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Optogenetic astrocyte activation modulates
response selectivity of visual cortex neurons in vivo
Gertrudis Perea1,2, Aimei Yang3, Edward S. Boyden3,4 & Mriganka Sur1

Astrocytes play important roles in synaptic transmission and plasticity. Despite in vitro

evidence, their causal contribution to cortical network activity and sensory information

processing in vivo remains unresolved. Here we report that selective photostimulation of

astrocytes with channelrhodopsin-2 in primary visual cortex enhances both excitatory and

inhibitory synaptic transmission, through the activation of type 1a metabotropic glutamate

receptors. Photostimulation of astrocytes in vivo increases the spontaneous firing of

parvalbumin-positive (PVþ ) inhibitory neurons, while excitatory and somatostatin-positive

(SOMþ ) neurons show either an increase or decrease in their activity. Moreover, PVþ

neurons show increased baseline visual responses and reduced orientation selectivity to

visual stimuli, whereas excitatory and SOMþ neurons show either increased or decreased

baseline visual responses together with complementary changes in orientation selectivity.

Therefore, astrocyte activation, through the dual control of excitatory and inhibitory drive,

influences neuronal integrative features critical for sensory information processing.
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A
strocytes are emerging as the central elements of
brain circuits involved in different aspects of neuronal
physiology relevant for brain functions1,2. Accumulating

evidence has shown that astrocytes play important roles
in synaptic function by releasing glutamate and other
gliotransmitters3–7. Despite these in situ studies, the role of
astrocytes in cortical functions in vivo is poorly understood.
Although cortical astrocytes are known to respond to neural
activity in vivo8–12, it has proven difficult to separate their
activation from that of nearby neurons, and thus elementary
questions about their impact on neuronal networks and the
coding and representation of information are still unresolved. The
primary visual cortex is the neocortical area that receives visual
input from the retina. It is well known that visual cortex neurons
show complex visual property features, such as orientation
preference or ocular dominance13. Recently, astrocytes have been
shown to respond to visual stimuli, and their responses can be
tuned based on visual stimulus features including orientation and
spatial frequency9. Although astrocytes respond to visual sensory
stimuli8,9, their role in the processing of sensory information is
poorly known.

Here we show that selective photostimulation of astrocytes
with channelrhodopsin-2 (ChR2) in V1 increases both excitatory
and inhibitory synaptic transmissions, through the activation of
type 1a metabotropic glutamate receptors. Furthermore, optical
activation of astrocytes in vivo impact the spontaneous firing rate
of cortical neurons—that is, enhances parvalbumin-positive
(PVþ ) inhibitory neurons—while excitatory and somatostatin-
positive (SOMþ ) neurons show either an increase or decrease in
their activity. In addition, PVþ neurons show increased baseline
visual responses and reduced orientation selectivity to visual
stimuli, whereas excitatory and SOMþ neurons show either
increased or decreased baseline visual responses together with
complementary changes in orientation selectivity. Therefore,
optical activation of astrocytes influences neuronal response
features in primary visual cortex (V1) critical for sensory
information processing.

Results
Optical astrocyte activation increases synaptic activity in V1.
We first assessed the response levels of astrocytes in V1 in vivo to
sensory drive by recording their visually driven intracellular
Ca2þ responses when stimulated with drifting gratings8,9

(Supplementary Fig. 1; increase in fluorescence area post-visual
stimulation measured as the Ca2þ area index 0.56±0.14
(mean±s.e.m. for all data shown; Po0.001, Wilcoxon test;
n¼ 22 astrocytes from two mice; see Methods Equation (1)).
Then, in order to causally understand the contribution of
astrocyte activation to cortical networks, astrocytes were
selectively manipulated using ChR2 (refs 14,15). The specificity
of ChR2 expression in astrocytes induced by viral vectors
was confirmed (Fig. 1a; ChR2 driven by a glial fibrillary acidic
protein (GFAP) promoter, Supplementary Figs 2 and 3; see
Methods), and light stimulation used to robustly induce astrocyte
Ca2þ elevation in cultured cells (Supplementary Fig. 2) and V1
cortical slices (Ca2þ area index 0.43±0.06; Po0.001, Wilcoxon
test; n¼ 59 astrocytes; Fig. 1c; Supplementary Fig. 3). The
functional consequences of selective astrocyte activation on
neuronal activity were analysed by recording synaptic activity
in layer 2/3 pyramidal neurons of V1. Astrocyte photostimulation
transiently increased the frequency of spontaneous excitatory
postsynaptic currents (EPSCs; seven out of nine cells;
1.76±0.52 Hz pre- versus 2.63±0.62 Hz post-astrocyte
stimulation, P¼ 0.0017, t-test; mean increase 194.6±30.31% of
control; P¼ 0.014, t-test; n¼ 9 neurons; Fig. 1e–g), without

affecting their amplitude (7.24±0.91 pA pre- versus
7.06±1.02 pA post-astrocyte stimulation, P¼ 0.69, t-test; the
mean increase 98.47±6.99% of control, P¼ 0.92, t-test; Fig. 1f,g).
The analysis of astrocyte Ca2þ signals showed that they preceded
the changes observed in EPSCs induced by ChR2 stimulation
(Supplementary Fig. 3h). Similar to EPSCs, the spontaneous
inhibitory synaptic currents (IPSCs) increased after ChR2-
astrocyte stimulation, showing an enhancement of their
frequency (seven out of 10 cells; 1.26±0.20 Hz pre- versus
2.03±0.27 Hz post-astrocyte stimulation, P¼ 0.004, t-test; the
mean increase 180.98±19.48% of control, P¼ 0.002, t-test;
n¼ 10 neurons; Fig. 1h–j), without changes in the amplitude of
synaptic currents (20.25±2.37 pA pre- versus 20.68±3.46 pA
post-astrocyte stimulation, P¼ 0.83, t-test; the mean increase
98.28±10.69% of control, P¼ 0.92, t-test; Fig. 1i,j). Therefore,
photostimulation of astrocytes modulates synaptic transmission
in cortical neurons by increasing the frequency of both excitatory
and IPSCs. No changes in astrocyte Ca2þ signalling and EPSCs
were observed in contralateral non-infected slices after light
stimulation (Supplementary Fig. 4), indicating that these
phenomena were induced by selective optogenetic activation of
astrocytes rather than by nonspecific action of light. In addition,
neuronal membrane potentials did not show shifts that were
synchronized with astrocyte photostimulation, indicating that a
direct action of photostimulation on neurons was absent
(0.34±0.87 mV change during photostimulation; n¼ 6;
P¼ 0.27, t-test; Fig. 1d).

As astrocytes can evoke changes in the presynaptic release of
neurotransmitters3,6,12,16,17, we examined the effects of astrocyte
activity on miniature EPSCs (mEPSCs; isolated in the presence of
Tetrodotoxin (TTX), 1 mM). mEPSCs showed an increase in
frequency after astrocyte stimulation (11 out of 15 cells;
0.73±0.17 pre- versus 1.07±0.26 post-astrocyte stimulation;
mean increase 150.75±8.13% of control; Po0.001, t-test;
n¼ 15; Fig. 2a,c), without significant changes in amplitude
(7.44±0.62 pA pre- versus 7.52±0.80 pA post-astrocyte stimu-
lation; mean increase 98.80±2.80% of control; P¼ 0.67, t-test;
Fig. 2c). In addition, astrocyte stimulation affected miniature
IPSCs (mIPSCs), increasing mIPSC frequency (six out of eight
cells; 165.07±17.77% of control; P¼ 0.008, t-test; n¼ 8) with no
change in their amplitude (112.60±8.26% of control; P¼ 0.57,
t-test; n¼ 8; Fig. 2c). Thus, these data indicate that photo-
stimulation of astrocytes induces a short-term enhancement
of both spontaneous and miniature excitatory and inhibitory
synaptic transmissions, increasing neurotransmitter release
principally through presynaptic mechanisms.

The ability of ChR2 to stimulate astrocyte gliotransmission
was also confirmed by recording glutamatergic N-methyl-D-
aspartate (NMDA) receptor-mediated inward currents (‘slow
inward currents’ or SICs; see Methods)8,18–20. Indeed, astrocyte
photostimulation induced an increase in the frequency of
these currents (3.20±1.10 min� 1 pre- versus 5.02±1.36 min� 1

post-astrocyte stimulation, P¼ 0.0013, t-test; mean increase
181.19±16.79% of control; Po0.001, t-test; n¼ 10; Fig. 2a,b),
which was abolished in the presence of the NMDA antagonist
AP5 (50 mM; n¼ 5; Fig. 2b).

Astrocyte Ca2þ and metabotropic glutamate receptor 1a boost
neuronal activity. To further assess the relationship between
astrocyte Ca2þ signals and the enhancement of synaptic activity,
we perfused thapsigargin (1 mM; an inhibitor of the sarco/
endoplasmic reticulum Ca2þ ATPase). Thapsigargin blocked
both the increase in astrocyte Ca2þ signal in cultured astrocytes
and cortical slices (Fig. 2d and Supplementary Fig. 2d; cf.14).
In addition, mEPSC frequency induced by ChR2 stimulation
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(Fig. 2d) was abolished by thapsigargin, without affecting basal
levels of synaptic transmission (Supplementary Fig. 3f),
supporting the proposal that astrocytic Ca2þ elevation induces
changes in synaptic transmission. Besides other active substances,
astrocytes release glutamate and ATP21 that can be also evoked by
optical stimulation14,22,23; thus, we evaluated the role of these
gliotransmitters in the enhancement of synaptic transmission.
The increase in spontaneous EPSCs induced by astrocyte
stimulation was unaffected in the presence of NMDA
antagonist AP5 (50 mM; mean increase 150.98±12.90% of
control; P¼ 0.003, t-test; n¼ 10; Fig. 2e), as well as in the
presence of purinergic P2Y receptor antagonist PPADS (100 mM;
mean increase 172.18±25.87% of control; P¼ 0.038, t-test;
n¼ 7; Fig. 2e), indicating that the enhancement of EPSCs was
independent of NMDA receptor activation or P2Y purinergic
signalling. In the hippocampus and cerebellum, astrocytes
influence synaptic transmission through activation of group I
mGluRs6,12,16,22. Thus, we first analysed the contribution of
mGluRs to these responses. MCPG (0.8 mM; a group I and II

mGluR antagonist) inhibited the facilitation of EPSC frequency
(mean increase 100.04±6.19% of control; P¼ 0.99, t-test; n¼ 13;
Fig. 2e). Selective activation of mGluR1a, a subtype of group I
mGluRs, has been related to facilitation of both excitatory and
inhibitory synaptic transmissions in different cortical areas24–26.
Blockage of mGluR1a with the antagonist LY367385 (100 mM)
abolished the increase in both EPSC (mean increase
117.24±16.0% of control; P¼ 0.31, t-test; n¼ 9) and IPSC
frequency (mean increase 100.25±6.63% of control; P¼ 0.97,
t-test; n¼ 7; Fig. 2f) induced by astrocyte photostimulation,
indicating that astrocytes enhance excitatory and inhibitory
synaptic transmissions in V1 cortical neurons through
presynaptic mGluR1a activation. In addition, mEPSCs were also
recorded in identified cortical inhibitory neuron subtypes,
including PVþ and SOMþ neurons (Fig. 3). In these cells,
astrocyte stimulation evoked an increase in mEPSC frequency
mediated by mGluR1a activation (Fig. 3c,d), showing that
astrocyte activity directly enhanced excitatory transmission in
cortical networks affecting both pyramidal and inhibitory cells.
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Figure 1 | Selective stimulation of ChR2-transfected astrocytes induces enhancement of synaptic transmission in layer 2/3 of V1.

(a) Immunocytochemical localization of ChR2–mCherry, NeuN and GFAP in V1 cortical slices. Note the selective expression of ChR2–mCherry in

astrocytes (bottom). Scale bar, 15 mm. (b) Astrocyte Ca2þ signals evoked by ChR2 stimulation (20 Hz, 20 s; blue bar). (c) Population astrocyte Ca2þ

signal versus time evoked by ChR2 stimulation (20 Hz, 30 s; blue bar) and Ca2þ area index (n¼ 59 astrocytes from 7 slices from three mice).

***Po0.001; Wilcoxon Test. (d) Representative neuron membrane potential recording during astrocyte photostimulation (20 Hz, 60 s; blue horizontal bar).

Scale bar, 4 mV, 30 s. (e,h) Representative recordings from 2/3 layer neurons of spontaneous excitatory currents (EPSCs, e) and IPSCs (h) before

(Control) and after astrocyte stimulation. Scale bar, 10 pA, 200 ms for EPSCs; 40 pA, 200 ms for IPSCs. Right, histogram of number of EPSCs and

IPSCs versus time (bin width 10 s) before and after astrocyte stimulation (20 Hz, 60 s; blue horizontal bar). (f,i) Cumulative probability plots for inter-event

interval (bin width 20 ms) and synaptic current amplitude (bin width 3pA) before and after astrocyte stimulation (black and blue traces, respectively)

from neurons shown in e,h. (g,j) Relative changes in EPSC and IPSC frequency and amplitude in control, during astrocyte stimulation and 10-min post

stimulation (recovery) (EPSCs, n¼ 9 neurons; IPSCs, n¼ 10 neurons). *Po0.05, **Po0.01; Two-tailed Student’s t-test. Error bars indicate s.e.m.
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Astrocytes increase spontaneous neuronal activity in vivo. We
next investigated the role of astrocytes in regulating the activity
and dynamics of V1 neurons and networks in vivo. Astrocyte
Ca2þ signals and neuronal activity were monitored in layer 2/3
of V1 (Fig. 4) in anaesthetised mice transduced with GFAP-
ChR2. Two-photon calcium imaging of ChR2-expressing astro-
cytes in vivo showed robust intracellular Ca2þ elevations (Ca2þ

area index 0.66±0.03; Po0.001, Wilcoxon test; n¼ 33 astrocytes
from three mice; Fig. 4b,c). To investigate the consequences of
astrocyte photostimulation on excitatory and inhibitory trans-
missions in vivo, we used transgenic mice to carry out visualized
cell-attached electrophysiological recordings from targeted
neuron types, including excitatory neurons (in thy1-GFP-S mice)
and PVþ inhibitory neurons (in PV-tdTomato mice; Fig. 4d,e).
First, we monitored the spontaneous firing rate before and
after astrocyte stimulation. Excitatory neurons showed an overall
increase in their firing rate after astrocyte stimulation (Fig. 4f,j),
although with a wide range of effects (Fig. 4h). Spontaneous firing
activity was significantly reduced in a subset of excitatory cells
(13 of 45 neurons; 29%), while it was increased in other cells
(n¼ 18 of 45 neurons; 36%; Fig. 4h). Interestingly, PVþ neurons
also showed a significant increase in their spontaneous firing rate
(n¼ 11 of 18 neurons; 61%; Fig. 4g,j); however, none of the cells
showed a decrease in their activity after astrocyte stimulation
(Fig. 4i). These results support and extend the slice data,
demonstrating that activation of astrocytes in vivo regulates
neuronal activity by increasing excitatory drive to PVþ neurons,
and either by increasing or decreasing net drive to excitatory
neurons.

To study whether the astrocyte-mediated increase in inhibitory
activity was a general property of all inhibitory neurons27,28, we
also recorded SOMþ neurons (in SOM-tdTomato mice; Fig. 5).
In contrast to PVþ neurons, SOMþ neurons as a population
showed no change in their overall spontaneous activity after
astrocyte photostimulation (Fig. 5b,d). However, individual

SOMþ neurons displayed a wide range of effects from
reduction to enhancement of their firing rate (Fig. 5c),
indicating that astrocyte activation influences different subtypes
of inhibitory neurons and their circuits in different ways in vivo,
with consistent enhancement of activity only in a particular
subset of inhibitory neurons—that is, PVþ neurons. Cortical
circuits enable neurons to integrate excitatory and inhibitory
inputs, and the altered spontaneous activity of specific neurons
in vivo likely reflects the balance of increased excitation and
inhibition on them.

Astrocytes drive changes in visual features of V1 neurons.
If astrocyte activation alters excitatory and inhibitory activities in
cortical circuits, then the response selectivity of cortical neurons
that relies on integration of this activity29–31 could also be
affected. We thus investigated whether astrocyte signalling could
drive changes in the key visual response features of V1 neurons.
Specifically, we examined stimulus-driven (ON minus OFF)
responses of neurons to oriented drifting gratings, and derived
parameters that describe the tuning properties of these neurons
(Supplementary Fig. 5a). Light stimulation of V1 in mice without
GFAP-ChR2 infection had no effect on any of the properties of
V1 neurons (Supplementary Fig. 5). However, in ChR2-infected
mice, light stimulation caused a selective enhancement in the
baseline firing rate of PVþ neurons, a parameter independent of
spontaneous activity that measures the overall level of visually
driven responses (0.71±0.30 Hz pre- versus 1.80±0.54 Hz post-
astrocyte stimulation; P¼ 0.008 Wilcoxon test; n¼ 18; Fig. 6b,c).
An increase in the baseline predicts a reduction in specific
tuning parameters such as the Orientation Selectivity Index
(OSI; Supplementary Fig. 5a, see Methods Equation (2)) but little
change in complementary parameters such as the tuning
width. PVþ cells with a significant change in the baseline
showed a robustly reduced OSI after astrocyte photostimulation
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Figure 2 | Astrocyte-induced enhancement of synaptic transmission is mediated by mGluR activation. (a) Whole-cell recordings from 2/3 layer

neurons of mEPSCs and SICs (red asterisks), showing an increase in frequency of mEPSC and SICs after astrocyte optogenetic stimulation. Scale bar,

15pA, 200 ms. (b) Relative changes of SIC frequency before (control; black), during astrocyte stimulation (blue) and after stimulation (recovery; grey)

before and after perfusion of AP5 (50 mM; n¼ 5). Inset right, representative traces of mEPSCs (black traces) and SICs (red traces) from neuron shown in a.

Scale bar, 5pA, 20 ms. (c) Relative changes of mEPSC (n¼ 15) and mIPSC (n¼ 8) frequency and amplitude before (Control), during astrocyte stimulation,

and 10-min post stimulation (recovery). (d) Relative changes of mEPSC frequency before (control) and after astrocyte stimulation in the presence of

thapsigargin (1 mM; n¼ 6). **Po0.01; two-tailed Student t-test. Ca2þ area index following ChR2 stimulation before and after thapsigargin (n¼ 32

astrocytes from four slices from two mice). ***Po0.001; Wilcoxon test. (e) Relative changes of spontaneous EPSC frequency and amplitude before

(control) and after astrocyte stimulation in the presence of AP5 (50 mM; n¼ 10), PPADS (30mM; n¼ 7) and MCPG (0.8 mM; n¼ 13), respectively. (f)

Relative changes of spontaneous EPSC (n¼ 9) and IPSC (n¼ 7) frequency and amplitude evoked by astrocyte stimulation in the presence of LY367385

(100mM). *Po0.05, **Po0.01, ***Po0.001; two-tailed Student’s t-test. Error bars indicate s.e.m.
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(0.46±0.05 pre- versus 0.30±0.05 post-astrocyte stimulation;
Po0.001, Wilcoxon test; n¼ 14; Fig. 6d), with no major changes
in other parameters (Fig. 6d and Supplementary Fig. 6a). On the
other hand, most excitatory cells displayed complex responses to
astrocyte stimulation, showing either an increase or decrease
in their baseline firing rate (Fig. 7b,c; n¼ 45), consistent with
changes in net excitatory and inhibitory drive on them. As
predicted, changes in baseline were inversely related to changes in
orientation and direction selectivity (Supplementary Fig. 6b).
Excitatory cells that showed an increase in their baseline
activity (0.07±0.04 Hz pre- versus 0.17±0.07 Hz post-astrocyte
stimulation; P¼ 0.015, Wilcoxon test; 16 out of 36 significantly
affected cells), displayed a reduction in their OSI (0.59±0.06 pre-
versus 0.39±0.06 post-astrocyte stimulation; Po0.001, Wilcoxon
test) and Direction Selectivity Index (DSI, 0.55±0.07 pre- versus
0.35±0.05 post-astrocyte stimulation; P¼ 0.02, Wilcoxon test;
Fig. 7d,e; see Methods Equation (3)). In contrast, excitatory cells
that showed a reduction in baseline activity (0.16±0.06 Hz
pre- versus 0.04±0.02 Hz post-astrocyte stimulation; P¼ 0.007,
Wilcoxon test; 20 out of 36 significantly affected cells) expressed

an increase in their OSI (0.50±0.05 pre- versus 0.67±0.05
post-astrocyte stimulation; P¼ 0.008, Wilcoxon test) and DSI
(0.53±0.05 pre- versus 0.66±0.07 post-astrocyte stimulation;
P¼ 0.04, Wilcoxon test; Fig. 7f,g). In both cases, astrocyte
stimulation did not evoke significant changes in tuning width,
preferred orientation (PO) or peak firing rate (Figs 6e and 7e,g
and Supplementary Fig. 6a,b). Although astrocytes controlled
both spontaneous firing rate (Fig. 4) and visually evoked
responses of PVþ and excitatory neurons (Figs 6 and 7),
no causal link was found between these two parameters
(Supplementary Fig. 6c,d), indicating that changes in stimulus
selectivity resulted from the influence of astrocytes on visually
active synapses rather than on nonspecific background activity.
Thus, astrocyte activation increases baseline visual responses of
PVþ neurons and reduces their orientation selectivity but not
direction selectivity, likely due to the very low control direction
selectivity of these cells (Fig. 6d,e)32,33. In turn, astrocyte
activation alters the baseline and the orientation and direction
selectivity of excitatory neurons, in an inverse and systematic
relationship to their change in baseline.

Visual responses were also recorded in SOMþ neurons.
Astrocyte stimulation evoked changes in the baseline firing rate of
SOMþ cells (Fig. 8); however, rather than uniformly increasing
their baseline visual responses similar to PVþ neurons, SOMþ

neurons showed either a decrease (12 out of 27 neurons) or an
increase of the baseline (10 out of 27 neurons; Fig. 8c). Changes in
baseline were accompanied by significant complementary
changes in OSI (Fig. 8d–g; Supplementary Fig. 7). Taken together,
these results indicate that astrocytes have an impact on the tuning
properties of V1 cortical neurons, affecting consistently the
baseline of PVþ interneurons but with variable effects on
excitatory cells and SOMþ interneurons.

Consistent with changes in excitatory/inhibitory synaptic
transmission mediated by mGluR1a activation in slices (Figs 2
and 3), systemic administration of AIDA (5 mg kg� 1 intra-
peritoneal, a selective antagonist of mGluR1a) blocked the
astrocyte-induced changes in baseline and OSI in excitatory cells
and PVþ neurons (Fig. 9), indicating that astrocyte activity
in vivo regulates visual tuning properties of cortical neurons
through mGluR1a activation.

Discussion
We have shown that stimulation of astrocytes increases excitatory
synaptic transmission to layer 2/3 excitatory and inhibitory
neurons in V1 cortical slices through the activation of presynaptic
mGluR1a. Astrocytes in vivo drive changes in the basal tone of V1
cortical activity, increasing the spontaneous firing rate of PVþ

neurons and either increasing or decreasing the spontaneous rate
of excitatory and SOMþ neurons. Moreover, astrocyte stimula-
tion strongly influences the visual responses of V1 neurons,
selectively increasing the baseline level of visual drive to PVþ

neurons and reducing their orientation selectivity, while altering
net excitatory/inhibitory drive to excitatory and SOMþ neurons
and influencing both their baseline levels and orientation and
direction selectivity. These effects are consistent with the circuits
formed by these neurons. PVþ neurons receive strong feed-
forward drive and provide direct perisomatic inhibition on target
excitatory neurons30–32, which also receive monosynaptic
inhibition from SOMþ neurons34. SOMþ neurons integrate
widespread inputs from cortical excitatory neurons35 and also
receive inhibitory connections from other interneurons, such as
vasoactive intestinal peptide (VIPþ )-expressing neurons34.
Therefore, by enhancing excitatory drive to excitatory and
inhibitory neurons, astrocyte activation can drive changes in
diverse information-processing circuits of visual cortex.
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Figure 3 | Selective stimulation of ChR2-transfected astrocytes induces

enhancement of miniature excitatory synaptic transmission in PVþ and
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By inducing with ChR2 levels of astrocyte activity that can be
evoked by natural (visual) stimuli, we have shown a modulatory
role of astrocytes in sensory information processing. Ideally, to
definitively unmask the contribution of astrocytes to cortical
operations in normal vision, visually driven Ca2þ responses of
astrocytes should be transiently blocked; unfortunately, currently
available tools are not specific or fast enough to prevent
physiological astrocyte Ca2þ signalling in vivo (for example,
astrocyte-specific deletion of IP3R2-mediated Ca2þ responses in
IP3R2 knockout mice8,12 or local application of the Ca2þ

chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N0,N0-tetraacetic acid
(BAPTA)34 fail to transiently and selectively block astrocyte
Ca2þ signals in vivo, respectively, while electrical activity of
single cortical neurons are recorded). Here using optogenetics we
focused our study on boosting astrocyte signalling to reveal their

contribution to cortical network operations. Optogenetic mani-
pulation of astrocytes with ChR2 is still a novel method to activate
astrocytes14,22; we have shown the contribution of the intracellular
stores to the ChR2 Ca2þ -induced responses in astrocytes (cf,
ref. 14), and the physiological consequences of astrocyte activation
in regulating specific response features of sensory cortex neurons
in vivo. Given the functional significance of the temporal and spatial
properties of astrocyte Ca2þ signalling on neuronal physiology,
whether local or individual ChR2-astrocyte stimulation could evoke
subtle changes in synaptic transmission, as has been previously
described for evoked EPSCs at single synapses3,6,17,26, is still
unresolved. Therefore, many questions remain open and further
studies are required to fully understand the molecular mechanisms
underlying the ChR2-induced Ca2þ elevations in astrocytes and
their relevance for other brain functions.
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Despite these caveats, our findings support an integral role for
astrocytes in basal transmission and configuration of neuronal
responses. They complement previous in vivo results showing
that transient blockade of astrocyte glutamate transporters9 or
astrocyte-specific deletion of IP3R2-mediated Ca2þ responses8

prolongs the orientation-tuning response9 and abolishes

adaptation-induced changes in orientation-tuning curves8,
respectively. As alterations in excitatory and inhibitory drive
influence not only the response level and feature selectivity of
neurons but also the coding and transmission of information36,37,
and the representation and integration of information in
neuronal populations38,39, changes in excitatory and inhibitory
transmissions by astrocyte activity suggest that astrocytes would
be involved in multiple aspects of information coding by cortical
circuits. Indeed, astrocytes, through the specific activation of
PVþ interneurons, could act as an important cellular influence
on a range of cortical functions, such as circuit and columnar
development40 and feedforward control of response gain and
selectivity30,31,41,42.

Methods
Mice. All experiments were performed under protocols approved by the Animal
Care and Use Committee at MIT and conformed to the NIH guidelines. Wild-type
and transgenic line mice used for in vivo and slice experiments included the
following: C57BL/6 wild-type mice, thy1-GFP-S (Jackson Labs), heterozygous
PV-Cre knockin driver mice32 and SOM-Cre knockin driver mice43 backcrossed to
a Cre-responsive reporter line (Ai9-lsl-tdTomato transgenic mice44; Jackson Labs).

ChR2 virus injection. ChR2 fused to mCherry (ChR2–mCherry; provided by
Dr Boyden) was cloned into adeno-associated virus (AAV) particles (serotype 5;
UNC) using the GFAP promoter GFAP104 (AAV2.5-GFAP-ChR2–mCherry).
To prepare animals for in vivo experiments, 5- to 6-week-old male and female
wild-type and transgenic mice were initially anaesthetized with 4% isoflurane in
oxygen, and maintained on 2% isoflurane. The target coordinates were displaced
from Bregma by 3.5 mm posterior and 2.2 mm lateral. The skull was thinned along
a 1-mm line at the rostral edge of V1, and the remaining skull and dura were
punctured using a glass micropipette filled with the virus. Two injections were
made at each site, one at 400mm below the cortical surface, and one at a depth of
250 mm. A volume of 0.3 ml of virus was injected at 50 min� 1 at each depth. After
each injection, the pipette was held in place for 5 min before retraction to prevent
leakage. Following injection, the micropipette was removed, the folded skull
replaced and the skin sutured with 6–0 vicryl suture. The animal was allowed to
recover from anaesthesia with the help of heating pads and was returned to the
cage once it showed regular breathing and locomotion. For slice experiments that
were performed after 2 weeks of viral injection, neonatal wild-type, PV-tdTomato
and SOM-tdTomato mice (P5) were anaesthetized by immersion in ice for
1–2 min. Animals were covered with gauzes immersed in cold water to maintain
anaesthesia levels and placed in a custom-made stereotactic apparatus. The overall
duration of this procedure was kept under 20 min so as to maximize the survival
rate of the pups. After 2 weeks of survival, we confirmed with immunostaining that
mCherry expression was specific to astrocytes (Fig. 1a). In core regions of infection,
GFAP staining and mCherry expression colocalized in astrocytes, while no
colocalization was observed in NeuN-labelled neurons (Supplementary Fig. 3).

Electrophysiology in slices. Two weeks after viral injection, BP20 male and
female C57BL/6 wild-type, PV-tdTomato and SOM-tdTomato mice were anaes-
thetized and decapitated. The brain was rapidly removed and placed in ice-cold
artificial cerebrospinal fluid (ACSF). Cortical slices (300 mm thick) were incubated
for 41 h at room temperature (21–24 �C) in ACSF that contained (in mM): NaCl
124, KCl 2.69, KH2PO4 1.25, MgSO4 2, NaHCO3 26, CaCl2 2 and glucose 10, and
was gassed with 95% O2/5% CO2 (pH¼ 7.3). Slices were then transferred to an
immersion-recording chamber and superfused with gassed ACSF. Cells were
visualized with an Olympus BX50WI microscope (Olympus Optical, Tokyo, Japan)
coupled with a � 40 water immersion lens, infrared-DIC optics and MetaFluor
software (Molecular Devices, LLC)-driven infrared Coolsnap cf2 CCD camera
(Photometrics). Whole-cell patch-clamp recordings from layer 2/3 neurons were
obtained with an Axopatch 200B amplifier (Molecular Devices, LLC). Patch
electrodes (3–5 MO) were filled with internal solution that contained (in mM) for
EPSC recordings: KGluconate 135, KCl 10, HEPES 10, MgCl2 1, ATP-Na2 2,
titrated with KOH to pH 7.3. For IPSC recordings patch electrodes were filled with
the following: CsCl 130, NaCl 1, MgCl2 1, CaCl2 1, EGTA 5, HEPES 10, ATP-Na2

2, GTP-Na 0.2 and QX-314 5, titrated with CsOH to pH¼ 7.3 (ref. 45). For the
IPSC recordings, the chloride equilibrium potential was 0.83 mV. Recordings were
rejected when the access resistance increased 420% during the experiment. Signals
were fed to a Pentium-based PC through a DigiData 1,440 interface board
(Molecular Devices, LLC). The pCLAMP 10.2 software (Molecular Devices, LLC)
was used for data display, acquisition and storage. Experiments were performed at
room temperature (21–24 �C). Cells were voltage-clamped at � 60 mV. ACSF
included bicuculline (10mM) for EPSC recordings and TTX (1mM) for mEPSCs.
NBQX (20mM) and APV (50 mM) were used for spontaneous IPSCs, plus TTX
(1 mM) for mIPSC recordings. In a subset of experiments, IPSCs were blocked by
application of bicuculline (10 mM). Experiments designed to optimize NMDA
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receptor activation and recording slow inward currents were performed in a
modified Mg2þ -free ACSF (Mg2þ was equimolarly substituted by Ca2þ ) plus
TTX (1 mM). Drugs were bath-applied (for indicated experiments drugs were
applied for at least 15 min before recordings). Electrophysiological responses were
measured 5 min before astrocyte stimulation (Control), during and up to 5 min of
astrocyte stimulation (Astrocyte stim), and after 10–15 min of stimulation
(Recovery). Control experiments were performed in V1 slices from the non-
infected
hemisphere to examine the specificity of the observed responses to astrocyte
ChR2-induced stimulation. For slice recordings, one neuron was recorded per slice
and two to three slices were recorded per mouse.

Analysis of slow currents. Both the spontaneous and ChR2-induced slow
inward currents were discriminated from standard mEPSCs based on their time
courses—that is, rise and decay time (Fig. 2b). The time course analysis of mEPSCs
and slow inward currents showed that rise and decay times were significantly faster
for mEPSC than for slow inward currents. Rise time: 3.66±0.33 ms for mEPSC;
18.64±2.31 ms for SIC (Po0.001, t-test). Decay time: 18.48±1.42 ms for mEPSC;
46.04±3.42 ms for SIC (n¼ 28; Po0.001, t-test). No differences were found
between spontaneous and ChR2-induced slow currents: rise time 17.77±1.60 ms
for spontaneous, 19.19±3.71 ms for ChR2-evoked (P¼ 0.97, t-test); decay time
41.55±5.08 ms for spontaneous, 48.85±4.38 ms for ChR2-evoked (n¼ 10
neurons; P¼ 0.95, t-test). Values denote mean±s.e.m. To avoid possible
controversies regarding the definition of slow inward currents, we used criteria
described previously in the hippocampus18–20 and visual cortex8.

Calcium imaging in slices. Calcium signals from layer 2/3 astrocytes were
monitored by fluorescence microscopy using the Ca2þ indicator Fura-2
(Molecular Probes, Eugene, OR, USA). Slices were pre-incubated in ACSF
containing 1 mM Fura-2 AM, 0.4% pluronic F-127 in DMSO and 95% O2/5% CO2

for 30 min at room temperature, and then they were rinsed in fresh ACSF and

transferred to the slice chamber. Astrocytes were illuminated for 100–300 ms
with a xenon lamp at 490 nm using Lambda DG4 illumination system (Sutter
Instruments, Novato, CA, USA) and images were acquired every 1–2 s. The
illumination and CCD camera were controlled and synchronized using the
MetaFluor software (Molecular Devices, LLC) that was also used for ratiomeric
epifluorescence measurements. Ca2þ levels were recorded from the cell body of
mCherry-positive astrocytes and Ca2þ variations were estimated as changes in the
380/340 ratio over the baseline. Astrocytes were considered to respond to the
stimulation when 380/340 ratio increased two times the s.d. of the baseline for at
least two consecutive images and with a delay r15 s after stimulation. Evoked
responses were analysed by measuring the Calcium Area in 20 s bins before and
after the stimulus: Calcium Area¼

R ti
t0 F(t)dt; t0, ti¼ zero time and the end of the

recording, respectively; F¼Ca2þ fluorescence signal; t¼ time; dt¼ image
acquisition rate in seconds. The Calcium Area Index was calculated as: [(Area_
postStim)� (Area_preStim)]/[(Area_postStim)þ (Area_preStim)] (Equation (1)).
Cells were not recorded for longer periods than 5 min after ChR stimulation.
For control experiments, astrocyte Ca2þ signals from naive V1 contralateral to the
infected hemisphere were recorded before and after blue-light stimulation. In a
subset of experiments, ATP (20 mM) was applied by pressure injection to monitor
the calcium responses of naive astrocytes (Supplementary Fig. 4a).

Dissociated astrocyte cultures. Primary astrocyte cultures were prepared from
cerebral cortices of Swiss Webster mice (P0-P1; Charles River) through a protocol
modified from that used previously46. Briefly, approximately 1

4 of cortex was
isolated and treated with trypsin (1 mg ml� 1) for 13 min at room temperature.
Digestion was stopped by Hanks solution supplemented with 10% fetal bovine
serum and trypsin inhibitor. Tissue was dissociated with silicone-coated Pasteur
pipettes and centrifuged at 1,000 r.p.m. at 4 C� for 10 min. Dissociated cells
were plated with plating medium (500 ml MEM, with 2.5 g D-glucose, 50 mg
transferrin, 5 ml of L-glutamine and 50 ml fetal bovine serum) on glass coverslips
precoated with Matrigel (BD Biosciences). Then, for every 12 wells, 12 ml
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AAV-GFAP104-ChR2–mCherry virus was added to 1.2-ml plating medium, mixed
well and 100ml virus mixture was added to each well. After 7–10 days of virus
expression, cells were used for experiments. Cells were visualized and recorded
with a Zeiss LSM 510 confocal microscope and MetaMorph software (Molecular
Devices, LLC); an optical switch with xenon lamp (Sutter Instruments, as above)
was used to deliver light pulses for ChR2 activation and Fura-2 calcium recordings.

In vivo preparation. For the in vivo experiments, two-photon calcium imaging and
cell-attached recordings were performed on 7- to 8-week-old C57BL/6 mice and
transgenic mice. After 2 weeks of post-injection survival, to ensure a high level of
transgene expression, mice were anaesthetized with a cocktail containing fentanyl
(0.05 mg kg� 1), midazolam (5 mg kg� 1) and medetomidine (0.5 mg kg� 1) and
maintained with 0.2–0.5% isoflurane as necessary. Atropine sulphate (5 mg kg� 1)
was intraperitoneally injected. Ophthalmic ointment was used to protect the
animal’s eyes during the surgery and replaced with silicon oil during recordings.
Body temperature was maintained at 37.5 �C with a heating blanket (Harvard
Apparatus). A metal headplate was attached to the skull with cyanoacrylate glue
and dental acrylic. A 2� 2 mm craniotomy was made over the primary visual
cortex (V1), which was later covered with a thin layer of 2% agarose in ACSF
(140 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 0.01 mM EDTA, 10 mM
HEPES, 10 mM glucose, pH 7.4). The headplate was then screwed into a moveable
stage and transferred to the microscope (described below), 0.5% isoflurane in
oxygen was supplied and fentanyl/medetomidine injected as needed every few hours.

In vivo two-photon calcium imaging. A glass pipette filled with 1.0 mM Oregon
Green-488 Bapta-1-AM (OGB1-AM; Molecular Probes) was visually guided into
layer 2/3 using a micromanipulator (Sutter Instruments, MP-285) and a small
volume was pressure-injected using a Picospritzer. In vivo imaging of OGB1-AM
signals in mCherry-expressing astrocytes was performed with a two-photon laser
scanning microscope at excitation wavelength 810 nm (Prairie Technologies,
Spectra Physics Mai-Tai eHP laser passed through a Deep-See module; Spectra
Physics/Newport). Fluorescence was detected using photomultiplier tubes (R6357;
Hamamatsu, Japan). A � 25, 0.95 NA lens (Olympus Optical) was used. Imaged
cells were located at a depth of 100–200mm below the pial surface. Custom-written
software in Matlab was used for computation of the time-lapse DF/F for each
distinct region of interest (ROI). Astrocytes were discriminated from neurons by
mCherry labelling, and their ROIs were manually selected on the OGB1-AM
fluorescence image. The raw fluorescence intensity was smoothed with a Gaussian
kernel, and the change in fluorescence normalized by the baseline fluorescence
(DF/F) was computed for each ROI. The baseline fluorescence was defined as the
average fluorescence across pre-stimulus frames, while the change in fluorescence
was computed as the baseline fluorescence subtracted from the maximum
fluorescence intensity during the stimulus (ChR2 or visual stimulation). Evoked
responses were analysed by measuring the calcium area in 20-s bins before and
after ChR2 or visual stimulation, and the Calcium Area Index was calculated

(see Equation (1)). Cells were not recorded for longer periods than 5 min after ChR
stimulation.

In vivo cell-attached recording. For fluorescent visualization, glass pipettes
(1.5 mm tip size, 3–7 MO) were filled with Alexa Fluor 488 (100 um, Molecular
Probes) or Alexa Fluor 594 (100 um, Molecular Probes) and held at positive
pressure. The pipette was targeted to the injection site using a � 10 lens, and then
targeted to individual cells using a � 25 lens via concurrent two-photon imaging at
770 or 920 nm to 100–200 mm below the pial surface (layer 2/3) using a micro-
manipulator32. Cells were either targeted by moving the pipette into their vicinity
and then commencing diagonal advance, or cells were patched blindly by
advancing diagonally through the cortex. The resistance of the pipette was
monitored during the penetration by delivering � 0.5 nA current pulses for 6.3 ms
at 0.55 Hz with a Multiclamp amplifier and Clampex 10.2 software (Molecular
Devices, LLC). When a seal with a cell during the advancement of pipette was
obtained (assessed by increase in pipette tip resistance) and well-isolated spikes
were detected during visual stimuli presentation, sustained negative pressure was
applied (0.2–0.6 psi) to secure the seal47. Recordings were performed at a sampling
rate of 20 kHz and filtered between 300 Hz and 5 kHz. The pClamp data were
analysed with Clampfit 10.2 software (Molecular Devices, LLC) and Matlab with
custom-written scripts to calculate firing rates in epochs with and without visual
stimulus presentation. Blind cell-attached recordings were performed in wild-type
mice. Two-photon-guided targeted cell-attached recordings were performed in
thy1-GFP-S (for GFPþ excitatory cells), PV-tdTomato (for PVþ interneurons)
and SOM-tdTomato transgenic mice (for SOMþ interneurons) to confirm the
cellular type and their specific responses to astrocyte stimulation.

Visual stimulation and data analysis. Visually driven responses and tuning
properties were evaluated in layer 2/3 neurons. Visual stimuli, generated with the
Psychophysics toolbox48 in Matlab, were displayed on a 19-inch LCD monitor
situated 15 cm from the eyes. The onset of the visual stimulus was synchronized to
the initiation of acquisition of two-photon calcium images and cell-attached
recordings. In the calcium imaging experiments, the visual stimuli consisted of
random orientation square wave drifting grating stimuli at 100% contrast in 12
randomly permuted directions, each 30 degrees apart and lasting for 666 ms.
This stimulus was presented for 8 s alternating with a blank grey screen for 30 s
across multiple cycles. Episodic orientated grating stimuli were applied while
cell-attached recordings from V1 neurons were performed. Gratings were then
presented by stepping the orientation from 0 to 360 degrees in steps of 30 degrees.
The duration of each grating presentation was 2 s ‘ON’ followed by 2 s ‘OFF’ (blank
grey screen), with 12 s as resting period before the first grating, for a total duration
of 60 s for one set of stimuli per ‘trial’. Each of these trials was then repeated with
and without optogenetic stimulation at least 10 times.

Gaussian fits (see Supplementary Fig. 5) were computed for the tuning curves
using a sum of two Gaussians with peaks 180� apart and five parameters: PO,
tuning width s (computed as the half-width at half-maximum of the Gaussian
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Figure 9 | Astrocyte-induced changes of visual features in cortical neurons are mediated by mGluR1a activation. (a) Tuning curves of an excitatory

neuron before (Control, black) and after astrocyte stimulation (green), in control and 30 min after intraperitoneal injection of AIDA (5 mg kg� 1). Dots

denote measured firing rates and lines denote fitted curves (n¼ 10 responses). (b). Tuning curves of a PVþ neuron before (Control, black) and after

astrocyte stimulation (red), in control and after AIDA injection. (c) Summary of astrocyte-induced changes in baseline firing rate and OSI in excitatory cells

(circle, individual cell. Bars, average data; n¼4 from four mice) (d) Summary of astrocyte-induced changes in baseline firing rate and OSI in PVþ neurons

(circle, individual cell. Bars, average data; n¼ 5 from five mice). The changes observed after astrocyte stimulation were abolished in the presence of
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function), baseline response (average level of activity above zero of the flat portion
of the Gaussian), maximum response at the PO and direction (R(a)) and response
at the non-preferred direction (R(b))49. Optimal parameters were determined with
least-squares fits. The OSI was computed by taking the vector average for the
PO according to the formula OSI¼ sqrt[sum(response� cos(2� theta))2

þ sum(response� sin(2� theta)2))]/sum(responses) (Equation (2)). The DSI was
calculated as: [R(a)�R(b)]/[R(a)þR(b)] (Equation (3)) (ref. 30). Baseline firing
rate was independent of spontaneous activity and was calculated as ON minus OFF
responses. The Pearson correlation coefficient (r) was used to quantify the
relationship between the changes in tuning parameters. Cells were classified into
two groups based on the effect of astrocytes on their baseline firing rate—that is,
increase in baseline and decrease in baseline. Cells with no significant changes in
baseline after astrocyte stimulation were discarded from the analysis for the rest of
tuning parameters.

Optogenetic stimulation. Two weeks after viral injection, cells expressing
mCherry, denoting functional ChR2 expression, were readily visualized. To drive
these cells, we employed a diode-pumped solid-state blue laser with analogue
intensity control (473 nm, 200 mW, MBL-III-473, OptoEngine, LLC) coupled via
SMA terminal to a 200-mm fibre (ThorLabs) that was placed over the slices or over
the cranial window in vivo for full-field stimulation. Blue-light pulses (2–5 mW,
20 ms) were delivered at 10–20 Hz. Light stimulus durations were adjusted and
selected to evoke reliable astrocyte calcium signals and neuronal responses
(Supplementary Fig. 3). For in vivo astrocyte calcium imaging, blue-light
stimulation was delivered through the light path of the two-photon microscope at
2–5 Hz for 20–30 s. For Ca2þ recordings in astrocyte cultures, light pulses were
delivered through the microscope light path at 20 Hz for variable durations
(Supplementary Fig. 2).

Immunohistochemistry. C57/BL6 mice transfected with AAV2.5-GFAP-ChR2–
mCherry were overdosed with pentobarbital and perfused transcardially with saline
followed by 4% paraformaldehyde (n¼ 3 mice). The brain was extracted and kept
in paraformaldehyde overnight. The brain was sectioned in 50 mm slices that were
then blocked in 10% normal goat serum with 1% triton in phosphate-buffered
saline (1 h, room temperature) and stained for rabbit anti-GFAP (1:200, Sigma,
G9269) and mouse anti-NeuN (1:250, Millipore, MAB377) overnight (o4 �C).
This was followed by a 3-h incubation in Alexa Fluor 488 goat anti-rabbit (1:200,
Invitrogen, A11034) and Alexa Fluor 405 goat anti-mouse (1:200, Invitrogen,
A31553) before being mounted on a glass slide with the Vectashield Hardset
mounting media (Vector Labs). The slides were imaged using a confocal
microscope (Zeiss LSM 5 Pascal Exciter).

Drugs and chemicals. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5),
2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzoquinoxaline-7-sulfonamide disodium
salt (NBQX), bicuculline, Tetrodotoxin (TTX), N-(2,6-dimethylphenylcarba-
moylmethyl)triethylammonium chloride (QX-314), (S)-a-Methyl-4-carbox-
yphenylglycine (MCPG), (S)-(þ )-a-Amino-4-carboxy-2-methylbenzeneacetic
acid (LY367385), (RS)-1-Aminoindan-1,5-dicarboxylic acid (AIDA) and Pyridox-
alphosphate-6-azophenyl-20,40-disulphonic acid tetrasodium salt (PPADS) were
purchased from Tocris Cookson (Bristol, UK). Fura-2 AM, Oregon Green-488
BAPTA-1-AM, Sulforhodamine101 (SR101), Alexa Fluor 488 and Alexa Fluor 594
were purchased from Molecular Probes. All other drugs were purchased from
Sigma. AIDA (5 mg kg� 1) was administered intraperitoneally and cell-attached
recordings recommenced after a period of at least 30 min.

Statistical analyses. Data are presented as mean values±s.e.m. Statistical
analyses of experiments to assess significance were conducted with two-tailed
Student’s t-test (a¼ 0.05) or Wilcoxon-Signed Rank Test as appropriate. Statistical
differences were established with *Po0.05, **Po0.01 and ***Po0.001.
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Supplementary Figure 1. Astrocyte visual responses in V1. (a) Representative double
labeling image of astrocyte marker SR101 (red) and cells bulk-loaded with OGB (green) in V1
(120 µm below the pial surface; scale bar, 40 m). (b) Astrocyte calcium visual responses in
V1. Gray vertical bars indicate time segments when visual stimuli were presented (cf.8).
Population average of Ca2+ area index induced by visual stimulation (n = 22 astrocytes from 2
mice). Visual stimuli (gray vertical bars) were presented for 8 s. Scale bar 20%, 20 s. *** P <
0.001, Wilconox test. Error bars indicate SEM.
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Supplementary Figure 2. ChR2 evokes reliable calcium elevations in cultured astrocytes.
(a) Schematic for the viral vector used for astrocyte-specific expression of ChR2 (AVVs-
GFAP104-ChR2-mCherry). (b) Fluorescence image of primary astrocyte culture cells
expressing ChR2-mCherry. Scale bar, 60 m. (c) Calcium elevations evoked by different
durations of stimuli (1, 5, 10, 20 s @ 20 Hz; blue vertical bar; n = 9 astrocytes), and normalized
calcium population average (right) evoked by these different stimuli (n = 15 astrocytes). Note
the increase in the response to longer stimuli. (d) Calcium signals evoked by ChR2 stimulation
in control (n = 20 astrocytes) and after incubation with Thapsigargin (1 µM; n = 48 astrocytes;
10 s @ 20 Hz; blue horizontal bar). (e) Calcium signals evoked by ChR2 stimulation in control
medium and after replacing the incubation medium with zero calcium solution (n = 56
astrocytes; 20 s @ 20 Hz; blue horizontal bar). Note the contribution of intracellular calcium
stores and extracellular calcium to the calcium responses evoked by ChR2 stimulation (cf.14,23).
Error bars indicate SEM.
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Supplementary Figure 3. ChR2 stimulus duration vs calcium elevations and mEPSC
responses relationship in V1 slices. (a) Representative images of immunocytochemical
localization of ChR2-mCherry, NeuN and GFAP in V1 cortical slices in C57/BL6 mice transfected
with AAV2.5-GFAP-ChR2–mCherry (n = 3 mice). Note the selective expression of ChR2-mCherry
in astrocytes (bottom). Scale bar, 60 m. (b) Detail of an mCherry labeled cell showing the
specific colocalization with GFAP staining but the absence of colabeling with NeuN staining,
indicating the selective expression of ChR2-mCherry in astrocytes but no in neurons. Scale bar,
20 m. (c) (Left) Time course of astrocyte Ca2+ signals due to ChR2 stimulation of 5, 10, 20, 30,
60 s duration (blue vertical bar) at 20 Hz,. (Right) Ca2+ area index at different durations (n = 59
astrocytes). **P < 0.01, *** P < 0.001; Wilconox test. (d) Relative changes of mEPSC frequency
and amplitude in the basal conditions (unstim) and after 5, 10, 20, 30, 60 s duration at 20 Hz of
ChR2 stimulation (n = 9 neurons). **P < 0.01, t-test. Note that ChR2 stimulation evoked changes
in Ca2+ area index at 10 s duration but synaptic transmission was significantly affected by longer
duration of stimulation (60 s). (e,g,h) Time course of ChR2-induced changes in EPSCs. (e)
Histogram of relative change of spontaneous EPSC frequency versus time (bin width 10 s) before
and after astrocyte stimulation (20 Hz, 60 s; blue vertical bar; n = 9). Green dash line indicates
reference baseline. (f) Relative changes of mEPSC frequency and amplitude baseline from
control values after incubation with thapsigargin (1 µM) (n = 6). Thapsigargin did not significantly
affect the basal levels of synaptic transmission but abolished astrocyte calcium signals and
astrocyte-induced synaptic modulation (see Fig. 2d). (g) Astrocyte calcium signal induced by
ChR2 stimulation versus time (bin with 10s; ChR2 stimulation blue horizontal bar; n = 76
astrocytes from n = 10 slices) (h) Superimposed astrocyte calcium signal (red dots) on EPSC
histogram inset (black bars) showing the temporal course of both responses. Zero time
corresponds to the beginning of ChR2 stimulation. Note that significant changes in astrocyte Ca2+

signal preceded significant increases in EPSC frequency. The first data point with statistical
difference for each parameter is shown. * P < 0.05 (in black, for EPSC). # P < 0.001 (in red, for
Ca2+ signal), t-test. Error bars indicate SEM.
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Supplementary Figure 4. Blue light effects on naïve V1 slices. (a) Left, Representative
astrocytic calcium signals evoked by blue light (60 s @ 20 Hz), and ATP stimulation (20 mM,
1 s puff) in naïve astrocytes from uninfected contralateral V1 slices (no-ChR2 expression).
Note that light stimulation failed to increase calcium levels in naïve astrocytes; however,
ATP stimulation evoked calcium elevations in the same astrocytes, confirming the ability of
these cells to increase their calcium excitability. Right, Ca2+ area index by blue light and ATP
(n = 22 astrocytes from 4 slices from 2 mice). ***P < 0.001; Wilconox test. (b) Relative
changes in spontaneous EPSC frequency and amplitude in the basal conditions, induced by
light stimulation and up to 10 min post stimulation (recovery) (n = 10 neurons). Error bars
indicate SEM.
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Supplementary Figure 5. Effect of blue light on neuronal activity in vivo in mice
with no GFAP-ChR2 transfection. (a) Analysis of tuning curves. Schematic illustration
of the orientation/direction tuning curve and its parameters, and calculation of the
orientation and direction selectivity index. (b) Representative tuning curves of one
putative excitatory-regular spiking cell (right) and fast spiking inhibitory cell (left) before
(Control, black) and after blue light stimulation (blue) recorded by blind cell-attached
recordings in non-transfected wildtype mice. Dots denote measured firing rates and lines
denote fitted curves (n = 10 trials). (c) Population summary of astrocyte-induced changes
in baseline firing rate (circle, individual cell; cross, population average; n = 11 from 4
mice). (d) Population summary of astrocyte-induced changes in OSI, DSI, preferred
orientation, and peak firing rate (n = 11). (e) Index of change in tuning properties before
and after astrocyte stimulation. (f) Relative changes of spontaneous firing rate (without
visual stimuli) before (control), after light stimulation and 10 min post stimulation
(recovery) (n = 11). Error bars indicate SEM. (g) Ca2+ area index following blue light
stimulation (n = 31 astrocytes from 2 mice). Error bars indicate SEM.
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Supplementary Figure 6. Astrocyte-induced changes in tuning parameters of excitatory
cells and PV+ neurons. (a, b) Normalized index of tuning parameters showing changes in OSI,
DSI, preferred orientation, tuning width and peak amplitude vs baseline for PV+ neurons (a) and
excitatory neurons (b). Inset: Normalized index for each parameter showing the population
differences before and after astrocyte stimulation (from Fig. 6e and Fig 7e,g). Inset Left,
normalized index for cells that showed decreases in the baseline after astrocyte stimulation.
Inset Right, normalized index for cells that showed increases in the baseline after astrocyte
stimulation. Circle, individual cell. Dashed line, linear regression for the population. *P < 0.05,
**P < 0.01, ***P < 0.001; Wilconox test. Error bars indicate SEM. These data show the impact of
baseline changes on the feature-selectivity of visual responses (see text for details). For PV+

neurons, the baseline showed an increase and the population OSI showed a significant
reduction after astrocyte photostimulation (inset in a, top left). Excitatory cells showed both an
increase and decrease in the baseline; there was a significant negative correlation between
changes in baseline and OSI and DSI, and the population OSI and DSI showed significant
changes that were inversely related to the baseline changes (insets in b). (c, d) Changes in
spontaneous firing rate vs changes in visual-evoked firing rate for PV+ neurons and excitatory
neurons. (c, d) Left, Normalized index of firing rate showing changes in spontaneous firing rate
vs baseline (visual-evoked firing rate) for PV+ neurons (c; n = 18 from 12 mice), excitatory
neurons (d; n = 45 from 25 mice). Center-right, Cells were classified according to significant
changes in spontaneous firing rate, and are shown in these panels under Increase in
spontaneous activity and Decrease in spontaneous activity. Circle, individual cell. Dashed line,
linear regression for the population. Grey circles denote cells with no significant changes in
spontaneous firing rate.
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Supplementary Figure 7. Astrocyte-induced changes in tuning parameters of SOM+

neurons. (a) Normalized index of tuning parameters showing changes in OSI, DSI, preferred
orientation, tuning width and peak amplitude vs baseline for SOM+ neurons. Inset: Normalized
index for each parameter showing the differences before and after astrocyte stimulation (from
Fig. 8e,g). Inset Left, normalized index for cells that showed decreases in the baseline after
astrocyte stimulation. Inset Right, normalized index for cells that showed increases in the
baseline after astrocyte stimulation. Circle, individual cell. Dashed line, linear regression for
the population. (b) Left, Normalized index of firing rate showing changes in spontaneous firing
rate vs baseline (visual-evoked firing rate) for SOM+ neurons. Center-right, Cells were
classified according to significant changes in spontaneous firing rate, and are shown in these
panels under Increase in spontaneous activity and Decrease in spontaneous activity. Circle,
individual cell. Dashed line, linear regression for the population. Grey circles denote cells with
no significant changes in spontaneous firing rate. SOM+ cells showed positive correlation
between changes in baseline and specific response parameters.
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