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To investigate the scaling issues for quantum
computation using thermalized ensembles of
spins, we are building a rudimentary quantum
computer using nuclear magnetic resonance
(NMR). We discuss the experimental issues
facing the scalability of this technique including
the number of qubits, issues of classical versus
quantum behavior, and polarization. Due to the
weak signals measured in NMR, the most
significant challenge to practical devices is
polarization enhancement. We present the
architecture for a simple NMR spectrometer that
is table-top, low-cost, and software-radio driven
using commodity electronics and unconventional
permanent magnet designs. Optimizations
specific to using this machine as a computational
device, such as probe design, compilation, and
on-line control, are discussed.

W ith the quest for faster microcomputer chips
in the semiconductor industry, exponential in-

creases in speed must come at the exponentially in-
creasing cost of some other resource. Advances in
the semiconductor industry have capitalized on two
resources: space, by shrinking the size of integrated
circuitry in semiconductor fabrication; and money,
by the ever increasing investment in fabrication
plants. It is likely that we will, in the not too distant
future, reach fundamental physical limits: transistors
will be atomic in scale and memory will consist of
only a handful of electrons. Time does not offer much
help as a resource, because light takes 100 picosec-
onds (ps) to travel the 3 centimeters (cm) of a typ-
ical chip. Exponentially large physical space or en-
ergy are not realistically available resources. People
have proposed DNA computers1 as a type of massive
parallelism to solve computational problems. This

solution does not scale either, because a computa-
tionally hard problem requires exponential amounts
of DNA, which can quickly require samples more mas-
sive than the earth itself.1 The dream of quantum
computing is that quantum mechanics provides an
untapped, scalable exponential resource. Quantum
computers can, in theory, factor numbers in expo-
nentially fewer steps than classical computers (thus
cracking modern cryptographic protocols), simulate
quantum systems with exponentially fewer resources
than now possible, and search databases in 2(=N)
queries rather than 2(N) on an ordinary machine.

The power of quantum computing begins with a pro-
found observation. Whereas a classical bit can be in
one of two states, 0 or 1, a quantum bit, or “qubit”
(e.g., a spin-1/2 particle) can be in a weighted su-
perposition of both states. For example,

au0& 1 bu1&

where a and b are complex numbers, and uau 2 1
ubu 2 5 1. When measured with a readout operator,
the qubit appears to collapse to state u0& with prob-
ability uau 2 , and to state u1& with probability ubu 2 . The
state of two qubits can be written as

uC& 5 O
i

ciui& 5 au00& 1 bu01& 1 cu10& 1 du11&
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where uau 2 1 ubu 2 1 ucu 2 1 udu 2 5 1, and the prob-
ability of measuring the amplitude of each state is
given by the magnitude of its squared coefficient. In
general, the state of n qubits is specified by 2 n11 2
1 real numbers—an exponential amount of informa-
tion, relative to the number of physical particles re-
quired. Most of these states are entangled—to cre-
ate them requires some kind of interaction between
the qubits, and the qubits cannot be treated entirely
independently from one another.

Designing quantum algorithms is made difficult by
the fact that it is impossible to extract the entire ex-
ponential amount of information encoded in the
state of a quantum system: only a polynomial amount
of information can be read out, since a measurement
collapses the exponential enormity of the state into
a handful of classical values, with probabilities of oc-
currence given by the amplitudes as described in the
previous paragraph. Furthermore, the only compu-
tational primitives allowed are unitary operators
(which evolve the state of a system under Hamilto-
nian dynamics) that are reversible and therefore con-
serve probability. Nevertheless, a collection of won-
derful algorithms have been discovered. In 1994,
Peter Shor2 showed quantum computers could fac-
tor large numbers into prime factors in polynomial
steps, compared to exponential steps3 on classical
computers. Prime factorization is an essential part
of modern public key cryptographic protocols, par-
amount to privacy in the electronic world. In 1997,
Lov Grover4 demonstrated a search algorithm that
could search an unsorted list for a single element
quadratically faster on a quantum computer than on
a classical computer.

Introduction to NMR

Liquid state nuclear magnetic resonance (NMR) is
the manipulation of bulk degrees of freedom to ob-
tain information about the underlying nuclear spins
in an applied magnetic field. In order to understand
how to build a quantum computer using NMR, we
begin with the general requirements for a quantum
computer.5

1. It starts in a known state (a pure state such as the
ground state).

2. It is able to efficiently represent any unitary map-
ping from one state to another from a basic set
of elementary unitary mappings.

3. It is able to concatenate these mappings to form
a circuit, that is maintain quantum states long
enough to represent any unitary mapping.

4. It performs projective measurement in order to
read out the computation results.

To implement any of the above requires that we un-
derstand the dynamics of nuclear spins when they
act as an ensemble. Quantum statistical mechanics
allows us to compute the equilibrium thermal state
of the liquid. Moreover, if we know the dynamics of
a single molecule, we can easily calculate the dynam-
ics of the entire liquid. To begin, the dynamics of
quantum systems are described by operators that
map one quantum state to another, uC&3 uF&. For
the nuclear spins of our quantum computer, oper-
ators are finite dimensional matrices. The Hamilto-
nian * is a special operator that describes the com-
plete dynamics of a molecule under time evolution
and also determines the energy eigenstates of the
system. The Hamiltonian of a rapidly tumbling mol-
ecule in a liquid containing n spin-1/2 nuclei with a
strong magnetic flux density BY 5 B0ẑ is given by

* 5 O
i51

n

\gi~B0 1 dBi!Iiz 1 O
i,j

2p\Jij Iiz Ijz

where I iz represents the z-axis spin operator for nu-
clei i, g i is the gyromagnetic ratio of spin i, dBi de-
scribes a local magnetic flux density adjustment for
each spin i due to the local chemical environment,
and Jij describes the coupling, in Hertz, between spins
i and j. We assume for the discussion of the dynam-
ics below that we are in the weak coupling limit where
ug idBi 2 g jdBj u .. J ij . In equilibrium, the Ham-
iltonian dictates that spin i precesses quickly about
the z-axis at a frequency g iB0/ 2p adjusted by the
local term, gdBi / 2p, the so-called chemical shift.
This precession frequency is called the Larmor fre-
quency. This fast oscillation (usually at several MHz)
is slowly modulated by the J-coupling (which usu-
ally proceeds at a few Hz). These precession states
are the equilibrium states of the system, called the
eigenstates. With the energy eigenstates, we are now
ready to begin to understand the spin dynamics.
Given a (2 n21)-dimensional basis ua& of single-mol-
ecule eigenstates, we can write the state of a ther-
mal liquid ensemble of molecules as a density ma-
trix r, where the matrix element rab is given by

rab 5 cac*b

where the average is taken over the thermal ensem-
ble, and cac*a is the probability of being in the state
ua&. Given a time-evolution operator
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U~t1, t0! 5 e ~i*~t12t0!!/\

where * is the Hamiltonian of the quantum system
during the period from time t0 to time t1 , the den-
sity matrix evolves as

r~t1! 5 Ur~t0!U 21

To know the dynamics of the system for all future
times, we just need to know the initial state of the
system. Quantum statistical mechanics provides the
answer with the thermalized (maximum entropy)
density matrix

r~0! 5 e 2*/kBT/] 5
1
] S1 1 O

i51

n \gi B
kT

Iiz 1 . . .D
The partition function ] is the normalization factor
such that tr(r(0)) 5 1. Because the Zeeman en-
ergies g iB0 are usually about 1025 times smaller com-
pared to kBT, the first two terms of the Taylor ex-
pansion of the exponential serve as a very good
approximation, with the second term being about
1025 times the magnitude of the first, constant term.
If our measurement apparatus is a coil wrapped
around the sample detecting the classical magneti-
zation signal, it turns out that the constant term is
not observable, so we ignore it and concentrate on
the remainder (called the deviation density matrix).
The only time-evolution operators of interest in this
simple model of NMR (where we neglect relaxation
mechanisms and higher order spin-spin interactions),
will be the single-qubit rotations (u 5 g iB1 t),

Xi~u! 5 e iuIix

which corresponds to a magnetic flux density BY 1 5
2B1 cos(g i(B0 1 dBi)t) x̂, resonant with spin i, for
a time t. If we think of the spin dynamics in the frame
rotating about the z-axis at its Larmor frequency, we
can decompose this linearly polarized field into two
counter-rotating circularly polarized fields, one of
which rotates with this “rotating” frame, while the
other rotates oppositely at 2gi(B0 1 dBi) relative to
the nuclear magnetization. We can ignore the latter
term and concentrate on the former. Then B1 becomes
a static field and B0 becomes zero, a much easier sys-
tem to analyze. The BY 1 field simply rotates the spin in
the Y–Z plane in this rotating frame. We can create
this field with the same measurement coil and just con-
trol the amplitude, phase, and time duration of our ra-
dio-frequency (RF) field. If we time the pulse such that

giB1t 5 p/2 for the RF field, this is known in NMR lit-
erature as a (p/2)x pulse. Similarly,

Yi~u! 5 e iuIiy

correspond to performing similar operations along
the y-axis. The double-qubit rotation

ZZij~u! 5 e 2ipJtIizIjz

corresponds to evolving a pair of J-coupled spins for
a time t.

It turns out the Xi , Yi , and ZZij time-evolution op-
erators are computationally complete, in that to-
gether they can approximate any unitary operator
with any desired accuracy. Using our coil and an ar-
bitrary waveform RF generator, we can satisfy the
second of the quantum computing requirements.
This coil actually allows us to satisfy the last require-
ment as well since we use it to perform projective
measurement. One subtle point is that some quan-
tum algorithms have been designed to give out prob-
abilistic results from single quantum systems. For-
tunately, it has been shown6 that they can be
modified to give deterministic results for ensemble
systems.

Decoherence is the process by which a quantum sys-
tem loses quantum coherence to its environment and
becomes classical. In NMR, decoherence is measured
by how long a spin on one molecule stays in phase
coherence with another molecule. This interval is
called the spin-spin relaxation time, T2 . The beauty
of NMR for quantum computing is that T2 is much
larger than the gate speed. This allows hundreds,
even thousands of quantum gates to be implemented,
allowing the third quantum computing requirement
to be satisfied. One can see why this is possible: the
nucleus is a perfect, frictionless trap, surrounded by
a cloud of electrons that shield most external deco-
herence mechanisms; we are spreading relatively few
degrees of freedom over the 2(21023

)-sized Hilbert
space of a typical liquid. No other system to date has
shown such long coherence times and, paradoxically,
the ability to control the nuclear states on fast time
scales. Quantum error correction is a wonderful the-
ory that has shown that one can compute indefinitely
if the decoherence rate per gate is less than a thresh-
old,7–10 which has been estimated to be between
2(1024) to 2(1026) per gate.11 At the cost of many more
ancilla spins, NMR is the closest demonstrated technol-
ogy (2(1023)) to reaching this threshold. By modify-
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ing the chemistry of the liquids, researchers at IBM12

are improving this threshold for NMR.

We have not satisfied the first quantum computing
requirement, the creation of a pure state. A ther-
malized liquid only gives us the mixed state provided
by the almost maximum entropy mixed state. One
might think this is impossible, since to go from a high
entropy state to a zero entropy state requires non-
unitary operators. The key insight from a couple of
groups is that there are degrees of freedom for re-
jecting this entropy.6,13,14 Logical labeling uses extra
spins to label the remaining spins as ground state
spins; spatial labeling uses external gradient fields
to erase terms in the density matrix by creating a spa-
tial superposition of quantum computers and then
mixing them together; temporal labeling creates a
series of experiments that are temporally averaged
to give an initial ground state and the correspond-
ing evolution. For prototyping our quantum com-
puter, we use an inefficient but conceptually simple
method, exhaustive averaging. For two qubits, one
might run three experiments, for example, using pre-
paratory gates to create deviation density matrices

3
1 0 0 0
0 0.6 0 0
0 0 20.6 0
0 0 0 21

4, 3
1 0 0 0
0 20.6 0 0
0 0 21 0
0 0 0 0.6

4,

3
1 0 0 0
0 21 0 0
0 0 0.6 0
0 0 0 20.6

4
performing the desired computation on each, then
averaging the three experimental results—which
gives the same result as if one had performed the
computation on a state equal to the average of the
three initial density matrices,

3
1.33 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

4
1 3

20.33 0 0 0
0 20.33 0 0
0 0 20.33 0
0 0 0 20.334

The second term is unobservable and the first term
is a pure state. This works because quantum mechan-
ics is linear, and just as a Cartesian vector can be
resolved into x, y, and z terms, we can resolve our
density matrix into more easily manipulated com-
ponents.14

Issues for thermal nuclear resonance

In this section we discuss issues facing the scaling of
liquid nuclear resonance to nontrivial computational
complexity. We begin with spin polarization and its
essential role in the scalability of quantum comput-
ers, then address the both quantum and classical na-
ture of NMR in thermal liquids, and finally discuss
how to increase the number of qubits in the system.

Polarization. It seems counterintuitive to be able to
make the observable term of the thermalized den-
sity matrix behave exactly as if it were in the ground
state of the system. Delving deeper, consider the larg-
est signal that can be observed by logical labeling to
be the difference between the most probable and
least probable terms of the density matrix:15,6

S 5 ~~req!max 2 ~req!min!g\~Iz!max

Solving this using the equation for the thermalized
density matrix r(0) given earlier in this section yields

S 5
N
2 N g\

sinh ~Nbg\B0 / 2!

~cosh ~bg\B0 / 2!! N

The plot of this function is shown in Figure 1A, with
a baseline set as spin noise, where quantum infor-
mation is lost to the environment via stimulated emis-
sion with the coil. 16 It is apparent that between 20
and 50 qubits, no current technique can measure the
quantum computing signal. Looking at the problem
in the domain of polarization, Figure 1B shows the
polarization needed to extract a specific number of
qubits with a signal-to-noise ratio of 3 decibels (dB)
relative to spin noise. This plot shows the spin po-
larization must approach unity to make the system
perform better than classical systems. Both plots
show that the Boltzmann limit is not scalable for
quantum computation.

It would be nice to dramatically increase the spin
polarization but keep rotational and translational de-
grees of freedom thermalized. Optical pumping17 is
a technique potentially able to accomplish this. Each
quantum of circularly polarized light carries one unit
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of angular momentum that can put an atom into a
highly polarized electronic state. The electronic po-
larization can then polarize the nuclear spins through
relaxation mechanisms. In noble gases that do not
interact and have simple electronic orbitals, close to
50 percent polarizations have been obtained. Hap-
per et al.18 did pioneering work on optical pumping
of rubidium gases that transfer polarization to ei-
ther xenon-129 or helium-3. Transferring this polar-
ization to nuclear states efficiently is an open, dif-
ficult question, but one that needs to be addressed.
Another reason to have optical photons interact with
nuclear spins is for quantum error correction. To im-
plement any error correction algorithm, one needs
a way to reject errors in the calculation in a way that
does not influence the other spins that carry valu-
able information. A photon channel could be a
means to do this—if a spin is polarized by optical
pumping its previous state is erased. In summary,
polarization is the most serious challenge facing prac-
tical quantum computation using ensembles of ther-
malized nuclear systems. If it can be done, remain-
ing challenges should be surmountable, as will be
shown below.

Is it really quantum? Even before we begin to ad-
dress issues of polarization, it is paramount to de-
termine if a mixed state system, in which the quan-
tum system is represented by an ensemble of

quantum systems, actually has the requirements to
perform quantum computing. This was a question
in the original paper by Gershenfeld and Chuang.6

The paper showed how to do state preparation, al-
gorithms, and readout on an NMR system, but it was
not clear that quantum information processing was
actually being carried out in the system. Shack and
Caves19 have almost answered this question. They
show that for a number of qubits less than 16, at a
modest spin polarization of « 5 2 3 1026, the den-
sity matrix during the entire experiment is fully sep-
arable. Being separable means that the statistics of
any measurement of the density matrix can be fully
described by classical probabilities. In the high tem-
perature limit the quantum computing signal can be
simplified to

S 5
N
2 N

\gB0

2kBT
5

N
2 N11 «

The density matrix of the spins in NMR can be de-
scribed classically19 if

S # h ;
1

1 1 2 2N21

This means that for N smaller than a certain num-
ber, entanglement cannot exist. One could rephrase

Figure 1 (A) shows the intrinsic magnetization versus temperature as a function of the number of qubits. Plot (B) shows
the polarization versus the maximum number of qubits with a 3 dB signal-to-noise ratio.
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the calculations and ask “What is the minimum po-
larization needed so that a bulk NMR system with a
number of qubits greater than one has a density ma-
trix that is not separable?” The minimum polariza-
tion is 44.4 percent. Fortunately, this is not the end
of the story: quantum computing is not just about
the density matrix, it is also about unitary evolution.
Shack and Caves19 show that if a unitary transform
can be written as an outer product of matrices

V 5 V1 # V2 . . . # VN

then a classical description with positive transition
probabilities also can fully describe the system.

However, when they tried to include entangling uni-
taries, operators that cannot be written as in the
equation above, they found a classical system could
describe the system with classical transition proba-
bilities only at the expense of an exponential decrease
« in signal-to-noise ratio for each step. They further
showed that an exponential signal decrease per step
can be avoided for K entangling unitaries by adding
N ancillary qubits. K is the largest integer such that

« # h K11

For the classical system to be able to use a single
entangling unitary with no signal reduction at a po-
larization of 2 3 1026, this corresponds to K 5 6
qubits. One could pose the question, “What is the
minimum polarization such that for N $ 2, no en-
tangling unitaries can be simulated by the classical
system without exponential signal decrease?” For 2
qubits, this corresponds to 3.9 3 1023, above the
range of current spectrometers, but within the realm
of possibility of even conventional polarization en-
hancement techniques such as the Nuclear Over-
hauser Effect20—dynamic nuclear polarization with
electrons. The model used by the authors for avoid-
ing exponential signal decrease is only one of many
possibilities: for a system to perform genuine infor-
mation processing, all possible classical models can-
not account for the entangling unitary evolutions
without an exponential cost. Most believe that al-
though the initial state of thermal NMR is separable,
the dynamics will not be.

The question of whether NMR is quantum or not is
an academic question—unity polarization, as ad-
dressed in the previous section, is paramount for scal-
able quantum computation. With unity polarization

both the initial states and the dynamics will surely
be quantum mechanical.

Number of qubits. The last major barrier for ther-
mal NMR quantum computing is the number of
qubits. To be able to implement error correction on
a quantum computer may require somewhere be-
tween 10 and 100 qubits to describe a single qubit.10

To represent thousands of fully coupled qubits with
separate resonances is impossible with current tech-
niques. Fortunately, Seth Lloyd21 provided a solu-
tion. If one has a polymer chain of the type D–A–
B–C–A–B–C . . . , where each letter corresponds to
a unique resonance of a nuclear species, then this
system is capable of performing any quantum com-
putation. This architecture suffers a slight slowdown
to pass information up and down the chain, but the
huge gains that quantum algorithms offer are still
preserved. This architecture is called a Single Instruc-
tion Multiple Data (SIMD) cellular automata.
Recently, it has been shown22 that only
. . . A–B–A–B . . . is necessary, which will make mo-
lecular synthesis considerably easier.

Hardware for the table-top quantum
computer

We have begun the development of instrumentation
to address the issues raised in the previous section.
An NMR quantum computer starts with a collection
of molecules in a liquid, where each molecule is a
redundant quantum computer. In the presence of
our homogeneous magnet field, a small percentage
of these spins align with the magnetic field and be-
gin to precess. By applying amplitude, frequency,
phase and time controlled magnetic energy, we can
rotate the spins around an arbitrary axis in the Hil-
bert space. To do this, we wrap a coil around the
liquid sample, and add reactive elements to make
it resonant at several frequencies. We use a digitally
controlled transmitter that generates these wave-
forms. With sensitive electronics and a switch, we
can detect the magnetization of the liquid and per-
form a measurement of the quantum state. A gen-
eral system diagram is shown in Figure 2.

Computational optimizations. Current commercial
NMR spectrometers are incredible machines capa-
ble of doing a range of tasks, such as imaging and
quantitative chemical structure determination. With
the instrumentation outlined below, we hope to
match current spectrometers in performance but end
up with a device that can be treated more as a com-
puter. Since we are trying to make a computer, there

MAGUIRE, BOYDEN, AND GERSHENFELD IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000828



are optimizations that we can do to improve our sys-
tem performance and size over commercial NMR
spectrometers. The first has to do with the sample—
commercial systems need to routinely analyze a num-
ber of samples. As a result, these systems are engi-
neered for cylindrical symmetry for easy access. The
ends contribute an inhomogeneity in the RF field,
leading to errors in the computational gates. The ma-
jor constraint for this configuration is that the active
region of a sample cannot be larger than about 1.5
cm in length and 1 cm in diameter. For our com-
puter, we need only a single sample and can engi-
neer our system for spherical symmetry with no end
effects. A spherical probe would have higher RF ho-
mogeneity and allow much smaller magnet designs.

Since we are interested in a computational result
rather than a chemical spectrum, we can use a sin-
gle qubit to serially produce an answer. This poses
an enormous advantage since we can make a very
high Q electrical,23 optical,24 or mechanical readout
system (decoupled from the transmitter in the last
two cases) that could dramatically improve our sen-
sitivity. Another technique is to use an electron chan-
nel to measure an answer. This is an old technique20

called ENDOR, or Electron-Nuclear Double Reso-
nance. Going through the electron channel will op-
timistically give a gyromagnetic ratio of improve-
ment. The gyromagnetic ratio is inversely pro-
portional to rest mass, and thus approximately three
orders of magnitude improvement in signal can be
obtained. Species-dependent relaxation mechanisms
may make this approach insubstantial, but is worth
investigating further for candidate quantum comput-
ing molecules.

Magnet design. To make a table-top system, one
needs a compact, homogeneous magnetic field. We
are investigating permanent magnet structures to
solve this problem. There are a number of constraints
for the system: small enough to fit on a table-top;
as high a magnetic flux density as possible; a homo-
geneity of the flux density across the sample of about
one part per billion. The latter two points require
some justification. The basic signal-to-noise ratio for
a coil is proportional to B0

7/4 . 25 Given NMR signals
are extremely small, it is important to maximize this
signal-to-noise ratio. If there are spatial field vari-
ations, there will be spins in the sample that will res-
onate slightly faster or slower than others. With the
spins out of phase, this is an artificial means of in-
troducing coherence that shortens the maximum pos-
sible coherence time of the liquid. Empirically, it has
been found that for a homogeneity of one part per

billion, all experimentally induced decoherence will
be smaller than the natural decoherence processes.
Due to manufacturing tolerances, this lofty goal can-
not be reached in practice solely from the magnet
alone. The field must be corrected in a controlled
manner with slight perturbations, a process called
shimming. With shimming, the magnet tolerance re-
quired is about 1 to 10 parts per million (ppm). This
will be explained in more depth in the next section.

We have done finite element modeling of two basic
magnet geometries. The first is based on an arrayed
magnet geometry invented by Klaus Halbach.26 It
can be shown27 that for a magnetization distribution
within a cylindrical volume as shown in Figure 3, one
can obtain a perfectly homogeneous solution within
the volume of field strength

uBu 5 Br ln~r2/r1!

Br is the remanent flux density, that is the flux den-
sity output in a zero magnetic field. This is quite sur-
prising since one is able to obtain flux densities in-
side the volume that are much larger than this
remanence. To construct this magnet, Halbach de-
veloped an approximation using segments of mag-
nets that achieve a high order approximation to this
field. The finite element model is shown in Figure
4. The design goal was to achieve 1 ppm homoge-
neity over a 1 cm diameter sphere in the middle of
the magnet. This was accomplished with r1 5 2 cm,
r2 5 6.5 cm, uBW u 5 1.513 T.

Figure 2 General system schematic for an NMR quantum
computer
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This is very encouraging, but from a practical point
of view has a couple of limitations. Manufacturing
tolerances on modern rare earth magnets, usually
made by sintering, pressure bonding, or extruding

are about 1 to 10 thousandths of an inch and the er-
ror on the magnetization angle can approach two de-
grees. These two facts make the best possible ho-
mogeneity on the order of one part per million. Two
insights lead to alternatives. The first is to construct
the magnet out of many tiny magnets. With enough
magnets, the statistics of the distribution of errors
for the ensemble of magnets average out high spa-
tial frequencies in the magnetic field. The second
method is more practical and simply requires judi-
cious placement of high permeability materials. From
Laplace’s equation, taking the Fourier transform in
space yields

F~k! 5
1F~k!

~k z k!m

where F(k) is the spatial Fourier transform of ¹ z
M, the magnetization. The frequency component
F(k)dk will be attenuated by a factor of (k z k)m.
For ferromagnetic materials with m r approaching
100000, the high permeability enhances the filter-
ing of Laplace’s equation by a factor m r over using
permanent magnet materials alone. Fermilab28 took
advantage of this point in the design of their anti-
proton recycler ring, where they required small, ho-
mogeneous magnets. They iteratively shaped the
pole pieces of a traditional H-loop design.

Shimming. Shimming, or the modification of the bias
magnetic field by precisely controlled electromag-
nets (or, in some cases, permanent magnets, m-metal,
and chunks of steel), can increase the homogeneity
of the bias magnetic field by several orders of mag-
nitude. This is essential for NMR due to the fact that
nonidealities in the magnetic field can greatly reduce
the lifetime of quantum coherences and blur features
in the NMR spectrum. The observed signal will be a
sum of the signals of many different isochromats, or
collections of spins at the same frequency. A broad-
ening of a waveform in the frequency-domain is as-
sociated with a shrinking of the length of the signal
in the time-domain, since as the signal components
at various frequencies dephase and become random
with respect to one another, their sum tends toward
zero. To perform a quantum computation, the sig-
nal must not decay below the noise level until the
computation is complete. Thus we require that the
homogeneity of our magnetic field be within one part
in 109.

In a region without currents, a magnetic field obeys
Laplace’s equation, ¹ 2BY ; ¹ 2B 5 0, which can be

Figure 3 Magnetization distribution within the magnet
that yields a perfectly homogeneous field inside.
This is true for both cylinders and spheres.

Figure 4 Finite element model of the Halbach array with
a discretized magnetization approximation that
yields a 1 ppm homogeneity inside
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solved in terms of spherical harmonics. (We set the
x- and y-components of the magnetic field to zero,
and consider only the z-component, which we refer
to as B, in the following discussion.) Spherical har-
monics are enumerated by indices (l, m), which are
called the order and the degree, respectively. For m 5
0, the zonal harmonics, one has cylindrical symme-
try (i.e., the polar coordinate f is irrelevant), which
is appropriate for many magnets, where the dom-
inant inhomogeneity is due to cylindrical end effects.
The equation for B at the point (r, u, f) is then of
the form

B~r, u! 5 O Cn~r/a! nPn~cosu!

where Pn is the nth Legendre polynomial, and Cn

and a are parameters. In general, the complete so-
lution for all (l, m) (including the tesseral terms, for
which m Þ 0) is, for the point (r, u, f),

B 5 O
l50

` O
m50

l

Cn~r/a! lPlm~cosu)cos~m~f 2 clm))

where Plm is called the associated Legendre polyno-
mial, and the last f dependent cosine term sinusoi-
dally modulates the magnetic field as one traces a
circle in the xy plane. All the harmonics except for
l 5 m 5 0 contribute to the inhomogeneities, since
a homogeneous field, by definition, has a magnitude
which does not depend on any coordinates. Since the
higher-order terms rapidly decrease in amplitude for
most realistic solutions of Laplace’s equation, ad-
justing a few terms should suffice to remove most
inhomogeneities: this is the motivation for includ-
ing between 10 and 30 shim coils with every modern
NMR spectrometer.

Spherical harmonics are orthogonal, so in theory one
should be able to tune each coil just once. In reality
they are not precisely orthogonal, since a small trans-
lation of one coil with respect to another leads to
high-order interferences between the various orders.
Thus shimming with orthogonal coils is a slightly non-
linear problem, and for a spectrometer with n shim
coils, one must conduct a search over an n-dimen-
sional space of coil currents, trying to maximize the
height and narrowness of the peaks in the spectrum.
Many cumulative weeks of human effort are usually
required for the shimming operation for the lifetime
of a spectrometer, but small corrections are usually
automatable. We are very interested in making shim-
ming an on-line process, where a classical computer

is continuously correcting the shim currents for max-
imum resolution with no human intervention. The
purpose is to begin to abstract away the spectrom-
eter aspect of the machine and focus on the com-
putational aspects. To do so will require modern non-
linear search methods, as will be described in the
software section.

For a 1 tesla (T) magnetic flux density with part-per-
100000 homogeneity, in order to get part-per-billion
homogeneity, the error in these small fields must be
on the order of 1025 Gauss, roughly 10000 times
smaller than the Earth’s magnetic field. The phys-
ical coils we developed are planar, as shown in Fig-
ure 5. They are simply designed and fabricated us-
ing normal techniques for printed circuit boards. This
is an old technique, as planar, orthogonal shimming
was developed29 in the 1950s to shim electromag-
nets, but fell out of favor when superconducting mag-
nets became adopted. We have built electronics to
address any number of coils: each coil has a bipolar
16-bit digital-to-analog converter (DAC) capable of
outputting between 2100 and 100 milliampere (mA)
of current, so that the least significant bit corresponds
to 305 m A of current. For a 25-turn coil of diameter
5 cm, this creates a magnetic field with magnitude
;1 gauss (G) (1 cm away from the coil center), so
that the least significant bit corresponds to about
1025 G. Thus the specified hardware is, at least in
theory, capable of creating the necessary fields. The
actual performance depends on many things, includ-
ing the stability of the shimming system’s power sup-
ply, the susceptibility of the electronics to external
noise, and unavoidable noise imposed by the laws
of thermodynamics.

Transmitter. To generate arbitrary time series RF
signals without prohibitive amounts of analog hard-
ware, we have investigated minimal software radio
approaches. With permanent magnet systems, res-
onance frequencies will reach only about 80 mega-
hertz (MHz). This is well within the domain of the
best digital-to-analog converters. In making a robust
transmitter for NMR, one must be very careful with
transmitter noise, phase noise of the oscillator, and
long-term stability. To begin development, we be-
gan with a VXI-based, 40 million sample per second
DAC made by Hewlett-Packard. The HPE1445 has 13
bits of digital resolution and generates arbitrary
waveforms of any duration, and the clock is derived
from a very stable oven-controlled crystal oscillator
(OCXO). Initially, we have been interested in creat-
ing a system that can address two heteronuclear spe-
cies such as protons and carbon-13 (many more
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qubits can exist in each heteronuclear subspace). We
constructed a small analog board that takes the DAC
output and, with filtering, creates simultaneous ar-
bitrary waveforms for both species. A photograph
of the board is shown in Figure 6. The signal from
the DAC is split into two paths and is filtered, then
converted by an RF mixer to each respective Larmor
frequency. The local oscillators, also made by
Hewlett-Packard, are switched between transmit and
receive mode by gallium arsenide switches made by
Microwave Associates (M/A-COM). These switches
were chosen for their unusually high isolation of
about 70 dB between channels and fast switching
speed. High isolation is important because any un-
necessary noise leakage to the receiver will degrade
receiver performance and allow high power trans-
mit pulses to be demodulated in the receiver. Con-
trol of the transmitter switches and other functions
on this board and the receiver was accomplished with
a Hitachi 32-bit processor.

Receiver. The signal magnitude produced by a coil
interacting with the spin magnetization after a (p/2)
pulse is given30 by

S } Nsb~gB0!
2~LVsh! 1/ 2,

where Ns is the number of spins, b is a parameter
to indicate the inhomogeneity of the field B1 , L is
the coil inductance, Vs is the sample volume, and h

is the ratio of the volume of the active sample re-
gion to the coil. The noise term, due to fluctuation-
dissipation, is the traditional Johnson type (ignor-
ing equipartition and spin-noise16):

N 5 ÎF4kBTRD f,

where F is the noise figure of the receiver, kBT is
Boltzmann’s constant times the temperature, R is
the resistance of the coil, and Df is the input receiver
bandwidth. For designing a receiver, we see it is im-
portant to minimize both the input bandwidth and
the noise figure. Since signals in NMR are on the or-
der of 2150 to 2130 dBm (dB relative to 1 mW),
careful attention to these details is paramount for
detecting signals. For the receiver, we started with
a VXI-based, 20-million sample per second analog-
to-digital converter (ADC) made by Hewlett-Pack-
ard. The HPE1437 is an amazing device capable of rep-
resenting 23 bits of noise-free digital resolution. The
maximum dynamic range of an ADC without process-
ing gain is 1.76 1 6.02N dB, where N is the nominal
bit resolution. Thus, the theoretical dynamic range
of this device is 140.22 dB. However, since we rou-
tinely detect signals that are 2130 dBm, analog elec-
tronics are still required to get the maximum digital
resolution. With this, we developed a minimal re-
ceiver that performed some basic amplification and
filtering. The signals from the protons and carbon-13

Figure 5 Planar shim coils to replace complex orthogonal coils in commercial spectrometers
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are amplified by an Avantek 105 amplifier, a 1.6 dB
noise figure amplifier with 27 dB of gain. After a
wide, bandpass filter, the signal is downconverted,
filtered, and then amplified with an integrated de-
vice, the RF2612 made by RF Micro Devices. The sig-
nal is then buffered with an op amp and then com-
bined for the HPE1437. The overall RF specifications
for the board are a 1.7 dB NF, with 60–104 dB of
gain. A photograph of the board is shown in Figure
7. The ADC digitally downsamples the signal to ob-
tain the amplitude and phase of the signal and then
applies digital filtering and downsampling to reduce
the output data rate. What we hope we have shown
is not that this system is superior to commercial sys-
tems, but is a simple, inexpensive, and software-
driven one.

FPGA version. The system that we have developed
should be capable of doing all the tasks necessary
to implement a quantum computer, but it is hardly
table-top in size or function. With so many VXI mod-
ules and separate pieces, we sought a minimal
implementation of all these functions. Field Pro-
grammable Gate Arrays (FPGAs) are software pro-
grammable devices that give one the ability to de-
velop small microprocessors, memory controllers,
waveform generators, and timers usually imple-

mented in application-specific integrated circuits
(ASICs). We are developing a couple of boards
around these devices that we expect will be able to
amply do all the required tasks of our current sys-
tem. The design that is currently being implemented
is shown in Figure 8. Control of the board is imple-
mented using the Internet Protocol (IP) over Eth-
ernet. An FPGA serves as a controller that interfaces
to a small Ethernet physical interface and Memory
Access Controller (MAC) using the User Datagram
Protocol (UDP) over IP. A three-wire serial bus is op-
toisolated and carries data over a bus to the trans-
mitter and receiver cards. The transmitter card has
an FPGA controlling 512 kilobytes (kB) of static RAM
and an Analog Devices AD9856, a 200 MHz comple-
mentary metal oxide semiconductor (CMOS) digital
upconverter. Over Ethernet, one supplies the fre-
quency, amplitude, and phase of a signal digitally and
this 3" 3 2" card creates the waveform with submi-
crosecond time resolution. The same analog receiver
design described in the previous section is imple-
mented here except that the signal is mixed down
to a standard intermediate frequency of 455 kHz. A
third board containing an FPGA with 512 kB of SRAM
and the AD9260 samples the signal at 10 MSPS (mega
samples per second) and 16-bit resolution. On the
FPGA, digital filters and downsamplers are applied
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and the signal is digitally downconverted with a
quadrature local oscillator to recover amplitude and
phase. Over the three-wire serial bus, the data are
transmitted to the FPGA Ethernet controller and can
be sent to any device on our network to be visual-
ized and processed. Timing control for this whole
system is controlled by a small oven-controlled crys-
tal oscillator, which has excellent phase noise char-
acteristics and temperature/time stability. To add
other spins, one simply needs to add a stack of the
three aforementioned boards, a high power switch,
and RF amplifier.

Software

In this section we discuss the pieces of software
needed to run on our quantum computer, including
low-level programming to address our hardware and
optimization software for shimming.

Pulse language and system design. We designed a
programming language,31 q, to control the hardware
presented in the last section. A q program is parsed
by an interpreter, QOS (or Quantum Operating Sys-
tem), which runs on a PC. The job of QOS is to co-
ordinate the timing and configuration of the hard-
ware, compile pulse sequences into waveforms for
broadcast, and process the signals that return. It is

the digital core of the software-radio architecture of
this NMR system. A q program is essentially assem-
bly microcode of the basic operations for an NMR
quantum computer. A sample q program that per-
forms one of the three pulse sequences required for
executing Grover’s algorithm, which performs a
search on N unsorted items with only 2(=N) da-
tabase accesses, is briefly explained in the accom-
panying sidebar.

Optimization for shimming. We built a machine-
learning environment for QOS. Our initial priority
was to continuously automate the tedious shimming
process, but it quickly became apparent that with ap-
propriate control software, the NMR spectrometer
could automatically perform very complicated tasks.
For example, one might then run a multidimensional
NMR experiment like COSY (COrrelated Spectros-
copY), extracting the various J-couplings between
spins, as well as any other interactions that might be
apparent. This is a very difficult task, requiring ex-
cellent hardware and software, since most real mol-
ecules in natural environments are difficult to dif-
ferentiate from their surroundings.

All nonlinear search optimization techniques require
a function to be optimized. Usually evaluating this
function is an expensive thing to do—in our case,

Figure 7 Photograph of the receiver board
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requiring many seconds per execution. Since we want
to maximize the dephasing time (thus improving the
homogeneity of the magnetic field), a suitable func-
tion is the sharpness of a peak in the 1-D NMR spec-
trum. Thus a simple protocol for calculating this

sharpness is: run a p/2 pulse program with specific
values for the parameters being optimized, and col-
lect the data from the NMR spectrometer. Then com-
pute the power spectrum of the signal, and fit a
Lorentzian (as described earlier) to the lineshape,

Declare the program type
% This is a comment
% A name for this program — Grover 's algorithm to discover the
% u11. state
Qname( 'grover u11. ')
Qsample( '13CHC13 ') % Molecule — chloroform
Qversion( '1.0 esb ') % Program version
Qdecouplingstyle( 'minimal ') % Whether decoupling is on/off

Declare the molecular parameters
Qnumqbs(2) % number of qubits
% Proton(H) on chloroform is first qubit — give NMR specific information
% for qubit
Qspecies(1, '1H ', 26.7510e7, 42574931.880108, 35000000, 1, 0.001, 5)
% Carbon(13C) is 2nd qubit
Qspecies(2, '13C ', 6.7263e7, 10705040.871934, 8000000, 0.0159, 0.001, 5)

Prepare the state (for temporal averaging purposes)
% A square (hard) pulse (as opposed to a soft gradient or sinc pulse)
% applied about the y-axis for 90 degrees
Qy(1,90,square)
% wait for a specified time in decimal units
Qwait(0.002325581395349, dec, 0)
Qy(2, 290, square)
% An x2pulse
Qx(2, 290, square)
Qy(2, 90, square)
Qy(1,290, square)
Qx(1,290, square)
Qy(2,90, square)
Qwait(0.002325581395349, dec, 0)
Qy(1,290,square)
Qx(1,290,square)
Qy(1,90,square)
Qy(2,290,square)
Qx(2,290,square)

Perform Grover 's algorithm including readout
Qx(1,180,square)
Qy(1,90,square)
Qx(2,180,square)
Qy(2,90,square)
Qwait(0.002325581395349, dec, 0)
Qy(2,290,square)
Qx(2,90,square)
Qy(1,290,square)
Qx(1,90,square)
Qwait(0.002325581395349, dec, 0)
Qy(2,290,square)
Qx(2,290,square)
Qy(1,290,square)
Qx(1,290,square)
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extracting the sharpness v0/a. The sharpness can be
maximized using any of a number of methods—the
Nelder-Mead downhill simplex method, Powell’s
direction set method, or the conjugate gradient
method (using finite differences to calculate the gra-
dient).

Results

Our results are preliminary but indicative of things
to come. The plots outlined below are relatively triv-
ial on commercial spectrometers, but our results
come from a machine that is significantly less in cost
and complexity. The plot in Figure 9 shows the in-

trinsic sensitivity of our spectrometer on a 0.5 cm3

50 percent glycerine in water sample. The sample
was prepared in a 5 millimeter NMR tube and the
data were collected for 3.28 milliseconds. This is short
compared to the intrinsic coherence time of the pro-
tons in the liquid, but the sample has been inhomo-
geneously broadened by our low homogeneity test
electromagnet. With over 50 dB of signal to noise
over a bandwidth of approximately 1 kHz, our sys-
tem is competitive with commercial systems, and with
computational optimizations we are pursuing, we
hope to develop our system beyond what is done
commercially.

Figure 8 Overall schematic for the transmitter and receiver electronics for an FPGA-based software radio
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The next plot is much more important. It is a cor-
relation spectroscopy plot of the correlation of one
spin to another. In this case, we are showing the cor-
relation of a carbon atom and a hydrogen atom, proof
that we can in principle create logical gates with our
system. Richard Ernst32 invented this technique as
a means to show coupling patterns between spins,
that is to identify pJ ijI ziI zj terms of the Hamiltonian
from vI i , terms that were ambiguous in previous ef-
forts. Without delving into the details of the rich sub-
ject of 2-D correlation spectroscopy, we have dem-
onstrated an experiment that isolates the coupling
term to show that the nonlinear term of the Ham-
iltonian is present. The experiment goes as follows:
we apply a p/2 pulse on the hydrogen spin that cre-
ates a (1/=2)(u1& 1 u0&) state, then we let the system
evolve for a variable time t1 that is changed from
experiment to experiment. During this time, the u0&
state of the hydrogen spin will interact with the u0&
state of the carbon spin to make this state resonate
slightly faster during this time. The other u1& state
of the hydrogen spin will interact with the u0& state
of the carbon spins to resonate slightly slower. The
difference in resonance frequency is the J coupling
frequency. Our sample was 1 milliliter (mL) of C 13

labeled chloroform with a coupling frequency of 215
Hz. A plot is shown in Figure 10, highlighting a split-
ting of the hydrogen resonance by 215 Hz. This is

direct evidence of the coupling between spins, which
with shimming will be used to implement gates. We
could not go further because of the inhomogeneity
of our magnet. With our shimming system, we should
be able to implement a simple quantum algorithm.

Figure 10 Three-dimensional plot showing the resolvement
of J-coupling in chloroform, required to
implement gates. This proton spectrum shows
a 215 Hz splitting via the interaction with C13.
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Conclusions

We have demonstrated the feasibility of a table-top
NMR apparatus performing quantum computations,
approaching the relevant performance of commer-
cial spectrometers, and potentially scaling to non-
trivial sizes through optimizations for computation
rather than spectroscopy. Success beyond engineer-
ing diligence almost wholly depends on the success
of unity polarization enhancement for thermal en-
sembles of nuclear spins. Optical pumping tech-
niques show promise but still fall short of what is re-
quired for this technique to be useful. However, if
this major obstacle can be overcome, we will have
a machine that will have unprecedented computa-
tional degrees of freedom. This could potentially be
very important not only for implementing quantum
algorithms but also for controlling and manipulat-
ing large coherent quantum systems. Such a system
could one day lend itself to simulating problems that
physicists and semiconductor engineers only dream
of. The important realization is that nature itself is
a very powerful computational architecture. We just
needed to figure out how to talk to it.
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