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Abstract— The brain is made up of an incredible number of 
different kinds of neuron, which vary in their shapes, molecular 
compositions, and connectivity patterns, as well as in how they 
change in different disease states.  Understanding how these 
different kinds of neuron work together in brain circuits to 
implement perceptions, emotions, decisions, and actions, and 
how flaws in specific neuron types result in brain disorders, is 
an ongoing high priority for neuroscience. Over the last several 
years we have developed a rapidly-expanding suite of 
genetically-encoded reagents (e.g., ChR2, Halo, Arch, Mac, and 
others) that, when expressed in specific neuron types in the 
nervous system, enable their activities to be powerfully and 
precisely activated and silenced in response to pulses of light.  
These tools are in widespread use for analyzing the causal role 
of defined cell types in normal and pathological brain 
functions.  We have begun to develop hardware to enable 
complex and distributed neural circuits to be precisely 
controlled, and for the network-wide impact of a neural control 
event to be measured using distributed electrodes and fMRI. 
We discuss our pre-clinical work on translation of such tools to 
support novel ultraprecise neuromodulation therapies for 
human patients. 

I. INTRODUCTION 

The brain is made up of an incredible number of different 
kinds of neuron, which vary in their shapes, molecular 
compositions, and connectivity patterns, as well as in how 
they change in different disease states.   

Ideally, one would be able to silence the activity of a 
specific kind of neuron, for a very precisely defined period 
of time, so as to reveal the neural computations, behaviors, 
or pathologies for which those neurons were necessary.  
And, ideally one would be able to activate a specific kind of 
neuron selectively, so as to reveal what neural activity 
patterns, behavioral functions, or pathological states those 
neurons were capable of initiating or sustaining.  

Below we describe the suite of technologies we have 
developed to meet these needs, by enabling the electrical 
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activity of specific neurons to be controlled precisely with 
light. 

II. RESULTS 

In 2005, we reported that expression of the algal light-
gated cation channel channelrhodopsin-2 (ChR2), a 
membrane protein from C. reinhardtii, in neurons, enabled 
the neurons to fire electrical action potentials in response to 
brief pulses of  blue light [1].  In 2007, we reported the use 
of the archaeal light-driven chloride pump halorhodopsin 
(Halo/NpHR) from N. pharaonis to hyperpolarize neurons in 
response to yellow light [2].  Three years later, we reported a 
second class of light-driven neural silencer, the light-driven 
outward proton pump, which could support extremely 
powerful neural silencing, an order of magnitude greater 
than that mediated by the original halorhodopsins, as 
exemplified by the molecule Arch from H. sodomense [3], 
which can result in ~100% shutdown of neural activity in the 
awake brain in response to green or yellow light.  Other 
light-driven outward proton pumps, such as the molecule 
Mac from L. maculans, can be used to silence neurons in 
response to blue light [3]. 

These molecules require no chemical co-factors in the 
mammalian brain, and operate at high enough speeds to 
enable driving or deletion of individual action potentials.  
We have distributed these tools to approximately 400 groups 
around the world, where they are used in animals (either 
engineered to be transgenic, or expressing the genes in 
defined neurons after viral delivery), to study the roles that 
defined neurons play in normal and abnormal brain 
computations.  We continue to search genomic resources for 
new tools [7], and to optimize existing tools through 
mutagenesis or appending of useful sequences (e.g., [3]). 

Recently we have begun to develop optical hardware for 
driving and silencing defined 3-dimensional neural circuits 
in the brain, thus opening up the ability to analyze how 
different circuits work together in the brain to mediate 
computations [4].  We have also begun to develop strategies 
for measuring the circuit-wide impact of perturbing a given 
cell type using awake animal fMRI [5] and neural recording, 
thus enabling us to derive principles of how to optimally 
control a neural circuit, both for purposes of scientific 
understanding as well as for clarifying the principles 
underlying the discovery of new therapeutic targets (i.e., 
towards which drugs or electrical probes might be directed).   

Finally, we have pursued pre-clinical studies of the 
potential use of these technologies, in non-human primates, 
thus providing preliminary support for a new generation of 
optical prosthetics for precision treatment of brain disorders 
[6].  Given the increasing use of implanted electrical 
stimulators to treat deafness, Parkinson’s disease, and other 
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neurological conditions, as well as progress in human gene 
therapy using adeno-associated virus (AAV) [8], our early 
work on the safety and efficacy of opsin expression and 
function in the non-human primate brain suggests that new 
kinds of optical brain control therapy may be possible. 

In summary, we have developed a suite of molecular and 
hardware tools that enable the activity of defined neurons 
embedded within brain circuits to be precisely controlled, 
opening up the ability to study their functions as well as to 
potentially control neurons that have gone awry in states of 
brain pathology. 
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