d). Thus, in hippocampal neurons, light optoA2AR activation
preferentially stimulates the cAMP-PKA pathway, leading to
p-CREB and c-Fos expression, without significant effect on the
p-MAPK pathway.
To address the central question whether A2AR activation in the

hippocampus is sufficient to impair memory performance, we
tested if triggering hippocampal optoA2AR signaling affected
spatial reference memory performance using a two-visit version
of the Y-maze test. Light optoA2AR activation in the hippocampus
during the 5-min testing period reduced about twofold the time
spent in the novel arm compared with mice transfected with
AAV-mCherry (control) only (Figure 4e; Po0.001, Student’s
t-test). These short-term reference memory impairments
were not due to changes in locomotion as gauged by the
unaltered total distance travelled in the Y-maze (Figure 4f). Thus,
transient activation of optoA2AR in a set hippocampal neurons is
sufficient to recruit p-CREB signaling and deteriorate memory
performance.

Light optoA2AR stimulation in NAc recruits MAPK phosphorylation
and selectively modulates motor activity
We next examined the impact of light optoA2AR activation in the
NAc and the hippocampus on the two A2AR signaling pathways
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(p-CREB and p-MAPK). As GPCR can produce a biased signaling
simply due to different receptor levels, we used the same CaMKIIα
promoter to drive similar levels of optoA2AR expression in hippo-
campal and striatal neurons,40,41 to eliminate different optoA2AR
expression levels as a possible cause of a biased A2AR signaling in
these two forebrain regions.42 OptoA2AR was selectively expressed
in accumbal neurons (colocalized with Neu+ neurons but not with
GFAP+ astrocytes) in the core of NAc (Figure 5a). Using enkephalin
(ENK) and substance P immunostaining to identify the indirect
and direct pathway neurons,43 we found that optoA2AR was
expressed in both ENK- (52%) and SP-containing (43%) neurons in
NAc (Figure 5b). Importantly, light activation of optoA2AR in NAc
for 5 min markedly increased p-MAPK (Figures 5d and e; Po0.001,
Student’s t-test), with little induction of p-CREB and c-Fos (Figures
5c, e and 2g). Thus, the activation of A2AR signaling by optoA2AR in
NAc preferentially involved the MAPK pathway rather than the
cAMP-PKA-mediated c-Fos/CREB pathway.
In parallel with the preferential activation of p-MAPK signaling,

light optoA2AR activation in NAc for 5 min did not affect memory
performance in the modified Y-maze test (Figure 5f; P= 0.276,
Student’s t-test), but robustly increased locomotor activity (83%
increase of travelled distance in the Y-maze, Figure 5g, and in the
open-field test) (for AAV vectorxbehavioral phase, F(1,45) = 18.68,
Po0.001, two-way ANOVA). The observed motor stimulant
effect resulting from optoA2AR activation in the NAc, instead of a
motor depression observed upon accumbal administration of
CGS21680,44,45 was expected in view of the expression of optoA2AR
in both striatopallidal and striatonigral neurons using the CaMKIIα
promoter41,42 (rather than the selective expression of endogenous
A2AR in striatopallidal neurons prompted by the A2AR promoter46).
This pitfall was however essential to circumvent the confounding
effect of a 20-fold differential expression of A2AR in these two
brain regions as a possible cause for the biased A2AR signaling.
Overall, the present findings show that A2AR trigger a biased A2AR
signaling in different forebrain regions (cAMP in the hippo-
campus and p-MAPK in the NAc) in parallel with an impact on
distinct behaviors (memory in the hippocampus and locomotion
in NAc).

DISCUSSION
The development and validation of the optoA2AR approach to
mimic endogenous A2AR signaling allowed the novel conclusion
that the recruitment of A2AR signaling in the dorsal hippocampus
is sufficient to trigger a selective memory deficit. This is in
accordance with the imbalance of the local extracellular adeno-
sine levels21 and upregulation of A2AR in animal models of
aging,47 sporadic dementia11 and AD,10 as well as in the human
AD brain,48 namely in hippocampal nerve terminals,12,13 a
situation that was mimicked by hippocampal optoA2AR expression
under the control of the CaMkIIα promoter. Indeed, optoA2AR was
detected in hippocampal synaptosomes, namely in glutamatergic
synapses where endogenous A2AR are identified and upregulated
upon aging and neurodegeneration. This provides an anatomical
basis for optoA2AR control of p-CREB signaling, synaptic activity
and memory performance. Indeed, the light activation of optoA2AR
in hippocampal slices mimicked a well-established physio-
logical response operated by endogenous A2AR, the control of
hippocampal LTP.39 Furthermore, optoA2AR activation in the
hippocampus triggers CREB phosphorylation and impairs memory
performance. These findings are consistent with the canonical
cAMP/PKA pathway activated by hippocampal A2AR

25 and with
the established role of CREB phosphorylation controlling synaptic
plasticity and long-term memory49 through neuronal exci-
tability and transcription, and with specific deficits of memory
retrieval observed in mice expressing a time-controlled active
CREB variant.39 This ability of hippocampal optoA2AR activation in
glutamate synapses to control memory dysfunction and its

purported neurophysiological correlate LTP, decisively strength-
ens the relation between A2AR and memory performance that
had so far largely relied on the demonstration that A2AR blockade
alleviated memory dysfunction.8,9,12,14,15 Furthermore, this ability
to place A2AR functioning as a sufficient factor to imbalance
memory bolsters the rationale to probe the therapeutic effective-
ness of A2AR antagonists to manage memory impairment.22,23

This notion is further warranted by the striking convergence
of epidemiological1–7 and animal8–20 evidence supporting
the therapeutic benefit of caffeine and A2AR antagonists to
improve cognition. This aim should be facilitated by the safety
profile of A2AR antagonists, tested in over 3000 parkinsonian
patients.22

The design of optoA2AR also allowed identifying a critical role
solely attributable to the intracellular domains of A2AR to dictate
the biased A2AR signaling and function in neurons of different
brain regions. Contrary to the widely accepted view that ligand–
receptor interactions are the molecular basis directing the biased
GPCR signaling, the distinct molecular and behavioral responses
obtained upon optoA2AR activation in different brain regions show
that they are only dependent on an intracellular mechanism
probably related with the differential association with different
GIPs in different cell types. In fact, the cell-specific expression of
intracellular GIPs provides a rich molecular resource50 whereby
A2AR signaling in the brain is specifically wired according to the
needs of each cell type. In particular, the long and flexible A2AR C
terminus29 contains several consensus sites (e.g. YXXGφ)30

required for MAPK activation,51 interaction with BDNF receptors
(TrkB),52 with FGF,53 p53,54,55 with a large set of downstream
signaling effectors such as G proteins, GPCR kinases, arrestins and
with at least six GIPs (actinin, calmodulin, Necab2, translin-
associated protein X, ARNO/cytohesin-2, ubiquitin-specific pro-
tease-4).29 Thus, targeting A2AR intracellular domains offers an
additional layer of selectivity to manipulate A2AR signaling that is
not attainable only by the ligand–receptor interaction. Thus,
selectively targeting A2AR intracellular domains and their interact-
ing GIPs in specific brain regions emerges as a novel strategy to
obtain therapeutic effects with minimal side effects, as achieved
with transmembrane peptides to disrupt specifically the intracel-
lular interaction between NMDA receptors and PSD9556,57 and
between 5-HT2c-PENT.58 If the critical interaction between
intracellular domains of A2AR and GIPs are general features of
GPCRs, the ‘optoGPCR’ approach targeting intracellular domains of
GPCRs may represent a novel drug discovery strategy for the
largest protein superfamily in the human genome.
The significance of these novel insights is decisively strength-

ened by the demonstrated specificity and rapid induction of
the optoA2AR signaling. The specificity of optoA2AR signaling is
supported by the selective optogenetic induction of cAMP and
MAPK signaling without affecting cGMP (rhodopsin) and IP3 (Gq)
signaling and by the mutational analysis demonstrating that
optoA2AR signaling is specifically attributed to the unique amino-
acid composition of the A2AR C terminus. Moreover, the
comparable activation of A2AR signaling in HEK293 cells and the
indistinguishable pattern of the biased A2AR signaling in the NAc
and the hippocampus, as well as the similar enhancement of
hippocampal LTP triggered by optoA2AR and CGS21680 supports
that optoA2AR signaling largely captures the physiological function
of the native A2AR. Different from opsin-based optogenetics,
opto-A2AR signals through GPCR signaling allows a control of
intracellular A2AR signaling by light, which we now report
to involve a rapid induction, consistent with similar rapid physio-
logical response (Ton1/2 = ~ 1 s) of other GPCR light-activated
chimera. Thus, the temporal and spatial control of specific A2AR
signaling afforded by optoA2AR in freely behaving animals paves
the way to probe the role of A2AR in defined forebrain circuits
responsible for behaviors ranging from motor control, fear,
addiction, mood or decision making.59–61
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